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What' the problem?

Combinatorial explosion:
» Uninformed search leads to exponential time and can only
be solved for small problems

— 15-puzzle: 10*3 configurations

— Rubik's cube: 4 x 101° configurations
* 1 million years with 1 turn per second

— Chess: 10?0 configurations (asuming ~ 40 moves)

How to solve it?
» Use additional information to reduce complexity

» Choose the node to expand based on an estimation on
how fast the goal can be reached



Heuristics and their properties

Make use of domain knowledge:
,more knowledge, less search”

= Domain knowledge can be considered as ,rules of thumb*

» Heuristics are simple rules that evaluate nodes with
respect to the distance to the goal

= Good heuristics are
— Good estimators
— Simple and fast to compute



Best-first Search

» [nformation about the costs from a given node to the goal:

— Evaluation function h, giving a real number for each node

— ldeal case:
« Knowing the correct costs from the node to the goal

— Simple heuristics:
» Euklidian distance
 Manhatten distance

= Modify the generic graph-search algorithm using the
heuristics

= When h is correct, i.e. estimation gives the actual costs:
Follow the path of lowest cost, no need to search
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Modify generic graph -search algorithm
for best-first search

function HEURISTIC-SEARCH(problem, h)
returns a solution or an error

static: open, the initial state (set of nodes)
closed, the nodes already visited, initally empty set

forever
if open is empty then return error
take a node out of open
add this node to closed
if this node contains a goal state then return solution
expand this node (i.e. take all successors not in closed)
add successor nodes to open using h

» Way of adding successor nodes defined by the heuristics

6 &



Greedy best-first search

* The ,goodness” of a node is determined by the distance to
the goal

h (n) = estimated distance from node n to the goal
= Constraint for h: h(n) =0, iIf n is a goal node

* |n path planning: Direct distance between two locations



Greedy best-first search: From Arad to Bucharest
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Greedy best-first search

: From Arad to Bucharest

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

(d) After expanding Fagaras

e Use air-line distance
as heuristic function h
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Heuristics
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In case of greedy search, the evaluation function h is
called a heuristic function or simply heuristic

Name comes from greek eupiokelv (to find, ,Eureka!)

In Al:

— Heuristics are fast, but probably incomplete methods for solving
problems [Newell, Shaw, Simon 1963]

— Heuristics are a means to accelerate search in average case

A heuristic is problem-specific and focused on search



A* algorithm

» Minimizes the estimated path costs
= Combines uniform cost search and best first greedy

g(n): cost so far to reach n
h(n): estimated cost from n to a goal node
f(n) = g(n) + h(n): estimated total path cost through n

Let h* be the true cost of an optimal path from n to goal
h is admissible, if for all nodes n:
h(n) < h*(n)
h is optimistic, h never overestimates the actual costs

—
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A*: From Arad to Bucharest
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A*: From Arad to Bucharest

(a) The initial state

366=0+366

(b) After expanding Arad

393=140+253 447=118+329 449=75+374

(c) After expanding Sibiu

447=118+329

449=75+374

646=280+366 415=239+176 671=291+380 413=220+193

(d) After expanding Rimnicu Vilcea

449=75+374

526=366+160 417=317+100 553=300+253
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A*: From Arad to Bucharest

(e) After expanding Fagaras  Arad D
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A* algorithm: properties
h is admissible, if for all nodes n: h(n) < h*(n)
A (slightly) more strict condition:

Consistency (monotony):
h is consistent, if for all nodes n:
h(n) < c(n,a,n’) + h(n’)
where c(n,a,n’) are the costs from node n to a successor
node n‘ as a result of the action a

Thesis: If h is consistent, then h is also admissible
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A* algorithm: properties

Two versions of A*:
= Tree-search based
= Graph-search based

Theorem: A* is optimal if

= his admissible in case of tree-search based A*
*= his consistent in case of graph-search based A*
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A* algorithm: Optimality of tree-search form

Thesis: A* is optimal, i.e. the first solution found by A* has
minimal costs

Proof: Assume there exists a goal node G with optimal path
costs f*, but A* has found a different goal G, with

9(G,) > f*

start

_
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A* algorithm: Optimality of tree-search form

Let n be a node on the optimal path from start to G which
has not been expanded. Since h is admissible,

f(n) < f*.
But because n hasn't been expanded before G,, it holds that
f(G,) < f(n)
From this it follows that
f(G,) < f*.
Because h(G,) = 0 by definition, it follows that
9(G,) < f*.

