

Introduction to Pulse Width Modulation (PWM)

What is PWM?

- Depending on the requirement the width of the pulse is modulated (adjusted).
- Duty cycle = $t_{on} / (t_{on} + t_{off})$.

Why PWM?

- Analog voltage control:
 - Voltage can be changed to control the motor speed
 - o Can NIOS change voltage ?

Why PWM?

- Digital voltage control:
 - o Can only control '1' and '0'
 - X% of maximum analog voltage = X% of duty cycle

PWM Control Example

- Disco gate:
 - o 100 % open gate = 10 persons per second
 - o 50% open gate = 5 persons per second
- Analog control:
 - o Open 50 % gate
 - o Total how many people can go in 10 seconds?
- Digital control:
 - Open 100 % gate on every odd second (1,3,5,7,9, ..)
 - o Total how many people can go in 10 seconds?

Usage of PWM

Motor Control

Intensity of LED

How to generate PWM signal?

- Software method
 - o Using counter
 - Count to 100 in a loop
 - Set the output value to 1 in the beginning of the loop
 - Set the output value to 0 as soon as the counter reaches the value of required duty cycle.
 - Continue the process
 - Using interrupt
 - Home work
 - Think about the concept

Your tasks

- Create projects in a usual way using provided SOF and SOPCINFO file.
- Type the code in your application project.
- Change duty cycle variable and observe the effect LED, and test it on the car.

Licenses

 You will get such message when you open the SOF file

o Click OK

Licenses

- After programming the FPGA, you will get this warning
 - DO NOT click cancel

