Industrial Embedded Systems
- Design for Harsh Environment -

Dr. Alexander Walsch
alexander.walsch@ge.com
IN 2244
Part V
WS 2013/14
Technische Universitat Munchen

mailto:alexander.walsch@ge.com

Architecture Patterns

Recurring Hardware and Software building blocks

Focus on

Reliability — see lecture slides on reliability

Safety — see lecture slides on safety

Keep in mind: faults can be random or systematic

Design decisions are based on reasoning (FTA, FMEA) and
recommendations (e.g. safety architectures)

A. Walsch IN2244 WS2013/14

Software Design Concepts

Technigue/Measure * Ref. SIL 1 5IL 2 5IL 3 5IL 4
Architecture and design feature
1 Fault detection C.31 - R HR HR
2 Error detecting codes c.az R HR
3a | Failure assertion programming C.33 R HR
3b | Diverse moniter technigues (with independence between Ci4 - R R -
the monitor and the monitored function in the same
computer)
3z | Diverse moniter technigues (with separation between the C.3.4 - R R HR
menitor computer and the monitored computer)
3d | Diverse redundancy, implementing the same software C.3.3 - - R
safety requirements specification
3e | Functionally diverse redundancy, implementing different C3a - - R HR
software safety requirements specification
3f | Backward recovery C.3d R R MR
3g | Stateless software design (or limited state design) c.212 - - R HR
4a | Re-try fault recovery mechanisms carv R -
4b | Graceful degradation o R HR HR
5 Artificial intelligence - fault comection c.39 - NR MR MR
g Dynamic reconfiguration C.3.10 - NR MR MR
7 Modular approach Takble B.8 HR HR HR HR
g Use of trusted/verified software elements (if available) C.2.10 HR HR HR
g Forward traceability between the software safety c2n R HR HR
requirements specification and software architecture
10 | Backward traceability between the software safety c2n R R HR HR
requirements specification and software architecture
11a | Structured diagrammatic methods ** c21 HR HR HR HR
11k | Semi-formal methods ** Takble B.T R R HR HR
11c | Fermal design and refinement methods ** B.22 C24 - R R HR
11d | Automatic software generation C.4.d R R R R
12 | Computer-aided specification and design tools B.2.4 R R HR HR
13a | Cyclic behaviour, with guaranteed maximum cycle time can R HR HR HR
13k | Time-triggered architecture c.an R HR HR HR
13c | Event-driven_ with guaranteed maximum response time can R HR HR
14 | Static resource allocation C.2.8.3 - R HR HR
15 | Static synchronisation of access to shared resources C.2.8.3 R HR

A. Walsch IN2244 W52013/14

Source: IEC61508-3

Base Channel

- Processing channel N

sink

A /

Data
source

Reliability (random faults): see previous calculations
Reliability (systematic faults): highly affected

Safety: 1001 architecture, not used

A. Walsch IN2244 WS2013/14

Protected Channel

/ Processing channel \
-
sink

Data
source

Data/Control
Validation

L /
Still 1001.

Provides some data and control flow checks (self-monitoring)

Internal watchdog, acceptance tests

Use: not used in safety-related applications, reliability increase (depends on
application)

A. Walsch IN2244 WS2013/14

External Diagnostics (MooND Architectures)

Processing channel \

Data : Data
source sink

| Data/Control
| Validation
HW Integrity
N /
A
\ Shutdown trigger
\
/Monitoring channel ¢ ﬁ N
N\ Actuator
- Monitor Input monitor
AN /

A. Walsch IN2244 WS2013/14

Watchdog Circuits

A watchdog timer is a supervisory component which must be
triggered in regular intervals in order to avoid system reset

Embedded processors usually come with internal watchdog
circuits.

A failure mode (drift) of the oscillator (account for in FMEA)
makes a second external one with a separate clock source
highly advisable for robust systems.

Internal watchdogs can be disabled accidentally by software

Set and reset the watchdog in different parts of the software to
disallow stuck-at watchdog pulse loops

A. Walsch IN2244 WS2013/14

Watchdog Circuits li

VATCHDOG
>
U0 PIN TIMER
uC
- RESET
ﬁEEET GENERATOR
WATCHDOG COUNTER

L.

