
Interrupts vs. Polling

 Constantly reading a memory location, in
order receive updates of an input value

12/17/2013 Kai.Huang@tum 2

Polling

#include <avr/io.h>

#include <util/delay.h>

#include <stdint.h>

int main(void){

unsigned char key_cur,key_pre;

DDRB=0x0f;

DDRD=0x00;

PORTB=0x01; //turn on the led on the left side as initial state

PORTD=0xff; //configurate as pull-up input port

//waiting for key pressed

while(1){

key_pre=key_cur;

key_cur=PIND&0x1; //read the key state

_delay_ms(20); // deltet key jitter

if(key_cur==0&&key_pre==1) {

if(PORTB==0x8)

PORTB=0x01;

else

PORTB=PORTB<<1;

}

//execute another tasks here.

}

}

Polling

What happens if task need to run for 1 Sec

Miss some action of key pressed......

 Processor interrupts (preempts) the current flow of control

 Time spent in interrupt handlers should be kept as short as
possible

 Microcontroller offers interrupts for various conditions

o Not all are useful all the time: enable required interrupts

o Some critical may require atomic execution (no
interruptions guaranteed)

o Disable / re-enable interrupts around critical section

12/17/2013 Kai.Huang@tum 3

Interrupt Handling

12/17/2013 Kai.Huang@tum 4

In details

Task execution Task execution

Interrupt signal

ISR

 Saving context: Push all temporary variables
(like program counter) into stack

12/17/2013 Kai.Huang@tum 5

In details

Task execution Task execution

Interrupt signal

Saving context

ISR

 Construct context: Pull all temporary
variables (like program counter) out of stack

12/17/2013 Kai.Huang@tum 6

In details

Task execution Task execution

Interrupt signal

Saving context

ISR

Construct context

 Timers: System “ticks”, periodic tasks

 Communications

o Ethernet

o USB

o Serial

 Periphery

o E.g. ADC (Conversion complete)

o Memory management

 Software

Software interrupts (trap instructions) / illegal instructions

 Reset / Power-On

12/17/2013 Kai.Huang@tum 7

Sources of Interrupts

 Polling:

o Continuously poll IOs for change of value

o Cons:

• Most polls are unneeded – value did not change

• High CPU usage

• Reaction time depends on #IOs

 Interrupt

o Normal execution is interrupted when event occurs

o Pro:
• Processor resources are only used when necessary

o Cons:
• Program execution is interrupted in a non-deterministic manner

12/17/2013 Kai.Huang@tum 8

Interrupts vs. Polling

 Event handler for interrupt

 Special, user-defined function for handling the
interrupt

12/17/2013 Kai.Huang@tum 9

Interrupt Service Routine (ISR)

 Try out and understand the Interrupt based
KEY-LED package

12/17/2013 Kai.Huang@tum 10

Tasks

