
Vorlesung

Grundlagen der
Künstlichen Intelligenz

Reinhard Lafrenz / Prof. A. Knoll

Robotics and Embedded Systems
Department of Informatics – I6
Technische Universität München

www6.in.tum.de
lafrenz@in.tum.de
089-289-18136
Room 03.07.055

Wintersemester 2012/13 26.11.2012

Grundlagen der Künstlichen Intelligenz – Techniques in Artificial Intelligence

R. Lafrenz Wintersemester 2012/13 26.11.2012

Chapter 7,8 (3rd ed .)

Propositional and Frist-Order Logic

From the last lecture we know

� Propositional Logic
– Restrictions to e.g. Horn Clauses

� Proof methods:
– Resolution
– Forward/Backward Chaining
– DPLL algorithm
– WalkSAT algorithm

3

Hard satisfiability problems

� Consider random 3-CNF sentences (with at most 3
variables per clause) e.g.,

(¬D ∨ ¬B ∨ C) ∧ (B ∨ ¬A ∨ ¬C) ∧ (¬C ∨ ¬B ∨ E) ∧
(E ∨ ¬D ∨ B) ∧ (B ∨ E ∨ ¬C)

Analyse “hardness“ of satisfiability problem using

m = number of clauses
n = number of symbols

� Hard problems seem to cluster near m/n = 4.3
(critical point)

4

Hard satisfiability problems

5

Hard satisfiability problems

� Median runtime for 100 satisfiable random 3-
CNF sentences, n = 50

6

Inference-based agents in the wumpus world

A wumpus-world agent using propositional logic:

¬P1,1

¬W1,1

Bx,y ⇔ (Px,y+1 ∨ Px,y-1 ∨ Px+1,y ∨ Px-1,y)
Sx,y ⇔ (Wx,y+1 ∨ Wx,y-1 ∨ Wx+1,y ∨ Wx-1,y)
W1,1 ∨ W1,2 ∨ … ∨ W4,4

¬W1,1 ∨ ¬W1,2

¬W1,1 ∨ ¬W1,3

…

� 64 distinct proposition symbols (16 x P, W, B, S)
� 155 sentences

1
1
16
16
1

120 = (162 -16)/2

7

8

� KB contains "physics" sentences for every single square

� For every time t and every location [x,y]:

Lx,y ∧ FacingRight t ∧ Forward t ⇒ L x+1,y ∧ ¬ Lx,y

� Rapid proliferation of clauses

� Check for danger in a field:
OKx,y ⇔ ¬ P x,y ∧ ¬ (Wx,y ∧ WumpusAlive)

Expressiveness limitation of propositional logic

t+1t t+1

9

t t

Pros and cons of propositional logic

☺ Propositional logic is declarative
☺ Propositional logic allows partial/disjunctive/negated

information
– (unlike most data structures and databases)

☺ Propositional logic is compositional:
– meaning of B1,1 ∧ P1,2 is derived from meaning of B1,1 and of P1,2

☺ Meaning in propositional logic is context-independent
– (unlike natural language, where meaning depends on context)

BUT:
� Propositional logic has very limited expressive power

– (unlike natural language)
– E.g., cannot say "pits cause breezes in adjacent squares“

• except by writing one sentence for each square
10

First-order logic

� Whereas propositional logic assumes the world contains
facts,

� First-Order Logic (like natural language) assumes the
world contains

– Objects: people, houses, numbers, colors, baseball games, …
– Relations: red, round, prime, brother of, bigger than, part of,

comes between, …
– Functions: father of, best friend, one more than, plus, …

11

Models for FOL: Example

12

onHead

crown

brother

brother

person person
king

leftLeg leftLeg

Syntax of FOL: Basic elements

� Constants: KingJohn, 2, TUM,...
� Predicates: Brother, >,...
� Functions: Sqrt, LeftLegOf,...
� Variables: x, y, a, b,...
� Connectives: ¬, ⇒, ∧, ∨, ⇔
� Equality: =
� Quantifiers: ∀, ∃

13

Atomic sentences

Atomic sentence = predicate (term1,...,termn)
or term1 = term2

Term = function (term1,...,termn)
or constant or variable

Examples:
� Brother(KingJohn,RichardTheLionheart)
� > (Length(LeftLegOf(Richard)),

