LY
m /M | Robotics and
TUM-LS6 i Embedded Systems

A. FPGA Basics Manuals

In this practical course, Field-Programmable Gate Array (FPGA) is used as the experimental
platform, which means to creation of a hardware description for the FPGA and writing software
for the created hardware. For experiments, toolchain from Altera Corporation is chosen, which
are Quartus II for hardware development and the Nios2SBT for software development. The
tutorial is specific for Altera toolchain.

A.1. Tool Chain Installation
A.1.1. Installation

Please note that this installation description applies to installing the Altera Design Suite v12
on Windows7 64bit only. To install the toolchain, one can either use the Altera Installer or our
pre-downloaded package. Details of the two approaches are show below:

o Altera Installer:

To install all the required software, Altera Corporation provides a free download package
on its website, called “Altera Design Suite (Altera Installer)”. This is an installer package,
which downloads all selected installation components during the installation process from
the Internet. To start the installation, execute the installer package as an administrative
user (right-click and select “run as administrator”). This step is very important, as the
USB-Blaster will not work if you install the software as a low-privileged user.

Select products
Select the software products you want to install.

Products Install Sze Download Size
4 [Quartus II Subscription Edition (includes Nios II EDS) 4.4 G 1.2G
[[] Quartus II software (64-bit) 810 M 122 M
> [Device Families - -
4 Quartus I Web Edition (Free) (includes Nios I EDS) 4.3 G 136G
4 Device Families 240 M 226 M
[] Arria T GX 472 M 456 M
[[] cyclone 11 29 M 25 M
[] Cyclone T/ LS 213 M 189 M
Cyclone IV E 240 M 226 M
[[] cycone v GX 179 M 168 M
[C] cyclone v 541 M 533 M
[Legacy Families 1.5 M 644 K
[max 11 3.8M 2.9M
] max v 4.2 M 35M
[[] ModelSim-Altera Starter Edition (Free) 346 409 M
[[] ModelSim-Altera Edition 346G 409 M
[[] DSP Builder 254 M 51M

Description
> Select ICt:
Select Products Includes Cyclone IV E device support

Install: Download:

Space Reguired: 456G 132G Select/Deselect Al

Space Avaiable: 88 G 88 G

[< Back][Hext =][Cancel]

Figure 1: Component selection in the Altera Installer

e Pre-downloaded package:

156

S
m | Robotics and
TUM-LS6 D Embedded Systems

Go to directory tools/altera-installation, double click file
12.1sp1_2483_quartus_free_windows. exe,
the installation will start as previously described.

Altera offers a paid (Quartus IT Subscription Edition) and a free (Quartus II Web Edition)
version of its Quartus development suite. The free version includes most of the features for
beginners or even professionals. One striking difference is the missing Intellectual Property (IP)
license files for several more complex components. These components, which are not fully li-
censed to free edition users include, but are not limited to NiosII/s or NiosII/f processors (the
NiosII/e processor does not require a license), the DDR Random Access Memory (RAM) con-
troller or the Triple Speed Ethernet (TSE) Ethernet Media Access Control (MAC) component.

A.1.2. Tips

1. If running Quartus II v12.0 on a 64bit machine, one might still have difficulties finding
the USB Blaster hardware in the Programmer tool. Altera does not ship the 64bit JTAG-
Server with the QuartusIl Web-Edition. To resolve this issue, install the standalone Pro-
grammer Software from https://www.altera.com/download/software/prog-software,
which contains a 64bit Programmer and Joint Test Action Group (JTAG)-Server (update:
as of Quartus IT v12.1, there is no need to separately install the standalone Programmer).

2. The installation package does include the driver for the USB Blaster device. The device
driver, however, does not automatically installed during the installation of the Altera
toolchain. To install the device drive, go to the ”Device Manager” and reinstall the drive,
as shown in Fig. 2. When reinstalling the driver, locate the driver at directory:
c:\altera\ 12.1sp1\ quartus\ drivers\usb_blaster.

.=y Device Manager E\@

File Action View Help
= || HE| 8
>+ Mice and other pointing devices o
> -Bd| Monitors
»-E¥ Network adapters
> "5 Ports (COM & LPT)
b n Processors
b &P Security Devices
> - SM Driver
»-{2P Sound, video and game controllers
» 47 Storage controllers
> - System devices
4 - § Universal Serial Bus controllers
------ § Altera USB-Blaster
------ ¥ Generic USB Hub
------ @ Intel(R) 6 Series/C200 Series Chipset Family USB Enhanced Host Controller - 1C2D
------ @ Intel(R) 6 Series/C200 Series Chipset Family USB Enhanced Host Controller - 1C26
------ @ Renesas Electronics USB 3.0 Host Controller
------ @ Renesas Electronics USB 3.0 Root Hub
------ § USB Composite Device
------ @ USE Root Hub
------ @ USE Root Hub

m

1|

Figure 2: Altera USB Blaster

157

https://www.altera.com/download/software/prog-software

S
m | Robotics and
TUM-LS6 D Embedded Systems

A.2. Hello-World SoC

A.2.1. Prerequisite

e Successfully finish Section A.1.

e The Hello-World package, which includes the hardware description files, e.g., .sof and
.sopcinfo, and the software source code.

A.2.2. Download Hardware Design to FPGA

Now that you have created a hardware description for your FPGA and have successfully gener-
ated/compiled it, you can proceed to program your design. Programming your hardware design
onto the FPGA can be done from the console or by using the Programmer User Interface (UT).

Programming the FPGA chip will keep the hardware description in the chip until the next
programming or power loss. This means that the chip has to be programmed again each time
the development board is turned off. To avoid reprogramming upon each power cycle, the
FPGA chip can be set to an automatic programming mode. In this mode, the FPGA will take
the hardware description from a flash memory and program itself upon start. But there is a
restriction to this automatic programming mode: It can only be used, if all the components used
in the current hardware design are properly licensed (e.g., the TSE Ethernet MAC component
is not licensed in Quartus I Web Edition). See section ?? for a short summary of the differences
between Quartus versions.

*i# Programmer - C:/tum/SYSU/Practical/references/PWM-org/pwm_gen - pwm_gen - [pwm_g... E\-@
File Edit WView Processing Tools Window Help 5 Search altera.com @

£, Hardware Setup... | [EEREESHIE:RD Mode: [JTAG '] Progress: [100% (Successful

[] Enable real-time ISP to allow background programming (for MAX II and MAX V devices)

m File Device Checksum Usercode Program/ Verify Blank- Bxar
Configure Check

..{../HelloWorld/Hard... EP4CE22F17 004CCB58 FFFFFFFF

@i Stop

A Auto Detect

Delete
[Add File... Tl 0 \
15 Change File -
A Save File
PALTERA -
%Add Device.. =
—b
1 up
1% pown EP4CE22F17
P -

Figure 3: Main window of Programmer

One can start the Programmer manually or even fire it up from your Quartus instance (see
figure 3 for a screenshot of the Programmer main window). To do so, open your hardware design
project and select “Tools/Programmer” from the menu bar. If you start Programmer from
Quartus, the hardware design you want to program should already be preselected. Otherwise,
you can use the Add File... button to add your .sof of .pof file. If your FPGA chip is not

158

=y
m /M | Robotics and
TUM-LS6 D Embedded Systems

selected yet, you can use the Add Device... button to select your FPGA chip. Make sure to
select the correct chip number, otherwise you risk damaging your hardware.