~ WATCHDOG TIMEQUT

el -

WATCHDOG INFUT
WD

T

=

WATCHDOG TIMEOUT

|

RESET
4

-
RESET TIMECQUT

‘ RESET

STARTUP ROUTINE CLEARS
RAM AND CONFIGURES
ALL PORTS TOINPUTS

START

MAIN LOOP

SUBROUTINE

SET WDI HIGH |—2! |
CONDITIONAL
BRANCH 1

* WDI

SET WDI LOW |——

'

| SUBROUTINE 2 I _'_:"'

-

CONDITIONAL
BRANCH 2

d

END
MAIN LOOP

A. Walsch IN2244 WS2013/14

Source:
Maxim AN1926

Watchdog Circuits il

Standard watchdog

Source:
: Microchip, dsPIC30F
Windowed watchdog P

All Device Regels —————) «
Transition to Mew Clock Source —1

T

Exft Sleep or ldke Mode \j—
FWELSAV Instnuction ; 7
CLAEWDT Instuctol ————— 17—
Watchdog Timer
WDTPRE WOTPOST<30=
SWOTEMY ™

oo) |
FWOTENY ./ l Resat l,
— ~WOT wake-u
= L Presoaier | Posiscaler Shasp/ldie \f-—*p
LPRC Clock E A (divide by N1) [Alvide by M2 o

"1||."||'DT Resat

\'—*_ J i

&

WINDIE ———= WOT Window Select

CLERCT InsinecBon

Mote: See Table 36-2 for the Prescaler divider ratic (M1) and Table 36-3 for the Postscaler divider ratio (M2).

WDT Time-out Period
{TWTO)
T
|
- Allowed Window
Disallowed Window (0.25 x TWTO)

A. Walsch IN2244 WS2013/14

Multiple Channels

~

Processing channel 1

Data
source

/

Compare W Switch control switch Data
Fault detectlonJ sink

Processing channel 2

N

Data
source

A. Walsch IN2244 WS2013/14 10

Operating Systems

(widely used)
OS Vendor Domain certification
VxWorks CERT Windriver Industry, Aviation
Integrity Greehills Industry, Railway, Aviation,
Healthcare
Neutrino Safe QNX Industry
SafeRTOS Wittenstein Industry
PikeOS SYSGO Industry, Aviation,

Automotive, Railway

A. Walsch IN2244 WS2013/14 11

Scheduling

The need for scheduling (as taken from PMU system
requirements specification):

PMUSysRQ 8: Pressure readings communicated via CAN shall not be older than 100ms.

PMUSafetyRQ4: The process safety time shall not exceed 3s.

Task response time:

also known as execution time is the total time required for the
computer to complete a task (10, memory access, overhead,
CPU execution time) — a task in general is an instance of a
program that consumes time

Task cycle time:
time between periodic task calls (start of execution)

A. Walsch IN2244 WS2013/14 12

Super Loop

T h e m a i n I O O p : | D:"-.,emheded_group'-.,PMu'-.,source'-.,mai

Super loop
Functions (tasks) to be

A e e e e e e e e e ————— i

[£* Macros for setting dewvice con figuration registers *f

eXeCuted In Se u en Ce f* executed once per project i
q /% oscillator configuration *f

F* input: p sp example proj £

I processor . ojects *
L] L]

o w g

Functions run-to-con |plet|on -
_FOSC(FCKSM_CSECMD & OSCIOFNC_OFF & POSCHD _HNOME) .

Singl tack

g e S aC int main (woid)
{
But' APP_initi);
[whila (1)

i
ADP_readi) ; FFduration l1Ems (we krnow that)*[f
APP write(); f*duration l0ws {we know that)*/

Relies on timeliness of executed | © e oo
functions ; CETTTN— -0/
Variation of function response —=
. . . . Syrch | Instuction Cyeles| 24 | 245
time will affect timing of all others

Zero | Time [uSecs] | 4.1uunuu| 4100000

Proceszor Frequency [MHz) I 120.000000

SFzuper loop*/S

A. Walsch IN2244 WS2013/14 13

Timer Interrupts

Timer based interrupts:

Il D:' embedded_group'PMU' source!

void TZ_init (void)
{

uintlé match walue:

ConfigIntTimerZ (TZ_INT_FRIOR_1 & TZ_TINT_ON)

e
match walue = O0xESES; /Plms assuming Tey = 16.7ns* /
] “GCATE_OFF & T1_IDLE STOP &

Tz_PS_1_1 < TZ_SOURCE_INT, match_walue);

}

roid _ attribute (iinterrupt, no_auto_psv)) _TZInterrupt (voi

{

eadi)

IFE0bits TZIF = 0; f*reset interrupt flag®s

o -
/* private constants =
o +
o *
/% private wvariahles #
o +
o *
A% public function bodies +
o +

I D' embedded_group’PMU . source

¥ main. e
L

finclude "main. h"
finclude “"app.h"
finclude "interrupt.h'

F* Macros for setting device conficuration registers
F* executed once per project

FA* oseoillator configuration

F* dinput: processor Spec, example projects

F -
_FOBCSEL (FNOSC_FECPLL)

_FOSC(FCHSM CSECMD &« OSCIOFNC_OFF < POSCMD_MNONE) ;

int main (wvoid)
i
APP _dindt il
TEZ_imici):
~ while (1)
i

Frempty super loop or background taszk®)/

frsuper loop*/f

f*processor sleeps®/

;