Length(LeftLegOf(KingJohn)))

14

Complex sentences

� Complex sentences are made from atomic sentences
using connectives

¬S, S1 ∧ S2, S1 ∨ S2, S1 ⇒ S2, S1 ⇔ S2,

E.g. Sibling(KingJohn,Richard) ⇒ Sibling(Richard,KingJohn)

>(1,2) ∨ ≤ (1,2)

>(1,2) ∧ ¬ >(1,2)

15

First-Order-Logic: Syntax in BNF

16

Truth in first-order logic

� Sentences are true (a model) or false with respect to an
an interpretation

� Interpretation specifies referents for
constant symbols → objects

predicate symbols → relations

function symbols → functional relations

� An atomic sentence predicate(term1,...,termn) is true
iff the objects referred to by term1,...,termn
are in the relation referred to by predicate

17

Universal quantification

� ∀<variables> <sentence>

Everyone at TUM is smart:
∀x At(x,TUM) ⇒ Smart(x)

� ∀x P is true in a model m iff P is true with x being each
possible object in the model

� Roughly speaking, equivalent to the conjunction of
instantiations of P

At(KingJohn,TUM) ⇒ Smart(KingJohn)
∧ At(Richard,TUM) ⇒ Smart(Richard)
∧ At(TUM,TUM) ⇒ Smart(TUM)
∧ ...

18

A common mistake to avoid

� Typically, ⇒ is the main connective with ∀

� Common mistake: using ∧ as the main connective
with ∀:
∀x At(x,TUM) ∧ Smart(x)
means “Everyone is at TUM and everyone is smart”

19

Existential quantification

� ∃<variables> <sentence>

� Someone at TUM is smart:
� ∃x At(x,TUM) ∧ Smart(x)$

� ∃x P is true in a model m iff P is true with x being some
possible object in the model

� Roughly speaking, equivalent to the disjunction of
instantiations of P

At(KingJohn,TUM) ∧ Smart(KingJohn)
∨ At(Richard,TUM) ∧ Smart(Richard)
∨ At(TUM,TUM) ∧ Smart(TUM)
∨ ...

20

Another common mistake to avoid

� Typically, ∧ is the main connective with ∃

� Common mistake: using ⇒ as the main
connective with ∃:

�

∃x At(x,TUM) ⇒ Smart(x)

is true if there is anyone who is not at TUM!

21

Properties of quantifiers

� ∀x ∀y is the same as ∀y ∀x
� ∃x ∃y is the same as ∃y ∃x

� ∃x ∀y is not the same as ∀y ∃x
� ∃x ∀y Loves(x,y)

– “There is a person who loves everyone in the world”
� ∀y ∃x Loves(x,y)

– “Everyone in the world is loved by at least one person”

� Quantifier duality: each can be expressed using the other
� ∀x Likes(x,IceCream) ¬∃x ¬Likes(x,IceCream)
� ∃x Likes(x,Broccoli) ¬∀x ¬Likes(x,Broccoli)

22

De Morgan Rules

Quantified Not quantified

� ∀x ¬P ≡ ¬∃x P ¬ (P ∨ ¬Q) ≡ ¬P ∧ Q
� ¬∀x P ≡ ∃x ¬P ¬ (P ∧ Q) ≡ ¬P ∨ ¬Q
� ∀x P ≡ ¬∃x ¬P P ∧ Q ≡ ¬(¬P ∨ ¬Q)
� ∃x P ≡ ¬∀ x ¬P P ∨ Q ≡ ¬(¬P ∧ ¬Q)

23

Equality

� term1 = term2 is true under a given interpretation if
and only if term1 and term2 refer to the same
object

� E.g., definition of Sibling in terms of Parent:

∀x,y Sibling(x,y) ⇔ [¬(x = y) ∧ ∃m,f ¬ (m = f) ∧
Parent(m,x) ∧ Parent(f,x) ∧ Parent(m,y) ∧ Parent(f,y)]

24

Possible models

� Language with 2 constant symbols and 1 binary relation

� Up to 6 objects: 137.506.194.466 possibilities

25

Using FOL

The kinship domain:

� Brothers are siblings
∀x,y Brother(x,y) ⇔ Sibling(x,y)

� One's mother is one's female parent
∀m,c Mother(c) = m ⇔ (Female(m) ∧ Parent(m,c))