%; Quartus II L&J

File

C:fUsers/martin/Dropbox Dokumente Master _Thesis fquartus_stuffjweb_server_improved_restored/DE2_115_WEE_SERVER._time_limited.sof
contains one or more time-imited megafunctions that support the OpenCore Plus feature that will not work after the hardware evaluation
time expires, Refer to the Messages window for evaluation time details.

Figure 4: Time limitation warning of Programmer

If you are using a non-licensed component in your hardware design, you can still use that
component, but you can only use it while your FPGA is connected to your Computer running
Programmer. A message will appear, which reminds you of that situation (the message might
look like figure 4).

$ Hardware Setup %

Hardware Settings ITAG Settings

Select a programming hardware setup to use when programming devices. This programming
hardware setup applies only to the current programmer window.,

Currently selected hardware: [USB—BIaster [UsB-0] -]

Available hardware items

Hardware Server Port Add Hardware...
|ISB-Blaster Local |ISE-0
Remove Hardware
L ~

Figure 5: Hardware setup window of Programmer

Now you need to set your USB Blaster connection to the FPGA chip. Simply click the
Hardware Setup... button and a window like 5 will pop up. If you are using USB Blaster for
programming (on DE2-115 boards, you are using USB Blaster), your USB Blaster will show up
in the list of Available hardware items. Select it from the Currently selected hardware dropdown
list, close the Hardware Setup window and you should be ready to start programming. The Start
button should be enabled, if you have added a .sof of .pof file, if you have selected a FPGA
device and if your USB Blaster is selected. Start programming by clicking that button. The
progress bar should show Success after programming finished successfully. This means that your
hardware design was programmed onto the FPGA chip. If you are using non-licensed (time-
limited) components, a popup window will appear after successful programming (see figure 4).

159

m Robotics and
TUM-LS6 D Embedded Systems

Leave this window open and keep the FPGA chip connected to your computer until you have
finished using your hardware design.

Sometimes you could have issues with your USB Blaster hardware detection. If your USB
Blaster is not selected (from your previous programming), try to select it again in the Hardware
Setup... window. If it does not show up in the list of Awailable hardware items, check your
physical connection to your development board. Make sure the USB cable is connected properly
to your computer and the FPGA hardware. Also make sure, that your FPGA hardware is
connected to a power source and the power switch is turned on. If the USB programmer is still
not shown in the list, close the hardware selection window and open it again (you may need
to repeat this procedure several times). In fact, simply retrying the failed operation helps in
many cases for the Programmer (not only the issues, which are listed here). Another way to get
the Programmer working is to select Auto Detect or turning your development board off and
on again. If your USB Blaster did never show up in the list of available hardware components,
there might be a driver issue on your system. This could be, because you ran the installation
process as a non-privileged user. Also make sure, that your USB Blaster is listed in Device
Manager (on Windows machines).

Once the download is complete, the Progress bar of Programmer window, located at the
top-right of Fig. 3, the will indicated 100% (Successful).

A.2.3. Setting up the BSP

After finishing all hardware related aspects of this introduction into the DE2-115 FPGA, we
are ready to start working on the software. Typically, Niosll applications are developed us-
ing the Nios2SBT (Niosll Software Build Tools), a modified version of the eclipse Integrated
Development Environment (IDE). NioslI applications usually consist of two parts:

e The NioslI Board Support Package (BSP), a software library and runtime environment,
which is customized to a Central Processing Unit (CPU) and a hardware design.

e The Niosll application, which is the program implementing the functionality required by
the user and relying on functions provided by the BSP

Start the Nios2SBT and select a workspace if you have not done so yet. To create a new
NiosIT BSP, select “File/New/Nios II Board Support Package” (Fig. 6), which will open the
BSP creation wizard (see Fig. 7). Choose a name for the BSP project and select the path to
the .sopcinfo file, which has been generated for your NioslI system. The .sopcfile should be
located in the QuartuslI project folder. You can change the location of the BSP (be default, it
is saved in a subfolder of the QuartuslI project folder). Select the CPU for which the BSP shall
be created (in case you have more than one CPU in your NioslII system). A BSP can only be
generated for one CPU at once. If you have more CPUs in one hardware design, you have to
create a BSP for each processor. Confirm your selection by pressing the Finish button of the
BSP creation wizard. Your BSP project will appear in the Project Explorer of the Nios2SBT.

A.2.4. Setting up the application project

Now we are creating the actual Niosll application project, which uses the BSP, that we just
created. Choose “File/New/Nios II Application” (Fig. 8) to open the Nios II Application wizard
(see figure 9). Enter a name for your application project and select the BSP for your project
(the BSP that you created in section A.2.3). Create the project by selecting the Finish button.
The project appears in the Project Explorer, as shown in Fig. 10. Basically, we just create two
projects, one for the BSP and the other for the application.

Note that although the application project has been created, there is no application-specific
source code within the project. The next step is to create the application source code. To input

160

['ﬁ
/? Robotics and
TUM-LS6 L)] Embedded Systems

& Nios I - Eclipse [E=% Eol <7

File| Edit Navigate Search Run Project NiosI Window Help

New Alt+Shift+N » Nios 11 Application and BSP from Template = <>
Open File... Nios II Application —5(. ==
Nios I Board Support Package EZCutlineg?t

Nios II Library)
Project... An outline is not available.

=

Close Ctrl+W
Close All Ctrl+Shift+W

1 OEREER

i Ctrl+S | F5 | Other.. Ctrl+N
Save As...

Save All Ctrl+Shift+S
Revert

Move...

Rename... F2
@] Refresh F5

Convert Line Delimiters To 4

9,

Print.. Ctrl+P

Switch Workspace 4
Restart

Import...
Export...

EE

Properties Alt+Enter

oblems ¥ Tasks | El Console |21 Properties [Nios Il Consale &2 k™ =0
1 system.h [bspl rid Nios I Hardware configuration - cable: USB-Blaster on localhost [USB-0] device ID: 1 instance ID: 0 name: jtaguart_0
2 main.c [hello] from Nios II!

3 Makefile [sofeware]

Exit

Figure 6: BSP creation wizard Location

= Nias I Board Support Package E-f'
Nios I Board Support Package
Create a new Nios I Software Build Tools board support package project

Project name: 1-bsp

SOPC Information File name: C\tum\SYSU\Practical\2-LED\Hardware\DEO_MNANO_SOPC.sop

Use default location

Location: |Ch\tum\SYSU\Practical\2-LED\Hardware\software\1-bsp

CPU: lcpu V]
BSP type: |Altera HAL v|
BSP type version: ’default V]

Additional arguments:

