Technische Universität München Robotics and Embedded Systems
 

Dr. Christian Osendorfer

 

Former Research Assistant

E-Mail ed.mut.ni@frodneso
Homepage osdf.github.com
Dipl.-Inf. Christian Osendorfer
 

Publications

[1] Justin Bayer, Christian Osendorfer, Daniela Korhammer, Nutan Chen, Sebastian Urban, and Patrick van der Smagt. On fast dropout and its applicability to recurrent networks. In Proc. ICLR, 2014. [ .bib | .pdf ]
[2] Nutan Chen, Sebastian Urban, Christian Osendorfer, Justin Bayer, and Patrick van der Smagt. Estimating finger grip force from an image of the hand using convolutional neural networks and gaussian processes. In Proc. ICRA, 2014. [ .bib | .pdf ]
[3] Hubert Soyer and Christian Osendorfer. Fast image super-resolution utilizing convolutional neural networks. Forum Bildverarbeitung 2014, pages 73-84, 2014. [ .bib ]
[4] Christian Osendorfer, Hubert Soyer, and Patrick van der Smagt. Image super-resolution with fast approximate convolutional sparse coding. In Neural Information Processing, pages 250-257. Springer International Publishing, 2014. Best Paper Award. [ .bib | .pdf ]
[5] Rachel Hornung, Holger Urbanek, Julian Klodmann, Christian Osendorfer, and Patrick van der Smagt. Model-free robot anomaly detection. In Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on, pages 3676-3683. IEEE, 2014. [ .bib | .pdf ]
[6] Justin Bayer and Christian Osendorfer. Learning stochastic recurrent networks. In NIPS 2014 Workshop on Advances in Variational Inference, 2014. [ .bib | .pdf ]
[7] Justin Bayer, Christian Osendorfer, Sebastian Urban, and Patrick van der Smagt. Training neural networks with implicit variance. International Conference on Neural Information Processing Systems, 2013. [ .bib | .pdf ]
[8] Christian Osendorfer, Justin Bayer, Sebastian Urban, and Patrick van der Smagt. Unsupervised feature learning for low-level local image descriptors. arXiv preprint arXiv:1301.2840, 2013. [ .bib | .pdf ]
[9] Christian Osendorfer, Justin Bayer, Sebastian Urban, and Patrick van der Smagt. Convolutional neural networks learn compact local image descriptors. In ICONIP (2), 2013. [ .bib ]
[10] Thomas Rückstieß, Christian Osendorfer, and Patrick van der Smagt. Minimizing data consumption with sequential online feature selection. International Journal of Machine Learning and Cybernetics, 4(3):235-243, 2013. [ DOI | .bib | .pdf ]
[11] Sebastian Urban, Justin Bayer, Christian Osendorfer, Göran Wesling, Benoni B. Edin, and Patrick van der Smagt. Computing grip force and torque from finger nail images using gaussian processes. In Proc. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 4034-4039, 2013. [ DOI | .bib | .pdf ]
[12] Justin Bayer, Christian Osendorfer, and Patrick van der Smagt. Learning sequence neigbourhood metrics. In International Conference on Artificial Neural Networks, 2012. [ .bib | .pdf ]
[13] Thomas Rückstieß, Christian Osendorfer, and Patrick van der Smagt. Minimizing data consumption in sequential classification. International Journal of Machine Learning and Cybernetics, 2012. [ DOI | .bib | .pdf ]
[14] Justin Bayer, Christian Osendorfer, and Patrick van der Smagt. Learning sequence neigbourhood metrics. In NIPS 2011 Workshop Beyond Mahalanobis: Supervised Large-Scale Learning of Similarity, 2011. [ .bib | .pdf ]
[15] Christian Osendorfer, Jan Schlüter, Jürgen Schmidhuber, and Patrick van der Smagt. Unsupervised learning of low-level audio features for music similarity estimation. In Workshop on Learning Architectures, Representations, and Optimization for Speech and Visual Information Processing, ICML 2011, 2011. [ .bib | .pdf ]
[16] Thomas Rückstieß, Christian Osendorfer, and Patrick van der Smagt. Sequential feature selection for classification. In Proceedings of the Australasian Conference on Artificial Intelligence, AI 2011, 2011. [ DOI | .bib | .pdf ]
[17] Jan Schlüter and Christian Osendorfer. Music similarity estimation with the mean-covariance restricted boltzmann machine. In Proceedings of the Tenth International Conference on Machine Learning and Applications (ICMLA 2011), 2011. [ DOI | .bib | .pdf ]
[18] Frank Sehnke, Christian Osendorfer, Thomas Rückstieß, Alex Graves, Jan Peters, and Jürgen Schmidhuber. Parameter-exploring policy gradients. Neural Networks, 23(2), 2010. [ DOI | .bib | .pdf ]
[19] Frank Sehnke, Christian Osendorfer, Jan Sölter, Jürgen Schmidhuber, and Ulrich Rührmair. Policy gradients for cryptanalysis. In K. Diamantaras, W. Duch, and L. Iliadis, editors, Proceedings of the International Conference on Artificial Neural Networks, ICANN 2010. Springer-Verlag Berlin Heidelberg, 2010. [ DOI | .bib | .pdf ]
[20] Frank Sehnke, Alex Graves, Christian Osendorfer, and Jürgen Schmidhuber. Multimodal parameter-exploring policy gradients. In Bob Werner, editor, Proceedings of the ninth International Conference on Machine Learning and Applications, ICMLA 2010, 2010. [ DOI | .bib | .pdf ]
[21] Frank Sehnke, Christian Osendorfer, Thomas Rückstieß, Alex Graves, Jan Peters, and Jürgen Schmidhuber. Policy gradients with parameter-based exploration for control. In J. Koutnik V. Kurkova, R. Neruda, editor, Proceedings of the International Conference on Artificial Neural Networks, ICANN 2008, Part I, LNCS 5163, pages 387-396. Springer-Verlag Berlin Heidelberg, 2008. [ .bib | .pdf ]
[22] Christian Osendorfer, Carsten Trinitis, Martin Mairandres, and Jie Tao. Vismi: Software distributed shared memory for infiniband clusters. In Network Computing and Applications, 2004.(NCA 2004). Proceedings. Third IEEE International Symposium on, pages 185-191. IEEE, 2004. [ .bib | .pdf ]