� “Sibling” is symmetric
∀x,y Sibling(x,y) ⇔ Sibling(y,x)

26

Using FOL – defining exact semantics

Write the sentence
“Richard has 2 brothers, John and Geoffrey” in FOL

Brother(John, Richard) ∧ Brother(Geoffrey, Richard)
� Is this enough?
� What if Geoffrey = John?
Add ∧ (John ≠ Geoffrey)

� What if there are more brothers?
Brother(John, Richard) ∧ Brother(Geoffrey, Richard)
∧ (John ≠ Geoffrey)
∧ (∀x Brother(x, Richard) ⇒ (x=John ∨ x=Geoffrey)

27

Using FOL – database semantics

Reconsider set of possible models

� Unique identities (John ≠ Geoffrey is implicit)
� Closed-world assumption (no constants not in the KB)

The number of possible models is reduced to 24 = 16

Database semantics are used in logic programming
languages

28

Using FOL

The set domain:
� ∀s Set(s) ⇔ (s = {}) ∨ (∃x,s2 Set(s2) ∧ s = {x|s2})

� ¬∃x,s {x|s} = {}

� ∀x,s x ∈ s ⇔ s = {x|s}

� ∀x,s x ∈ s ⇔ [∃y,s2} (s = {y|s2} ∧ (x = y ∨ x ∈ s2))]

� ∀s1,s2 s1 ⊆ s2 ⇔ (∀x x ∈ s1 ⇒ x ∈ s2)
� ∀s1,s2 (s1 = s2) ⇔ (s1 ⊆ s2 ∧ s2 ⊆ s1)

� ∀x,s1,s2 x ∈ (s1 ∩ s2) ⇔ (x ∈ s1 ∧ x ∈ s2)

� ∀x,s1,s2 x ∈ (s1 ∪ s2) ⇔ (x ∈ s1 ∨ x ∈ s2)
29

Interacting with FOL KBs

� Suppose a wumpus-world agent is using an FOL KB and perceives a
smell and a breeze (but no glitter) at t=5:

Tell(KB,Percept([Smell,Breeze,None],5))
Ask(KB,∃a BestAction(a,5))

� I.e., does the KB entail some best action at t=5?

� Answer: Yes, {a/Shoot} ← substitution (binding list)

� Given a sentence S and a substitution σ,
� Sσ denotes the result of plugging σ into S; e.g.,

S = Smarter(x,y)
σ = {x/Hillary,y/Bill}
Sσ = Smarter(Hillary,Bill)

� Ask(KB,S) returns some/all σ such that KB╞ σ

30

Knowledge base for the wumpus world

� Perception
– ∀t,s,b Percept([s,b,Glitter],t) ⇒ Glitter(t)

� “Reflex”
– ∀t Glitter(t) ⇒ BestAction(Grab,t)

Deducing hidden properties

� ∀x,y,a,b Adjacent([x,y],[a,b]) ⇔
[a,b] ∈ {[x+1,y], [x-1,y],[x,y+1],[x,y-1]}

Properties of squares:
� ∀s,t At(Agent,s,t) ∧ Breeze(t) ⇒ Breezy(s)

Squares are breezy near a pit:
� ∀s Breezy(s) ⇔ ∃r Adjacent(r,s) ∧ Pit(r)

– Diagnostic rule---infer cause from effect
∀s Breezy(s) ⇒ ∃r Adjacent(r,s) ∧ Pit(r)

– Causal rule---infer effect from cause
∀r Pit(r) ⇒ [∀s Adjacent(r,s) ⇒ Breezy(s)]

Consideration of time
∀t HaveArrow(t+1) ⇔ HaveArrow(t) ∧ ¬Action(Shoot, t))

Knowledge engineering in FOL

1. Identify the task
2. Assemble the relevant knowledge
3. Decide on a vocabulary of predicates, functions,

and constants
4. Encode general knowledge about the domain
5. Encode a description of the specific problem

instance
6. Pose queries to the inference procedure and get

answers
7. Debug the knowledge base

33

Summary

� First-order logic:
– objects and relations are semantic primitives
– syntax: constants, functions, predicates, equality, quantifiers

� Increased expressive power: sufficient to define wumpus
world including “hidden properties” such as “hasArrow”

�

34