Command:tive path

@ [Finish] l Cancel

Figure 7: BSP creation wizard

161

]
m @ Robotics and
TUM-LS6 Embedded Systems

File | Edit Navigate Search Run Project NiosIl Window Help
New Alt+Shift+N » Nios Il Application and BSP from Template i1 KNP et
Open File... Nios I Application &" == - =5
a P Nios I Board Support Package 20utlinegzy
F——
o€ e Nios I Library @
Close All Cirl+Shift+W | 4 project... An outline is not available.
g Cul+S 1p5 Other.. Ctri+N
Save As...
1 Save All Ctrl+Shift+S
Revert
Move...
Rename... F2
1| & Refresh F5
Convert Line Delimiters To L4
2 | Print... Ctrl+P
Switch Workspace 4
Restart
&3 Import...
i Export..
Properties Alt+Enter
oblems | ¥ Tasks | E] Console | Properties | Nios Il Conscle 5 ®([@& -0
1 system.h [bsp] orld Nios II Hardware configuration - cable: USB-Blaster on localhost [US8-0] device ID: Linstance ID: O name: jtaguart_0
2 main.c [hello] from Nios II!
3 Makefile [sofeware]
Exit
e 0 items selected

Figure 8: Application creation wizard from Eclipse menu

Nios I Application

Create a new Nios II Software Build Tools application project

Project name: 4

BSP location: C:\tum\SYSU\Practical\test-bench\2-bsp

[¥] Use default location

Location: |CA\tum\SYSU\Practical\test-bench\4

Additional arguments:

A
I8

Command:
|| Use relative path

@ | Finsh || cancel

Figure 9: Application creation wizard

162

m =/ Robotics and
TUM-LS6 iy Embedded Systems

= Nios I - Eclipse [E= el =
Eile Edit Navigate Search Run Project NiosT Window Help
g |G @& Er@~ -0~ BFA T era 5 [@niosn] 1@ <»
I Project Explorer i =8 = 0|8 Outline =8
BE|s~ L
1 £ helloworld-bsp An outline is not available.

4 & hellow-world
») Includes
L& Makefile

[2¢ Problems (é Tasks (E Console (EI Properties ﬂﬂ Nios I Console E R

hellow-world Nios IT Hardware - cable: USB-Blaster on localhost [USB-0] device ID: 1 instance ID: 0 name: jtaguart_0

n) 0 items selected

Figure 10: System with BSP and application projects

the application source code into the project, there are two approaches, i.e., using the source-code
wizard and manual creation.

i N
= Mew Source File E@g

Source File _
Create a new socurce file, C
Source folder: quartus_demo
Source file: main.d

Template: [Default C source template v] [Configure...]

@ [Finsh | [Cancel

Figure 11: New file wizard

163

m Robotics and
TUM-LS6 D Embedded Systems

Source-Code Wizard

To add a new source file to the application project, right-click on the application project and
select “New/Source File”. In the New Source File window (see figure 11), enter a name for the
Source File and click Finish to create your file. Every project has to contain a main function,
which is the entry point to your application. Start by creating this function and adding code
to it. Listing 1 shows how a basic main function could look like. It demonstrates the output of
text to the console by using:

1 printf(¢‘Hello from Nios II!\n’’);

and controls the LEDs, that we connected via a Parallel I/O (PIO) component by using:

1 IOWR_ALTERA_AVALON_PIO_DATA(PIO_LED_BASE, count & 0x01);

Congratulations, you created your first NioslI software application.

1 #include <stdio.h>

2 #include <system.h>

3 #include "altera_avalon_pio_regs.h"
4

5 int main() {

6 printf ("Hello from Nios II!\n");
7 int count = O0;

8 int delay;

9 while (1) {

10 IOWR_ALTERA_AVALON_PIO_DATA(LED_PIO_BASE, count & 0x01);
11 delay = 0;

12 while (delay < 2000000) {

13 delay++;

14 }

15 count ++;

16 }

17 return O0;

18}

Listing 1: Example implementation of main function

Manual Creation

In the case that there is existing source code, one convenient way is to manually import the
source files into the project. Basically, one can just copy the existing source files directly to
the directory where the generated project is located. Then use the reflash key to generate the
corresponding Makefile, as shown in Fig. 12.

A.2.5. Executing Niosll projects on the target hardware

You can execute your Niosll project from the Nios2SBT. To execute the application, right-click
on the application project in the Project Explorer and choose “Run As/Nios II Hardware”. This
will compile your application, create a downloadable image, download the software image and
execute it on the target hardware. Before executing, please make sure that you programmed
the target hardware with the correct hardware design (see section 77).

Another option is to debug your application. To start debugging, right-click the project and
select “Debug As/Nios II Hardware”. This will execute the same steps as running the software
and additionally start Nios2SBT’s debugger.

If a window similar to figure 17 appears, your Target Connection setup may be incorrect. To
setup the target connection, open the Target Connection tab and click the Refresh Connections
button. Select a Processor to execute your target on and a Byte Stream Device, through which

164

5)
m Ei/_/ Robotics and
TUM-LS6 L)] Embedded Systems

= Nios I - Eclipse oS
Eile Edit Mavigate Search Run Project NigsIl Window Help
il | Ereirdv@~> BrO-Q~ @ Ff> HryTwto v ﬁ_[@d\”
-8 ~ B|[5= Outline 2 =8
EEIEN Ca
© & helloworld-bsp [DEO_ NANO SOPC] An outline is not available.
4 25 hellow-worel
» @l Includes New
¢ [@ hello_wa Go Into

L& Makefile Open in New Window

£3

[~ Project Explorer

Copy Ctrl+C
Paste Ctrl+V
Delete Delete
Remove from Context Cirl+Alt+Shift+Down
Source e

»® [fi

Move..
Rename... F2

Import...
Export...

kK

Build Project

Clean Project -~ = Properties | Nios Il Console &%

Refresh F5> ¥ UsB-Blaster on localhost [USB-0] device ID: 1instance ID: O name: jtag
Close Project

&

Close Unrelated Projects

Build Configurations 4
Make Targets 4
Index 4

Show in Remote Systems view

0 & hell Convert To...
Run As »

Figure 12: Reflesh the application project to import source code

= NiosIl- Eclips a ==

Eile Edit Navig Paste Ctrl+V

¥ Delete Delete :
mifhs b w Bl wth aow - e oo
~~ © 7| & Remove from Context Ctrl+Alt+Shift+Down B [{@ Nios I [[@ <M
e Project Explol Source 3 = B8|[%= Qutline 2 =5

k=
Move... @

=5 hellowarld Rename... P2 An outline is not available.
45 hellow-wg e

&+ 5 Include: Ewaie

o @ hello_w

[Makeri|_ Build Project el

Clean Project
Refresh F5
Close Project
Close Unrelated Projects

E

ﬁo

Build Configurations 4
Make Targets 4
Index L4

Show in Remote Systems view

Convert To...

Run As 4
Debug As 4
Profile As L4
Team 4

AN =] Properties]m Nios II Console] =0
& @‘ '—EQ'—HIan‘._" Briv

Compare With * tonfiguration Nios II for project hellow-world

Restare from Local History...
Nios T v =

#* Run C/C++ Code Analysis

; te]
Update Linked Resources

Properties Alt+Enter

o £ hel

-

Figure 13: Compile the application

text output will be transferred (see 18). Confirm your selection with Apply and start debugging
the software with Debug.
This finishes the tutorial on how to run your first NiosII Application.

165

TUM-LS6

Robotics and
Embedded Systems

E

Eile Edit Navigate Search Run Project Niosll Window Help
TR E B i@ e @Y Oy B

S v

& [@Nios 1)@ <»

[5 Project Explorer 2

=0

ER-C N

B= Outline = =8

By ~
&

= helloworld-bsp
= hellow-world
Binaries
Includes
= obj
[# hello_world.c
32 hellow-world.elf - [alteranios2/le]
hellow-world.map
hellow-world.objdump
& Makefile

An outline is not available.