KN
[ol

Stopwatch Toatal Simulated
59881 | 898378

Synch | Instruction Cycles I

Zerg | Time [u@ESs | 998.016657 | 19972 966667
| 120000000

Processor Frequency [kHz)

A. Walsch IN2244 WS2013/14

fosc =2 * fcy

Task (C function)
executed within the
timer-driven

Interrupt service
routine (ISR)

Timing accurate
Single stack

Two priorities: high
priority foreground
vs. background

14

Context Switch

Context switch

Switch from one task to another (P1 to P2)

Store P1 context (stack pointer if it is a multi-stack
implementation, program counter, registers) — if we switch
stacks we need assembly language

Restore P2 context
Is there a ,natural” context switch?

If we work on one stack there is: function and interrupt calls

save context automatlcally (the compiler does that for us):

,,,,,,,,,,,,,,

ffffffffffffff «— SP (W15)

111111
rrrrrrr

Parameter 1

Parameter n

Caller Ads Fra

Caller Ads Fra

call instruction (taken from microchip.com)

A. Walsch IN2244 WS2013/14 15

Calling Conventions

Interrupts save context in their | e |
handlers stack frame
dsPIC default: WO-W15 =
e
RCOUNT e
More on demand — save parameter in o e
case of dsPIC C30 compiler T
| [e]
In case of the C30 compiler this also] e

applies for functions called within an
ISR

We conclude: a timer-driven .

interrupt gives us timing accuracy
BEIEEE |oas|s,as|D,aw.:_z||pu|pm|n,a N JOV] Z [©| STaTUS Register

and saves our context P—

Source: microchip.com
A. Walsch IN2244 WS2013/14 16

ISRs

We can use an ISR to realize a light-weight scheduler:

We can call different functions at different times (round-robin based on elapsed time to
realize different cycle times)

All tasks are C functions that run to completion

We can put a background task into the while(1){...} loop in main. E.g. serial
communication

BUT: does not really work well if we do have different asynchronous sources of interrupt
(e.g. timer and ADC)

Why do we use our own scheduler at all?
Cost of commercial OS

Lack of certificate (if we need to certify we need to show that the OS meets the criteria of
the certification)

Therefore, a very simple scheduler might be a good alternative

A. Walsch IN2244 WS2013/14 17

Code Example

D:\embedded_group\PMU' source)

.embedded_group',PMUYsource’mail
I
. =y 4% main.e /7 private variahles
/% privace variables L i i*
o vy static uintlé counter; ginclude "main.h"
static wintlé counter; #include “main h" ginclude "app k"
#include "app.h" finclude "interrupt.h"
finclude "interrupt.h" L =
e = /% public function bodies */ i*
/T public function bodies L e £ = /% Macros for secting device configuration regis
£ = /% Marcros for secting device configuracion registers /* executed once per project
/* executed once per praject woid TZ_iniciwoid) f* oscillacor configuration
woid TZ_init [void) /* oscillator configuration { J* imput: processor spec, example projecks
{ /% input: processor spec, example projects uintlé match value; i
wintlé match value; i _FOSCSEL (FNOSC_FRCPLL) ;
_FOSCSEL (FNOSC_FRCPLL) - ConfigIntTimer2 (TZ_INT_PRIOR_1 = TZ_INT_ON; _FOSC(FCESM _CSECHD : OSCIOFNC_OFF & POSCHD_NONE
ConfigIntTimerZ (TZ_INT_PRIOR_1 & TZ_INT_ON); _FOSC(FCKSM_CSECMD & OSCIOFNC_OFF & POSCMD_NOME) ; WriteTimer? (0);
UriteTimerZ (0); match_value = 0xE3ES; /*luws assuming Tey = 16.7ns*/
match_value = 0xE9ES; /*lus assuming Tey = 16.7ns"/ OpenTimerZ (TZz_ON & TZ_GATE_OFF & T1_IDLE STOP &\ int main (void!
OpenTimer? (TZ_ON & TZ_GATE_OFF & T1_IDLE_STOP &\ int main [void: Tz_PE_1_1 & TZ_SOURCE_INT, match valus); f
TZ_P5_1_1 & TZ_SOURCE_INT, march_value); i ADD initlls
APP_inie(]; } Tz imin();
¥ TZ_initi); while (1} F*super loop*/
while (1} f*super loop*/ woid _ attribute_ ((interrupt, no_sauto_psw)) _TZInterrupt (void) i
woid _ attribute_ ({interrupt, no_auto_psv)) _T2Interruptiveid) { { seupty super locp or background task®/
{ f¥empty super loop or background task®/ nintlé medld, modz0: SFprocessor sleeps*s
wintlé modlO, modZo: Jrprocessor sleeps®/ 3
— ¥ modld = ecunter:CYCLELOD;
modlDd = counter:CYCLELO: modz0 = counter:CYCLEZO; }
mod20 = counter:CYCLEZ0: 1
switoh (medll)
switch (madld I
i 1 i
{
case 0:
. N F*time slot 0%/
ip:xe:“‘;ec:"ew i APP_read()
i break 5 b Tolal Simulated
4 2 B topwatch otal Simulate
Stopyratch Total Simulated case 1: 2
Synch | Instiuction Cycles
s e slon 1%/ Synch | Instruction Cycles 3652585 i 4
frexecute every Wgns*t/
srefecune every ZOms*/ if L - modzo e (7]
if |1 == modz0i Zera | Time [i tm-)- nedZ0} Zero 19.960333
APP_wrice(); =)) e g
break; P
. rocessor Frequen: 120.000000
default 120.000000 default: |)y
break. break;
3 +
counterf+; f*increment ISP call counter®/ countertt;