, to assumption g(G,) > f*. Proof by contradiction.

—
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A* algorithm: Optimality of graph  -search form

If h Is consistent, the values of f=g+h are monotonically
Increasing (not strictly).

Let n° be a successor node of n. For an action a holds
g(n’) =g(n) + c(n,a,n’)

This leads to

f(n) = g(n*)+h(n‘) = g(n) + c(n,a,n’) + h(n) =g(n)+h(n) = f(n)

‘ — s
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A* algorithm: Optimality of graph  -search form

If h Is consistent, the values of f=g+h are monotonically
Increasing (not strictly).

Let n' be a successor node of n. For an action a holds

g(n) = g(n) + c(n,a,n’)
This leads to
f(n°) = g(n)+h(n‘) = g(n) + c(n,a,n’) + h(n‘) =g(n)+h(n) =1(n)

‘ — s

Now to prove: If a node n was chosen for expansion, then
the optimal path to n has been found

—
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A* algorithm: Optimality of graph  -search form
Assume there is another cheaper path from start to n.

Then there is a node n‘ on that path with f(n‘) < f(n) because
of monotony of f along any path.

Contradiction to algorithm definiton: n‘ would have been
chosen instead of another node in the same set of frontier
nodes because Its costs are lower.

Then, taking h(goal)=0 into account, the function f gives the
true cost for any goal and the costs for all other nodes on
the way are at least as expensive.

—
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A* algorithm: Optimality of graph  -search form

We can draw a “contour map“ with nodes within a f-cost limit
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A* algorithm: Properties

= A* expands all nodes with f(n) < C*
— C* are the costs of an optimal path

= Completeness requires that there is only a finite number
of nodes with with f(n) < C*

— True, if step costs > € > 0 and branching factor b is finite
= No node with f(n) > C* is expanded

» |f not all nodes with f(n) < C* are expanded, an algorithms
risks to miss the optimal solution
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A* algorithm: Properties

= A*is complete

= A*Iis optimal

= But: Number of configurations still exponential, even with
pruning!

* Time exponential, but drastically reduced

= Space is the major problem

» Variation of A*; IDA* (Iterative deepening A*)
— Pruning based on f-costs (g+h) instead of d
— Because of iteration: no need to keep track of priority queue
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Summary

= There are optimal and complete search algorithms which
are “much better” than blind search

= However, the state spaces and the complexity is still
exponential

= A* always leads to optimal solutions, but space is a
problem.

— Variations of A* to save space

25



Questions:
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Restriction of costs to positive values:

a) Why would an optimal algorithm need to expand the
whole space in case of arbitrary negative costs?

b) Does a restriction to c(n,a,n‘) > min (negative val.) help?
- In case of trees and in case of graphs?

c) Assume there are loops and the world state is the same

after a finite number of actions. What is the optimal
strategy in case of negative path costs for all actions?

d) Are there negative costs in real life?



Questions:
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True or false?

a)

b)
C)

d)

Depth-first expands always at least as many nodes as A*
with an admissible hueristic

For the 8-puzzle, h(n) =0 is admissible.

A* Is not suitable for robotics, because percepts, actions,
and states deal with contiuous values.

In chess, a rook (Turm) can move only horizontally or
vertically, but not jump over other chessmen. The
manhatten distance is admissible for a move from A zu B



Questions:

In graph-based A*, there can be state spaces with
suboptimal solutions if h is admissible, but not consistent.
Show an example.
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