[l Problems [% Tasks M = Properties] P Nios I Console]

CDT Build Console [hellow-world]

=0

4 (Bl EEEG| 2 B v~

--5TAOUT_Oev JTag_Uart --SOpC_SYSTem_name UEY_NANU_SUPL --SOpClnto i
C:/tum/SYSU/Practical/HelloWorld/Hardware/software/helloworld-bsp/../../C

E@_NANO_SOPC.sopcinfo

Info: (hellow-world.elf) 20 KBytes program size (code + initialized

data).
Info:

2612 Bytes free for stack + heap.

Info: Creating hellow-world.objdump

nios2-elf-objdump --disassemble --syms --all-header hellow-world.elf

>hellow-world.objdump
[hellow-world build complete]

*¥¥% Build Finished ****

Figure 14: The result of the application compilation

" SNt]«

File Edit Navig

id-EEBE&

. &

© & hellowarld
4[2 hellow-wo)
3% Binaries
1+ @ Include:

I & obj
v [hello_w,
12 hellow-
hellow-
hellow-
L& Makefil

& hel

E

Paste

Delete

Remove from Context
Source

Move...

Rename..

Import...

Export...

Build Project

Clean Project

Refresh

Close Project

Close Unrelated Projects

Build Configurations
Make Targets
Index

Show in Remote Systems view
Convert To...

Run As

Debug As

Profile As

Team

Compare With

Restore from Local History...
Nios Il

Run C/C++ Code Analysis
Update Linked Resources

Properties

A4

Ctrl+V

Delete

Cirl+Alt+Shift+ Down
»

F2

F5

Alt+Enter

= [@Nios 1)@ <1

BE Outline 52 =g
L
An outline is not available.

= Properties| B Nios II Console|

=]

4 4 [EF)

GEREE| B~ i

OpC_SYSTem_Name UEY _NANU_SUPL - -S50pCInTo

& 1 Lauterbach ISS

[c] 2 Local C/C++ Application
#1 3 Nios I Hardware

= 4 Nios I ModelSim

Run Configurations...

te]

&= initialized

emble --syms --all-header hellow-world.elf

oworld-bsp/ ../ . ./E

ap.

Figure 15: Run the application on the FPGA

166

),
m @ Robotics and
TUM-LS6 ' Embedded Systems

= Nios II - Eclipse = R <

Eile Edit Navigate Search Run Project NigsI Window Help

Or-HRE R @ -8~~~ ifs-0-Qr s i f-Frvoray & [@ Nios (@ <»
[Project Explorer &3 =g = B8z Qutline 2 =g
<):{:»l 7 C
=% helloworld-bsp An outline is not available.
&= hellow-world
4% Binaries
&l Includes
& obj
[# hello_world.c

¥ hellow-world.elf - [alteranios2/le]
= hellow-world.map

= hellow-world.objdump

L@ Makefile

[y [

[£{ Problems rJEI Tasks fE Console ﬂfl Properties i E[E& -0
hellow-warld Nios II Hardware configuration - cable: USB-Blaster on localhost [USBE-0] device ID: 1instance ID: 0 name: jtaguart_0
Hello from Nios IT!

¢
Figure 16: The result of the application execution
[= Debug Configurations . g‘
Create, ge, and run fi q »
@ [Target Connection]: No Nios I target connection paths were located. Check connections and that a Mios I .sof is downloaded.
IR Name: blah Nios Il Hardware configuration

type filter text Project . B, Target Connection| 35 Debugger| 1 Source | (] Common|

i [E] C/Cr+ Application »

(5] C/C++ Attach to Ay Project name: [blah v]
' [E] €/C++ Postmorterr, ProjectELF flename: | C:\Users\martin|plahlbizh.elf -
i C/C++ Remote Apg

= Launch Group Enable browse for file system ELF file

|
l|| 4 P MiosT Hardware
| [P blah Nios T Harg File system ELF file name:

P blinky_a_la_Kail I | (]
m blinky_dual_cpu|=
P Blinky-manual-y
P2 de2-115 NiosTTH

i P hello_sd_3july_ri

i P hello_sd_july02 |
P hello_sd_july09 |

f P hello_world 0 N

| P hello_world_sdri—|

IwIP_NIOS_IL_Exe
% IwIP_NIOS_IL_Ex:
i # myfirst_niosll_a
RTOSDemo_nio

izl
H
H
il
P RTOSDemo_SBT
H
(=]

=1 sdram_gang_10j -~
- . |
Filter matched 32 of 32 items

| @ [oo [cen]

4 —mm
Apply || Revent |

Figure 17: Error indicating wrong target connection path

A.2.6. Tips

e Enable the enable_small_driver option, click the Generate button, and then the Ezit but-
ton.

e No white space is allowed for all the names of the files and projects.

167

5)
m :/ Robotics and
| Embedded Systems

2 Debug Configurations I

TUM-LS6

Create, and run

@ Select one of the available target connection paths.

HEx | Sl Name: blah Nios I Hardware configuration

%5 Debugger| 15 Source| (=] Common|

type filter text
[5] C/C++ Application =

Project [, Target Connection
Connections

[E] C/C++ Attach to Ay s
[E] C/C++ Postmorterr Cable Device Device D Instance D Mame Architecture Refresh Connections
[E] ¢/C++ Remote App USE-Blaster on localhost [... ‘EPECIZIJI ... |1 ‘1 nicsz_1 Nioa2:3
= Launch Group USB-Blaster on localhost [...|EP3C120]...[1 o nics2 0 Nios2:3
P Mios T Hardware System ID Properties. ..
P blah Nios T Hard Byte Stream Devices:
P blinky_a_la_Kai I Cable Device Device ID Instance ID Name Version
V2 dual_cpu = -Blaster on localhost [... . jtaguart.
P blinky_dual_cpu = SB-B1 localh [...|EP3C120] 1 1 j 11
P blinky_dual_cpu USB-Blaster on localhost [...|EP3C120]...[1 o jtaguart 0 |1

P Blinky-manual-y
P2 de2-115 NiosTTH

[] Disable Mios II Console' view

Quartus Project File name:|< Using default .sopeinfo & jdi files extracted from ELF »

m hello_sd_3july_ri
ﬁ ::Hzi:j::ﬁ;l System ID checks
r% hello world 0 N [F] Tgnore mismatched system ID
P hello_world_sdri— [] Ianore mismatched system timestamp
P& wiIP_NIOS_I_Exz
P 1wIP_NIOS Il Exe luniioac
1 myfirst_niosTl_ap Download ELF to selected target system
¥ RTOSDema nic. Start processor
4 RTOSDeme_SBT || Reset the selected target system
M sdram_gang_10j +
« [r
Apply Revert
Filter matched 32 of 32 items
©
Figure 18: Choosing the target connection
= NiosTI-Eclip
File Edit Nav Paste Ctrl+V
¥ Delete Delete =
-HE F v Sl et O ow TN KNP
Remove from Context Ctrl+Alt+Shift+Down &} ‘_‘ G
[Project Bxpld Source , = O|(8 Outline = =8
-
Move... L
= helloworl Rename... F2 An outline is not available.
45 X
‘% i Import..
& ki Inclu i Export..
v [@ hello_y
[Makef Build Project
Clean Project
@1 Refresh F5
Close Project
Close Unrelated Projects
Build Configurations 4
Make Targets 4
Index 4
Show in Remote Systems view
Convert Ta...
Run As 4
Debug As 4 = o
. i i P
Profile As D Properties =1 Nios I Console
le: USB-Blaster on localhost [USB-0] device ID: 1instance ID: 0 name: jtaguart_0
Team 4
Compare With 4
Restore from Local History... .
Nios I 4 BSP Editor... z—
Run C/C++ Code Analysis Nios I Command Shell...
Update Linked Resources Flash Programmer...
Properties Alt+Enter
e c
o} = he =

Figure 19: BSP editor

A.3. Self-Booting

This section describes how to create a self-booting design such that the FPGA board can boot

up the designed system from flash memory once power up.