Fincrement ISE call counter®/ —I—I

10ms cycle 20ms cycle

A. Walsch IN2244 WS2013/14 18

Simple Scheduler

For multiple sources of interrupt we can realize a fixed-priority
single-stack scheduler using plain C (compiler takes care of
context)

Every task is realized by a non-blocking (does not wait for external
signal) thread of execution

o

[external signal]/create task
READY

[highest priority]/run

Once an IRQ is fired it is marked for execution (READY)) and is run if no
task of higher priority is currently running

high address

Task 1
PREEMPTED

[higher priority task READY

]/context switch
RUNNING

[higher priority task RTC]/resume

Task2
[task RTC)/

Task3

low address

v
A. Walsch IN2244 WS2013/14

19

Example

State-machine based task execution (no state for resource
waiting)

C compiler ISR handling takes over task switching

Different interrupt sources (timer, ADC, etc) can trigger task
creation (post event and mark task for execution)

Refer to ,Build a super simple tasker”
http://www.state-machine.com/resources/articles.php

| Funchion call

Systemwide SST priority scheme

| Funetion return

[0 55T scheduler

Systemwide 55T prionity

Asynchronous
nonmas kuBI:’

interrupt (NMI)

L] L] L]
Execution erder EI
controlled in hardware

i’y interru pt controller

Asunchronous preempfion by an inrerrupt and a high-priority fask
b Priorit

| Interrupt call

SST_MAX _PRIO + 2
-------- SST_MAX_PRIO + 1
S5T_MAX_PRIO

-

| Interrupt returmn

. 1 SST interrupt
ent
controlled in software :

by SST SST endless idle b -
ST i priori 1 Task d 14

0 :55T idle loop loop priority N | ask preempte (14) |

I >

5 1 15 0 25 1 T

A. Walsch IN2244 WS2013/14 ’ i 20

http://www.state-machine.com/resources/articles.php

Fault Models

A fault model determines what possible effects of faults on the
behaviour of a system model are considered

Hardware fault models are established

Software fault models mainly deal with corruption of data flow or
control flow

Special attention is on communication (inter-task or via
networks)

A. Walsch IN2244 WS2013/14 21

Fault Detection

Fault detection is a series of activities that happen at startup,
background (cyclic tests) and specific maintenance cycles

CPU
Memory (used one)
1O

Program sequence

Basic method for fault detection evaluation is FMEA/FMEDA
(hardware integrity and functionality)

Time-critical test is cyclic background test since it checks physical
resource during operation (must align to the process safety time
specified in the systems requirements).

A. Walsch IN2244 WS2013/14

22

Hardware Integrity

Specific to safety-related systems in industrial domain

(IEC61508-2) to achieve a higher DC -> influences PFD/PFH and
architectural constraints

What is a DC (diagnostic coverage)?

Hardware failures can lead to hazardous system states (not good!) which can result
in harm (very bad!) — but they do not have to necessarily

DC is the percentage of faults that are detected by checks; A ,= A, x DC/100

If we can avoid a dangerous system failure by detecting dangerous component
faults (A,) in advance we can transfer A, into A, (if the application system allows for

that).