168

-]
m /M | Robotics and
TUM-LS6 L 1| Embedded Systems

-~ Nios I BSP Editor - C\tum\SYSU\Practical\HelloWorld\Hardware\software\helloworld-bsp\settings.bsp

File Edit Tools Help z’

‘ Main | Software Pad<ages‘ Drivers | Linker Scriptl Enable File Generation |Target BSP D\rectcry‘

=
Module Name Module Class Name Module Version Driver Name Driver Version
cpu altera_nics2 10.1 altera_nics2_hal_drivez default
jtag_uart altera_avalon_jtag_uart 10.1 altera_svelon_jtag_uart_driver default
onchip_memory? altera_avalon_onchip memory2 10.1 Inone none
pio led altera avalon pio 10.1 altera avalon pio driver default

altera_avalon_jtag_uart_driver

E-Advanced
[=-altera_avalon_jtag_uart_driver nable_small_driver IE/

-enable_small_driver

< 10 | »

Information ‘wa\ams Prur:essmg‘

(@ Setting "hal inker exception_stack_memory_region_name” set to "onchip_memory2". i

(@ Loading drivers from ensemble report.

(@ Mapped module: "cpu” to use the default driver version,

(@ Mapped module: "pio_led" to use the default driver version.

() Mapped module: “jtag_uart” to use the default driver version.

(@ Finished loading drivers from ensemble report.

(@ Loading BSP settings from settings file.

@ Finished loading SOPC Builder system info file *..\,.\DEO_NANQ_SOPC.sopdinfo [relative to settings file] ™ (I
-

@ Setting “altera_avalon_jtag_uart_driver.enable_small_driver™ set to “true”.

Figure 20: Edit the bsp options to enable small driver

A.3.1. Hardware Support

First of all, the designed System-on-a-Chip (SoC) needs hardware support for writing the EPCS
flash. In the case that the corresponding hardware is not included in the design, this section
guides you to integrate the hardware. Detailed steps are shown in the following figures.

14 Altera SOPC Builder - pwm.sopc (C\tum\SYSU\Practical\LED-self-baoting-HW-design-test\pwm.sopc) ==

Fie Edt Module System View Tools Mol Help

System Contents | System Generation|
Component Library e Clock Settngs
D epes % | pevice FamivCyclne VE w] | Name Source —
Proiect etk 0 External 500 =
21 New Component.
Library
[Memories and Memory Controlet
EFExternal emory Inerfaces || yse conn... Name Description Clock Base Ena RQ Tags
[} Flash Interfaces.
. B onchip_memory On-Chip lemory (RAM or ROM) k1]
51 \Awalon Memory Mapped Slave ko 0xa000 oxeres
B niosii Hios Il Processor (e
instruction_master |Avalon Memory Mapped Haster ko
Gata_master \Avalon Memory Happed faster ch 120 0| =0 31
ftag_debug_module | Avalon Memary Mapped Siave o] 0x8800 oxszez
B tag_uart 0 HTAG UART e
avalon_ftag_seve |Avalon Memory Mapped Siave o 09020 laxs027
B sysia System D Peripheral (1]
control_siave |Avalon Memory Napped Siave clk_0. 0x9028 oxs022
B pwm_gen_0 pwm_gen_v1 n
avalon_slave_0 [Avalon Memory Napped Slave elk 0 0x9000 laxs01z
X remove | | [ot =|[a][~][= Fiter: Default

/., Warning: niosii: Custom Instruction components can be edited through the Component Editor.

/i, Warming: niosii: Disabing the assign CPUID Contol register value manual wi 0 onger aulo-assigns uniue Controlregister value. Tis opton wil always be urmed on with defau vale set (0.0
/i, Warming: pwim_gen: TOP_LEVEL_HDL_WODULE automaticaly setto pwm_gen

@ nto: onchip_memory: Wemory wil ntiaized from onchip_memory hex

T

Figure 21: Open the design from the SOPC builder. From the ”Component Library” at the top
left of the figure, search EPCS component. Select the component and ” Add” to the

design (the red arrow).

169

S
m | Robotics and
TUM-LS6 D Embedded Systems

.1 EPCS Serial Flash Controller - epcs_flash_controller_0 @

E' EPCS Serial Flash Controller

EPCS Serial Flash Controller

Configuration
Automatically select dedicated active serial interface, if supported

use dedicated active serial interface

Description

The EPCS Serial Flash Controller core enables Mios Il systems to access an Altera EPCS serial
configuration device connected to the FPGA.

Altera provides device drivers for the Nioz Il processor which allows you to read and write the
EPCS from Nios Il software.

“ou can disable dedicated Active Serial (AS) interface pins and use regular VO ping instead,

in devices that support dedicated AS interface. When you choose to user regular 'O pins or

when you pick a device that dees not support dedicated AS interface, the EPCS Serial Flash Controller signals
are exported to the top level design.

Figure 22: After clicking the ” Add” button, this figure will show up. Just click the ”Finish”
button.

After the operation at Fig. 22, one will go back to the main panel of the SOPC builder, similar
to Fig. 21. Now double click the nios entry, which lead to Fig. 23. One needs to change the
”Reset Vector” of the Nios processor to the EPCS controller.

After the generation, there should be four extra pins in the design, i.e.,data0, dclk, sce, sdo.
These are dual-purpose pins. From the menu ” Assignment->device-> device and pin options”
(Fig. 26) to see if these pins are used as regular I/O. If not, change them into regular I/O
(Fig. 27). Otherwise, there will be synthesize errors.

If it is not possible to change them in the GUI, please add following tcl script into project
setting file with extension of .qgsf file.

set_global_assignment -name RESERVED_FLASH_NCE_AFTER_CONFIGURATION
‘‘USE AS REGULAR IO’

set_global_assignment -name RESERVED_DATAO_AFTER_CONFIGURATION ¢‘USE
AS REGULAR IO’

set_global_assignment -name RESERVED_DATA1_AFTER_CONFIGURATION ¢‘USE
AS REGULAR IO’

set_global_assignment -name RESERVED_DCLK_AFTER_CONFIGURATION ¢‘USE AS
REGULAR IO’

0w N O U s W N =

Listing 2: Pin Options

The next step is for pin assignment, i.e., to assign the signals of the Nios core to physical pins
of the chip. Similar to defining the pin options, one can just copy the code in Listing 7?7 to the
.gsf file. The result of this operation is shown in Fig. 28.

1 set_location_assignment PIN_H2 -to EPCS_DATAO
2 set_instance_assignment -name IO_STANDARD "3.3-V LVTTL" -to EPCS_DATAO
3 set_location_assignment PIN_H1 -to EPCS_DCLK

170

TUTI

),
_E Robotics and
Embedded Systems

TUM-LS6

2 Nios I Processor - niosii

%% Nios II Processor

Advanced Features MMU and MPU Settings JTAG Debug Module

[Core Nios Il

Select a Nios Il core:

Teystem: 50,0 MKz

Family: Cycione IV E

Branch Prediction
Hardware Multiply
Hardware Divide

[ENios /e oNios Iifs ONios IIf
- RISC RISC RISC
Nios Il 32-bit 32-bit 32-bit
Selector Guide Instruction Cache Instruction Cache

Branch Prediction
Hardware Multiply
Hardware Divide

Barrel Shifter

™

Reset Vector: Memory: |epcs, flash_controller_0 -

Offset |ﬂxﬂ

| oxa0000800

Exception Vector: Memory: [nnmn,memnry

| Offset: [gx20

| 0x00004020

[ncluge umu

Only include the MMU when using an operating system that explictly supports an MU

Fast TLB Miss Exception Vector: Memory: |

- Offset g

[include MPU

epu: 0 Data Cache
Dynamic Branch Prediction
Performance at 50,0 MKz Up o 8DMPS Upto32DMPS Up to 57 DMIPS
Logic Usage 600-700 LES 1200-1400 LES 1400-1800 LES
Memory Usage TwoMOKs (orequiv.) Two M9Ks + cache Three 19K + cache =

< Back

1

Figure 23: Changing the reset to EPCS controller.

4 Altera SOPC Builder - pwm.sopc* (CAtum\SYSU\Practical\LED-self-booting-HW-design-test\pwm.sope)

Eie Edit Module System View Tools Miosll telp

System Contents | System Generation|

ComponsntLirary Target Clock Settings
Oevee ramy{GysereVE v e S un:
et e o External Jsop —
%49 New Component.
Library
[} Memories and Memory Controleg
ElExternal emory Inferfaces | | yse conn... Name Description Clock Base End RQ Tags
= Flash Interfaces.
Lo B onchip_memory |0n-Chip Memory (RAI of ROM) (k1]
a1 \awalon Hemory Mapped Slave el oxa000 oxe7es
& niosii ios Il Processor o]
instruction_master | Avalon Wemory Mapped Masier cik_o
dota_master \Awalon Hemory Mapped Waster ek 120 0 180 31
ftag_debug_module | Avalon Hemory Mepped Slave ek 0x8800 oxszes
B jtag_uart 0 [ITAG UART (e8]
iy g wivva 1) Aveiom Nermocy Nappad Siave cliCo axs020 laxs027 4
8 sysia SysiemD Peripheral e
contro_slave [awalon Hemory Mapped Slave el oxs028 oxs02z
& pwm_gen_0 pwm_gen_v1 0
avalon_siave_0 \Avalon Hemory Mapped Slave ek 0 0x9000 oxs012
B epes_flash_control... EPCS Serial Fash Controler e
Avalon Memory Mapped ¢ 0x0300
« i r
| ES E=][F][=] (remsun.] Raloas

/2, Warning: niosi: Custom Instruction compenents can be edited through the Compenent Edtor,
2. Warning: niosil: Disabling the assign GPUID control register value manuall vil no longer auto-assigns unique control register value. This option wil always be tumed on with defaul value set to 0.

. Warming: pwm_gen: TOP_LEVEL_HDL_MODULE automaticaly setto pwn_gen
@ nto: onchip_memory: Hemory wilbe intiaized from onchis_memory.hex

iy

{ Prov

F

set_instance_assignment
set_location_assignment
set_instance_assignment
set_location_assignment
set_instance_assignment

[e

igure 24: Regenerate the design.

-name IO_STANDARD "3.3-V LVTTL"
PIN_D2 -to EPCS_NCSO
-name IO_STANDARD "3.3-V LVTTL"
PIN_C1 -to EPCS_ASDO
-name IO_STANDARD "3.3-V LVTTL"

-to EPCS_DCLK

-to EPCS_NCSO

-to EPCS_ASDO

Listing 3: Pin Assignment

171

m : Robotics and
TUM-LS6 ! Embedded Systems

11 Altera SOPC Builder - pwm.sopc* (CAtum\SYSU\Practical\LED-self-booting-HW-design-test\pwm sopc) [r=]
Eile Edit Module System View TIools Nios |l Help

=5

System Cunten|s| System Generation ‘

Options
System module logic will be created in WHDL.

|| simulation. Create project simulator fies. | Run Simulator

Nios I Tools

[Nios |l Software Build Tools for Eclipse]

#32013.06.27 12.08:43 () Creating plain-text HOL o
#2013.06.27 12:08:46 (*) Done Nios Il generation
#2013.06.27 12:08:46 (*) Running Generator Program for jtag_uart_0
#2013.06.27 12:08:47 (*) Running Generator Program for sysid
#2013.06.27 12:08:48 (*) Running Generator Program for epcs_flash_controller_0
#2013 .06.27 12.08:49 (*) Making arbitration and system (top) modules.
#2013.06.27 12:08:51 (*) Generating Quartus symbol for top level pwm
#2013.06.27 12:08:51 (*) Generating Symbol C:Aum/SY SU/Practical/LED-self-booting-HW-design-test/pwm.bsf
#2013.06.27 12:08:51 (*) Creating command-line system-generation script: C:Aum/SY SU/PracticallLED-self-booting-HW-design-test/pwm_generation_script
#2013.06.27 12:08:51 (*) Running setup for HOL simulator. modelsim
#2013.06.27 12.08:51 (*) Completed generation for system: pwm
#2013.06.27 12:08:51 (*) THE FOLLOWING SYSTEM MEMS HAVE BEEN GENERATED:
SOPC Builder database : C:tum/SY SU/Practical/LED-self-booting-HW-design-test/pwm. ptf
System HOL Model : C:tum/SY SU/PracticalLED-self-booting-HW-design-testipwm.vhd
System Generation Script : C:tum/SY SU/Practical/LED-self-booting-HW-design-test/pwm_generation_script =
#2013.08.27 12:08:51 (*) SUCCESS: SYSTEM GENERATION COMPLETED.
@ Info: System generation was successful. R
< | il J »

‘+», Warning: niosii: Custom Instruction components can be edited through the Component Editor.

+, Warning: niosii: Disabling the assign CPUID control register value manually will no longer auto-assigns unigue control register value. This option will always be turned on with default value setto 0
‘t, Warning: pwm_gen: TOP_LEVEL_HDL_MODULE automatically set to pwm_gen

@ Info: onchip_memory: Memory will be inttialized from onchip_memory.hex

ET

Figure 25: Indication of a successful generate.

&[Device @

Select the family and device you want to target for compilation.