DC comes in four categories: no (<60%), low (60% < DC < 90%), medium (90% <
DC < 99%), high (DC > 99%)

A. Walsch IN2244 WS2013/14 23

Hardware Integrity Examples

Requirements for diagnostic coverage or

Component See cafe failure fractien claimed Sea Requirements for diagnostic coverage or
table(s) - - table(s) safe failure fraction claimed
Low (B0 %) Medium (90 %) High (99 %) Com ponent
Electromechanical A2 |Does notenergize or |Does not energize or |Does not energize or de- L |:E[] l_.lb:| Medium :ﬂﬂ D.'.u:| High |:SE| l_.lb:|
devices de-ensrgize de-energize ensrgize
[Welded contacts Individuzl contacts Individuz| contacts welded Invariable AS Stuck-at for datz and (DO fault model for data and |8 faults which affect data
welded Mo positive guidance of Memaory addresses addresses in the memary
contacts (for relays this failure — = —
is not assumed if they are built Variable A G Stuck-at for data and |DC fault model for data and [DC fault mode! for data and
and tested according to MEemory addresses addresses addresses
EM 50205 or equivalent) . . i
Mo positve opening (for Change of information Cynamic cross-over for memory
position switches this failurs is caused by soft-errors for |eells
i d if th built 1!
Eﬁciii?ﬁeac;mfﬂ;ii ' ?iizﬂsﬂhmlangit en Mo, wrong or multiple addressing
EN 60247-5-1. or equivalent) : g Change of information caused by
Discrete hardware |43, A7, soft-errors for ORAM with
A0, A1 i ion 4 -
: integration 1 Mbits and highe
Digital 11O Stuck-a DC fault model C fault model Clock iz 52 =ik - = h - Sub- or har :
drift and ozcillation ook [quartz) 12 ﬁu ~ O SUper- Sul- or super-narmeonic ub- or super-harmanic
Analogus /0 Stuck-a DC fault model DC fault model armenic
drift and escillation drift and oscillation Communication| A2 |Wrong data or All faulis which affect data |4 faults which affect data
Power sugply Stuck-a C fault model C fault model and mass addresses in the memory in the memaory
drift and eseillation drift and oscillation storage . i VAR ey "
5 ™ M transmissio Wrong data or addresses Virong data or addresses
us
WA i iTcion % LY issi i
General a7 |Stwek-at of the Time out Time out .-J.rl:ung i an5rr!s-5!-: time ¥Wrong trans 11!-5*5!|:rn tirme
addresses Wrong fransmission W¥rong transmission sequence
Memuary A3 Stuck-at of dats or Wrong address Wrong address decoding SEUENCE
management unit addresses deccding q
Direct memory Mo or continuous DC fault model for data (Al faults which affect data in Sensors &.14 Stuck-af O fault model DC fault mode
ACCESS access and addresses the memary Crvif =il Drifi and oscillation
Wrong access time Wrong data or addresses it ang escillation it a oscillatic
- o Wraong access fime Final elements A15 |Stuck-at DC fault model DC fault mode
?siiing{érﬁﬁ,'c ;ig':‘;‘[f' efarbiiratien o ar continuous Mg ar coniinuous or wrang Drift and oscillation Drift and oscillation
cPu A4, 410]]] MOTE 1 Bus-arbitration is the mechanism for desiding which device has control of the bus.
Re?lster. internal Stuck-at for data and DG fault model for data |DC fault model for data and ———- f— g S . :
RAM addresses and addresses addresses MITE 2 "Stuck-at” is 3 fault category which can be described with continuous ™07 or ™17 or "on” at the pins of
Byl"arric cross-gwer for memary a component.
cells g — " - - -~ § L & : H . & P
§ OTE X "DC fault model” (DT = direct current) includes the following failure modes: stuck-at fau'ts, stuck-open,
Mo, wrong or multiple - J -)
addressing open or high impedance outpuis as well as short circuits between signal lines
Coding and Wrong coding or no Wrong coding or wrong |Mo definite failure assumption
execution including execution execulion
flag register
Address caloulaton Stuck-at DG fault model Mo definite failure assumption
Program counter, Stuck-at CC fault mode DC fault mode
Stack pointer
Interrupt handling a4 Mo or continuous Mo or continuous Mo or continucus interrupis

interrupts

interrupts
Cross-over of interrupts

Cross-over of interrupts

Source: IEC61508-2, general faults to be detected or analyzed

A. Walsch IN2244 WS2013/14

24

Hardware Integrity Examples

Invariable memory and variable memory

Diagnostic See Maximum diagnostic coverage Notes
technique/measure IEC 61508-7 considered achievable
Word-saving multi-bit A4 Medium
redundancy
Modified checksum A4d2 Low
Signature of one word A43 Medium The effectiveness of the signature
(8-bit) depends on the width of the
signature in relation to the block
length of the information to be
protected
Signature of a double A44 High The effectiveness of the signature
word (16-bit) depends on the width of the
signature in relation to the block
length of the information to be
protected
Block replication A45 High
Diagnostic See Maximum diagnostic coverage Motes
technigue/measure IEC B13508-T econsidered achievable
RAaM test "checkerboard” ASA Lo
or "march”
RAM test "walk-path’ ABD I=dium
RAM test "galpat™ or AB3 High
“transparent galpat”
RAM test "Abraham™ AE 4 High
Parity-bit for RAM A5E Lo
RAM monitoring with a ALS. High
ied Hamming code,
ction of data
failures with error-
detection-correction
codes (EDNC)
Double RAM with ABT High
hardwsare or software
CoOmpanson and
readiwrite test
MOTE 1 This takble does not replace any of the requirements of annex C.