Device family Show in 'Available devices' list

Family: [Cyclone NE hd Package: [Any ']
Devices: |All - Pin count: [Any ']

T — Speed grade: [Any ']

Name filter:

() Auto device selected by the Fitter

Show advanced devices HardCopy compatible only =]

Specific device selected in 'Available devices' list

Vitam o Device and Fin Option

Available devices:

Name Core Voltage LEs User I/0s Memory Bits Embedded multiplier 9-bit “

EP4CE22E22CAL 1.0V 22320 80 608256 132
EP4CE22E2217 1.2v 22320 80 608256 132 |—|
EP4CE22E22I8L 1.0V 22320 80 608256 132 i
EP4CE22F17A7 1.2V 22320 154 608256 132
EP4CE22F17C6 1.2V 22320 154 608256 132
CoATCDICY 777 1 s 720 1EA ANDIECE 127 T
1 | 1 | »
Migration compatibility Companion device &

I Migration Devices... HardCopy: T

0 migration devices selected Limit DSP & RAM to HardCopy device resources

l"w Buy Soﬂware] I 0K] I Cancel] I Help

Figure 26: Pin options.

172

A

TUM-LS6

Robotics and
Embedded Systems

Category:

@j Device and Pin Options - pwm_gen

General
Configuration
Programming Files
Unused Pins
Dual-Purpose Pins
Capacitive Loading
Board Trace Model
/O Timing

Voltage

Pin Placement
Error Detection CRC
CvP Settings

Partial Reconfiguration

which is: Active Serial

Mote: For HardCopy, these settings apply to the FPGA prototype device.

Specify how dual-purpose pins should be used after device configuration is complete. The default
settings for each pin depend on the current configuration scheme selected in the Configuration tab,

=

Dual-purpose pins:

Mame Value
DCLK Use as programming pin
Data[0] As input tri-stated
Data[1]/ASDO As input tri-stated
Data[7..2] Use as regular /O

FLASH_nCE/nCS0 As input tri-stated
Other Active Parallel pins Use as regular /0

nCEQ

i Use as regular I/O
Description: -

a regular /O pin.

Specifies how the nCEQ pin should be used when the device is operating in user mode after
configuration is complete. The nCEQ pin can be reserved as dedicated nCEQ programming pin or

’ oK] I Cancel] [Help
Figure 27: Pin options.
TG Quanus 3201t -G ing ign-test/pwm_gen - pwm_gen [E=SE=E =
{ Fle Edt View Project Assgnments Processing Tools Window Help % Search alteracom | @
DS H@ & 2@ 9 o [pwmgen DIEEFE 2 X4 PR OO AR QP A e
- [Project Navigator wox|[@ pwm_top.bf I*] \ [pwm_gen.gsf [+]
Entity B ®% 0 E 00 BoB 08 2Ky |
4 Cydone IV E: EP4CE22F17C6 125 set_global_assignment.-name SLD_NODE_PARAMETER_ASSIGNMENT -"SLD_NODE_CRC_LOWORD=41355" -section auto_signaltap_0 -
4 2 pum_top i 126 set_global assignment:-name-SLD_NODE_PARAMETER_ASSIGNMENT -"SLD NODE_CRC_HIWOR auto_signaltap 0
€ sld_hubiauto_hub 127 set_global_assignment--name -SLD_NODE_PARAMETER_ASSIGNMENT - "SLD_SAMPLE_DEPTH=1024"--section_id-auto_signaltap_0
b #8 sld_signaltap:auto_signaltap_0 128 set_location_assignment-PIN_A2--to-EN_A
b7 pwminst 129 set_global_assignment--name QIP_FILE pWm.gip
b ¥, dock plkinstt 130 set_global_assignment -name -USE_CONFIGURATION_DEVICE -OFF
131 set_global assignment:-name-CRC_ERROR_OPEN_DRAIN-OFF
132 set_global assignment-name-CYCLONEII_RESERVE_NCEO_AFTER_CONFIGURATION - "USE-AS REGULAR-I0"
133 set_global_assignment - -name-RESERVE_DATAQ_AFTER_CONFIGURATION-"USE AS -REGULAR-IO"
134 set_global assignment-name-RESERVE_DATA1 AFTER_CONEIGURATION-"USE AS -REGULAR-IO"
135 set_global_assignment-name-RESERVE_FLASH_NCE_AFTER_CONFIGURATION - "USE -AS-REGULAR-IO"
136 set_global_assignment-name-RESERVE_DCLK_AFTER_CONFIGURATION - "USE-ASREGULAR 10"
137 set_global_assignment -name-OUTPUT_IO_TIMING_NEAR_END_VMEAS - "HALF -VCCIO" -rise
@] |[138 setZglobal assigument -nane-OUTEUT_IO_TIMING_NEAR_END_VMEAS: "HALE VCCIO" —fall
39 set_global_assignment -name -OUTPUT_I0_TIMING_FAR_END_VMEAS - "HALF -SIGNAL SWING" --rise
B vierarchy | 2] Files * Design Units 4 ‘P" 140 set_global_assignment --name OUTPUT Io TIMING FAR END VMEAS - "HALF - SIGNAL - SWING" - -fall
— #ox|| 141 set/instance_assignment.-namePARTITION_KIERARCHY root_partition:-to-| --section_id-Top
ERCS
Task 3
4> comp set_location_assignment PIN_H2--to-ERCS_DATAO
e set_instance_assignment --name -I0_STANDARD: "3.3-V LVITL" - ~to-EBCS_DATAQ
b b Fiter (Face & Route) set_location_assignment PIN_H1 --to-ERCS_DCLK
b b Assembler (Generate programming fles| 149 set_instance_assignment - -name - IO_STANDARD-"3.3-V LVITL" - ~to-ERCS_DCLK
b b TimeQuest Timing Analysis 150 set_location_assignment-PIN D2--To-ERCS_NCSO
b b EDA Netlist Wrier 151 set_instance_assignment-name-IO_STANDARD "3.3-V LVITL".-to-EPCS_NCSO L
W Program Device (Open Programmer) 152 set_location_assignment PIN Cl--To-ERCS_ASDO b
153 set_instance_assignment - -name-IO_STANDARD "3.3-V LVITL".-to-EPCS_ASDO
i 154 L
« m J B|E! i J »
OB D -
*lype 1D Message B
4 10542 VHDL Variable Declaration warning at altera_europa_support_lib.vhd(354): used initial value expression for variable "arg_length" because variable was r
@ 12128 Elaborating entity "pwm_gen 0" for hierarchy "pwm:inst|pwm_gen \l
@ 12128 Elaborating n" for hierarchy "pwm:inst|pwm_gen_(_0|pwm_gen:pwm_gen_0"
@ 12128 Blaborating entity "sysid_control_slave_arbitrator" for hierarchy :inst|sysid_control_slave_arbitrator:the_sysid_control_slave"
4 10541 VHDL Signal Declaration warning at pwm.vhd(2025): used implicit default value for signal "niosii_data master_read_data_valid_sysid_control_slave" becav
g » A 12125Using design file sysid.vhd, which is not specified as a design file for the current project, but contains definitions for 2 design units and 1 entitic.
Bl m J »
| =\ System (3) /_processing 185)

Figure 28: Pin options.