MOTE 2 The requirements of annex C are relevant for the
2 For general notes concerning this table, see the

MOTE

HOTE 4 For RAM which is read/written only infreguently

1 preceding table A1,

A4 4 are effective if they are executed afler each readiwrite access.

ermination of diagnostic coverage.

or example during configuration) the messures & 4.1 o

A. Walsch IN2244 WS2013/14

Source: IEC61508-2

25

10

Hardware Integrity Examples

Diagnostic See Maximurm diagnostic coverage Maotes

techniguei/measure IEC 61308-T considered achievable
Failure detection by A1 Low {low demand mode) Depends on diagnostic coverage
on-line monitoring Medium {high demand or of failure detecticn

continuous mode)
Test pattern & 8.1 High
Code protection AB.2 High
Multti-channel paraliel AB3 High COnly if dataflow changes within
output diagnostic test interva
Monitored cutputs A G4 High Only if dataflow changes within
diagnostic test interva

Input comparison/voting A GBS High Cnly if dataflow changes within
[1oo2, 2oo3 or betier diagnostic test interva
redundancy)
MOTE 1 This table does not replace any of the reguirements of annex C.

MOTE 2 The requirements of annex C are relevant for the determination of diagnostic coverage.
MOTE 2 For general notes concerning this table, see the text preceding table &A.1.

Program sequence

Diagnostic See Maximum diagnostic coverage Motes
technigue/measure IEC 61308-T considered achievable
Watch-dog with separate A8 Low
time base without time-
window
Watch-dog with separate AB2 WMedium
time base and tme-
window
Logical monitoring of AB3 Medium Depends on the guality of
program sequence the monitoring
Combination of temparal AD4 High
and logizal monitoring of
programme Sequences
Temporal monitoring with ABE Medium
on-line check
NOTE 1 This table does not replace any of the requirements of annex .
NOTE 2 The requirements of annex C are relevant for the determinaton of diagnostic coverage.
NOTE 2 For general notes concerning this table, see the text preceding table A1,

A. Walsch IN2244 WS2013/14

Source: IEC61508-2

26

Memory

Parameter memory (non volatile)

EEPROM - byte wise read and write — holds e.g. configuration
parameters, run-time parameters (hour meter, status)

Program memory (non volatile)

Flash (NOR)- word wise read, write requires a block erase - holds
executable (XIP — execute in place)

Data memory (volatile)

RAM (SRAM) — word wise read and write addressable - holds data and
stack

A. Walsch IN2244 WS2013/14

27

Fault Detection
- Memory Model-

Memory matrix organization DVDO

(1-bit ... n-bit) — in reality one data
word stored at a specific address

address decoder, read and write
amplifiers, control signals, data in
and out

WM - =

low diagnostic coverage: stuck-at .

for data and/or address (constantly ——
‘0! Or ‘1 !)
medium diagnostic coverage: DC ‘ ‘

fault model for data and address AC
(stuck-at, high-Z, X-talk)

A. Walsch IN2244 WS2013/14 28

Fault Detection
- Non-variable Memory (program memory) -

Modified checksum test, 1] 0| 1] 1 1o 1] 1
based on XOR and circular ol 1] o1 ol 11 1] 1
shift operations A o ol 110 ot I P B
Defined checksum is 0 1|0] 1 0| 1] 0] 1
compared to the checksum
calculated during operation 1o 1] 1 1o 1] 1
Odd-numbered bit errors SO N L N I S I N
within a column are detected B I I B I
1 0| 1 0 1 0 1 0
Low diagnostic coverage test
C 0] 0 1 1 F 0 1 1 1

A. Walsch IN2244 WS2013/14 29

Fault Detection
- Non-variable Memory (program memory) Il -

Signature of one word test (CRC), based on Modulo-2
arithmetic

Memory content is interpreted as a bit stream

Division by a defined polynomial yields zero, P(X) = 11001 in
this example

All one bit and multi-bit failures within one word and 99.6% of all
possible bit failures are detected

Medium diagnostic coverage test

A

%]
ﬁ = = = Y
% = o] - o]
ﬁ = =% = =%
% Y =] - Y
Y

= = = Y
=} - = - =
=- = =% = =%

- - = - -

A. Walsch IN2244 WS2013/14 30

Fault Detection
- Non-variable memory (EEPROM) -

EEPROM content is copied to SRAM and verified during system
initialization -> working copy

All changes are made to working copy

Working copy is written to EEPROM before power-down or at
defined slow cycles (wear-out effect!)

EEPROM test is reduced to a RAM test — we work from RAM
data

A. Walsch IN2244 WS2013/14 31

Fault Detection

- Variable memory (SRAM) -

Checkerboard test — low
diagnostic coverage

Cells are checked for correct
content in pairs

Initialization, upward test,
downward test, inverse
Initialization, upward test,
downward test -> 10 * n
complexity (number of load
store operations)

Pairs are address inverse

A. Walsch IN2244 WS2013/14

L1

32

Fault Detection
- Variable memory (SRAM) Il -

Walking pattern - medium
diagnostic coverage

Initialization (A), the first cell

m
=
-
-
-
-
-
-

Is inverted and all remaining

cells are checked for correct I ,l..
content (B), the first cell is o Aol al o] e] el]e]]
inverted again (C), the test is il

conducted again with inverse

background (D) -> 2*n*n +
6*n complexity (number of
load store operations)

A. Walsch IN2244 WS2013/14 33

frame pointer

stack ponter

Fault Detection

- Variable memory (Stack) -

return address

parameter 3

parameter 2

parameter 1

local data

free stack space

signature

signature

signature

signature

Stack data integrity is
checked by correct program
flow (the stack stores our
task context)

high address

Stack limits are checked by
signhature or addresses
(some controllers provide
hardware support)

- Underlying hardware (SRAM)
¥V lowaddress is checked by SRAM tests

A. Walsch IN2244 WS2013/14 34

Fault Detection
- Example -

RAM tests are destructive — therefore we need to safe the original data in advance

I D' embedded_groupPMU'source’ram_teskt.c - IEI|£| _
R e e ;7 i {EEsoc) R
Updatel Lddress | Synbol Name Value
intlé Walking Patterni) | osan = mem
{ ogoo e [0] Ox5555
intlé i, k; I 0802 - [1] OxXALLR
I 0504 - [2] OxAiid
A* first part: write 1 into all memory cells *F I nsneG . - [3] Oxibid
F* write 0 into exactly one *f | os0s . [4] ORLLAL
*imemti) = DxkRAA; | \ gs0c o [8] OxALAL
L~ 080E [T OxAlhd
. (E] for (i=0; i< RAM SIZE ; i+t){ i 0810 - [8] OxLLAR
N *lmemti) = DxEGES; Da1z D ABLA
for (k=0; k< RBAM STIZE ; kt+){/*read*/ I 0514
if(k == i) D515
continue; [*skip*/ 0515
¥ | 0514
else | *E=1i%) os1c OxAphd
ifi*imentk) == OxAidd) | ! OS51E Oxhihd
continue;: /*good*/ | osz0o Oxhiid
| ¥ | ogzz OxAbhi
else| 0gz4 OxAAAR
< o | return (-1); S*had*s 0526 OxAMAR
S~—— ! ogze OxARRA
) ! o5z L Oxbbiah
Flmemt+i) = OxAAbR: [*reset memory®/ pBac OxLLLR
¥ OSZE OxAdbd
f/* zecond part: write 0 into all memory cells */ og3o OxALiL
F* write 1 into exactly one *f 0&83z OxALAR
f* read all cells and look werify correctness */ 0834 OxAAAL
for (i=0; i< RAM STZE ; i++4){ I 0g3e OxAphd
*imem+i) = OxEEEG; } I 0g3a Owibbid
_ILI ! 0534 OxAbAl
e | k ogac OxALLE
#idefine APP_PRIVATE_CONSTANT 1 1 O33E OxRibld
ﬂ f#define APP PRIVATE CONSTANT_z 2 o540 OxAbAl
Emm—-—t #define APP PRIVATE CONSTANT 3 = og4z OxAdbd
' 0544 OxALih
e | - A

A. Walsch IN2244 WS2013/14 e

Communication
- Error Detection -

We usually use standard protocols to transmit data.

Correctness is guaranteed by by error detection

mechanisms (e.g. parity, CRC)

Sometimes error detection capability not sufficient

Hamming distance of n: n-1 bit errors can be detected.

Residual error: If we do know the Hamming distance and do know
the bit error rate (bit flips are statistically independent) we can

calculate a residual error.

CRC: an additional peace of data is added to the existing bit stream.