173

1% 00:00:08

m f Robotics and
TUM-LS6 L | Embedded Systems

w Pin Planner - C:/tum/SYSU/Practical/LED-self-booting-HW-design-test/pwm_gen - pwm_gen El
File Edit View Processing Tools Window Help ' Search altera.com @
o |Report A8 x] Top View - Wire Bond

Report not available

Cyclone IV E - EP4CE22F17C8

[Tasks 1ex|
B Run Analysis and Elaboration -
4 [Early Pin Planning D
] Early Pin Planning... -

< il] »
|Groups e x|
Named: * -
Node Name Direction Locati

<<new group>>

< 1 »
x .= - . [Ping:
= Named: . Edit:| X || ¢ ‘F\\ter.[?ms.all
1 Node Name Direction Location I/O Bank VREF Group Fitter Location 1/O Standard Reserved Zurrent Strengtt Sis
[} in_ CLK_50M Input PIN_R8 3 B3_NO PIN_R8 2.5 V (default) 8mA (default)
- P EN_A Output PIN_A2 8 B8_NO PIN_A2 2.5 V (default) 8mA (default) 2 (de
® 2! EPCS_ASDO Qutput PIN_C1 1 B1_NO PIN_C1 3.3-V LVTTL 8mA (default) 2 (de
o) 3 EPCS_DATAQ Unknown PIN_H2 1 B1_NO 3.3-V LVTTL 8mA (default)
& EPCS_DCLK Unknown PIN_H1 1 B1_NO 3.3-V LVTTL 8mA (default)
&% 3 EPCS_NCSO Unknown PIN_D2 1 B1_NO 3.3-V LVTTL 8mA (default) =
' Reset Input PIN_J15 5 B5_NO PIN_J15 2.5 V (default) 8mA (default) B
L4 in_ altera_reserved_tck Input PIN_H3 2.5 V (default) 8mA (default)
win in_ altera_reserved_tdi Input PIN_H4 2.5 V (default) 8mA (default)
= 4 altera_reserved_tdo Output PIN_J4 2.5 V (default) BmA (default) 2 (de
in Input PIN_J5 2.5 V (default) 8mA (default)
5 Output PIN_B12 7 B7_NO PIN_B12 2.5 V (default) 8mA (default) 2 (de
oty Output FIN_D3 8 BS_NO FIN_D3 2.5 V (default) 8mA (default) 2 (de
224 pwm2 Qutput PIN_C3 8 B&_NO PIN_C3 2.5V (default) 8mA (default) 2 (de _
0| o oman nadass
=< 111 3

100% 00:00:44

Figure 29: A view of the overall pin assignment of the design.

174

['ﬁ
m /? Robotics and
TUM-LS6 L)] Embedded Systems

A.3.2. Writing the EPCS flash

= Nios a ==
File E Paste Ctrl+V

rg | ¥ Delete Delete
: Remave from Context Ctrl+Alt+Shift+Down
[Proj

AR RS TR ER R B % NiosTiDe. [[
=g

Source 4

Move...

Rename... F2

Import...
Export...

G E

Build Project

Clean Project

Refresh F3
Close Project

Close Unrelated Projects

=
=
=
=
=

Build Configurations 4
Make Targets 4
Index 4

b d Show in Remote Systems view
Convert To... Console 2~ B Pmpertiesw I G| Rt Brriy =0
Run As L4
v 3 Debug As
Profile As
Team

/STem_name DEQ_Nano_SUPL --SO0pCinfo
lectures/Practikum/7.1-Accelerometer/hardware/softwar
3 _Nano_SOPC.sopcinfo

KBytes program size (code + initialized data).

589 KBytes free for stack + heap.

objdump

u Compare With

= Restore from Local History...)

=] Nios TT | BseEditor. ?d” 7-1.elf >7-1.cbjdump
= #* RunC/C++ Code Analysis Nios I Command Shell... | f
=] Update Linked Resources Flash Programmer...

Properties Alt+Enter

L 4

Figure 30: Start the EPCS flash programmer from the NIOS II Eclipse IDE.

|2 Nios II Flash Programmer EI
@ Options Tools Help
New... —
Open... e
Save =
Save As... fh:
Exit Strg+Q n: ‘ | [Connections...

Nios Il Flash Programmer

This tool is the GUI version of the command line tool: nios2-flash-programmer-generate.
It parses a SOPC Information File or Board Support Package (BSP) Settings File, and dynamically creates a tab for each flash device found.
Each Flash tab allows multiple files to be added to a list for eventual conversion to flash and programming to its target flash device

Use the File-=New menu item from the top level menu bar to create a new flash settings project,
or open an existing project using the File->0Open menu item.

Information | Problems | Processing

Figure 31: First set a new download.

175

m ./ Robotics and
TUM-LS6 L 1| Embedded Systems

|£: | New Flash Programmer Settings File

.;':_',. Get flash programmer system details from BSP Settings File
lfé'.l Get flash programmer system details from SOPC Information File
BSP Settings File name:
SOPC Information File name: | C:tumitu2syn-TUMYectures \Practikum\7-Volatie \Hardware\cpu. sopcinfo
Master CPU name: iq:lu_U vi

Flash memary:

[CK] [Cancel]

Figure 32: Start the EPCS flash programmer from the NIOS II Eclipse IDE.

|£:) Nios I Flash Programmer EI

File Options Tools Help

Target hardware information
BSP Settings File name:
SOPC Information File name: C:Ytumituisvn-TUMYectures\Practikum\7. 1-Accelerometer \hardware \DED_Nano_SOPC.sopcinfo
CPU to program flash: cpu

Hardware connection:

Flash: epcs

Base address: 0x5000000 Memary span: 0x800
Master CPU: cpu .7ip file system offsetin BSP:
Files for flash conversion:
File Name Conversion Type Flash Offset
Remove

File generation command:

Properties...

File programming command:

|Infurmaﬁon| Problems | processing

0 Mo Nios 11 target connection paths were located, Check connections and that a Nios II .sof is downloaded.
7 Mo files have been added for conversion to target flash files.

Figure 33: Select the hardware and software images to download.

176

]
m Robotics and
TUM-LS6 @ Embedded Systems

File Options Tools Help

Target hardware information
BSP Settings File name:
SOPC Information File name: C:\tumtu3\svn-TUMYectures\Practikum!7. 1-Accelerometer |hardware\DED_Mano_SOPC.sopcinfo

CPU to program flash: cpu

Hardware connection: ‘Connechoﬂ: USB-Blaster on localhost [USB-0] Device: EP3C25|EP4CE22@1 Dewvice ID: 1 CPUInstance ID: 0 CPU ... | | Connections, ..
Flash: epcs
Base address: 0x5000000 Memory span: 0x800
Master CPU: cpu .zip file system offsetin BSP:

Files for flash conversion:

File Name Conversion Type Flash Offset m

Remove
File generation command:
sof2flash --input="C:/tum/tud/svn-TUM/lectures/Practikum/7.1-Accelerometer/hardware/DE0_Nano.sof™ - Properties...
--output="C:/tum/tud/svn-TUM/lectures/Practikum/7.1-Accelerometer/hardware/flash/DE0_Nano epcs.flash” =
--epc3 --verbose L 4

File programming command:

nios2-flash-programmer -
"C:/tum/tud/svn-TUM/lectures/Practikum/7.1-Accelerometer/hardware/f1ash/DE0_Nano epcs.flash”™ =
--basze=0x5000000 --epc3 --3idp=0x4000070 --id=0x0 --accept-bad-sysid --device=1 --inatance=0 -

Information | Problems | processing

/&, Obtaining system ID information for selected processor

', Connected system ID hash not found on target at expected base address,
/&, Connected system timestamp not found on target at expected base address.
/&, The expected CPU name does not match the selected target CPU name.

Figure 34: The GUI after selecting the images.

177