The additional peace of data allows error detection

Probability of bit failures p

Transmission medium

payload 107
10"
107

- . - . 10—6 _ 10—?
3 bit Data — 128 bit CRC - 16 bit 103

> 1072

A
v

Address

A

transmitted data
A. Walsch IN2244 WS2013/14

Transmission path

Unscreened data line

Screened twisted-pair telephone circuit
Digital telephone circuit (ISDN)

Coaxial cable in local defined application
Fibre optic cable

Source:
Borcsok, HIMA 36

Communication

- CAN -

CAN: Controller Area Network, ISO 11898 (PHY, DLL)

Protocol controller available as peripheral of embedded
processors, line driver external (creates differential signals,
adds protection circuits)

Serial protocol, up to 1 Mbit/'s ~

Bit-wise arbitration

Error detection

Source:
Softing

Transceiver

g Arbitration | Control
F Field Field

Data
Field

CRC
Field

ACK
Field

1Bit 120r32Bit 6 Bit

Oto 8Byte 16Bit 2Bit 7 Bit 3 Bit
A. Walsch IN2244 WS2013/14

37

Source:

MESCO Engineering,
Forum Funktionale
Sicherheit 2013

Black Channel

Application - device 1

Safety ‘ Standard

0

Safety
protocol

Standard protocol

L
-

Application - device 2

Safety | Standard

g

Safety
protocol

Standard protocol

i

L

Iy

—

Safety
communication
layer

Black channel

Deterministic remedial measures

w | =] m =4 [2 1] (-]
= = O =
2 5] g g 2 g 3 83
c o % @ 5 a 0 [= =]
g Se @ =1 - = & =
a2 a 5 o 7 a B g3
g =l 2 § & = =3 =] @ o
= = = 3 3 = &£ @
£ Efr_ W = - ﬁ
Error E g s g o 3 @ -
g : g - g a T
= -] Q o =
g 7 z # <
= g
S 2
Unintended repetition X X
Loss X X
Insertion X X
Incorrect sequence X X
Corruption X
Unacceptable delay x x
Masquerade X
Adressing

38

Proven in use Software
(FAQs — www.iec.ch)

D11) Can an E/E/PE safety-related system contain hardware and/or software that was not produced according to IEC 61508,
and still comply with the standard (proven in use)?

It may be possible to use a proven in use argument as an alternative to meeting the design requirements for dealing with systematic
fallure causes in IEC 61508, including hardware and software. But it is essential to note that proven in use cannot be used as an
alternative to meeting the requirements for:

« architectural constraints on hardware safety integrity (see 7.4.2.1 of |IEC 61503-2);
» the guantification of dangerous failures of the safety funciion due to random hardware faults (see 7.4.3.2 of IEC 61508-2); and

« gystemn behaviour on detection of faults (see 7.4.6 of IEC 61508-2).

See 7.4.2.2 of IEC 61502-2 for a summary of design requirements, including references to more detailed systematic hardware
requirements in the standard.

A proven in use claim relies on the availability of historical data for both random hardware and systematic failures, and on analytical
technigues and testing if the previous conditions of use of the subsystem differ in any way from those which will be experienced in the

E/E/FE safety-related system. 7.4.7.6 of IEC 61508-2 requires that:

» the previous conditions of use of the subsystem are the same as, or sufficiently close to, those which will be experienced in the
E/E/FE safety-related system (see 7.4.7.7 of IEC 61508-2);

+ |f the above conditions of use differ in any way, a demonstration is necessary (Using a combination of approprate analytical
technigues and testing) that the likelinood of unrevealed systematic faults is low enough to achieve the reguired safety integrity
evel of the safety functions which use the subsystem (see 7.4.7.8 of IEC 61508-2);

« the claimed failure rates have sufficient statistical basis (see 7.4.7.9 of IEC §1508-2);

* failure data collection is adeguate (see 7.4.7.10 of IEC 615038-2);

« evidence is assessed taking into account the complexity of the subsystem, the contribution made by the subsystem to the risk
reduction, the conseguences associated with a fallure of the subsystem, and the novelty of design (see 7.4.7.11 of IEC 61503-
2 and

« the application of the proven in use subsystem is restricted to those functions and interfaces of the subsystem that meet the
relevant requirements (see 7.4.7.12 of IEC 61503-2).

74211 of IEC 61508-3 allows the use of standard or previously developed software without the availability of historical data but with
the emphasis on analysis and testing. This concept should be distinguished from the proven in use concept described above.

A. Walsch IN2244 WS2013/14

39

	Industrial Embedded Systems - Design for Harsh Environment -
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Watchdog Circuits
	Watchdog Circuits II
	Watchdog Circuits IV
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Fault Detection V
	Fault Detection
	Fault Detection II
	Fault Detection III
	Fault Detection IV
	Memory
	Fault Detection - Memory -
	Fault Detection - Non-variable Memory (program memory) -
	Slide 30
	Fault Detection - Non-variable memory (EEPROM) -
	Fault Detection - Variable memory (SRAM) -
	Fault Detection - Variable memory (SRAM) II -
	Fault Detection - Variable memory (Stack) -
	Fault Detection - Example -
	Communication - error detection -
	Communication - CAN -
	Slide 38
	Slide 39

