Vorlesung

Grundlagen der
Klnstlichen Intelligenz

Reinhard Lafrenz / Prof. A. Knoll

Robotics and Embedded Systems
Department of Informatics — 16
Technische Universitat Minchen

wwwe6.in.tum.de
lafrenz@in.tum.de
089-289-18136
Room 03.07.055

Wintersemester 2012/13 2.11.2012 E m




Grundlagen der Kinstlichen Intelligenz — Techniques in Artificial Intelligence

Chapter 3

Solving Problems by Searching :

Informed (Heuristic) Search

R. Lafrenz

Wintersemester 2012/13

2.11.2012

& T




What' the problem?

Combinatorial explosion:
» Uninformed search leads to exponential time and can only
be solved for small problems

— 15-puzzle: 10*3 configurations

— Rubik's cube: 4 x 101° configurations
* 1 million years with 1 turn per second

— Chess: 10?0 configurations (asuming ~ 40 moves)

How to solve it?
» Use additional information to reduce complexity

» Choose the node to expand based on an estimation on
how fast the goal can be reached



Heuristics and their properties

Make use of domain knowledge:
,more knowledge, less search”

= Domain knowledge can be considered as ,rules of thumb*

» Heuristics are simple rules that evaluate nodes with
respect to the distance to the goal

= Good heuristics are
— Good estimators
— Simple and fast to compute



Best-first Search

» [nformation about the costs from a given node to the goal:

— Evaluation function h, giving a real number for each node

— ldeal case:
« Knowing the correct costs from the node to the goal

— Simple heuristics:
» Euklidian distance
 Manhatten distance

= Modify the generic graph-search algorithm using the
heuristics

= When h is correct, i.e. estimation gives the actual costs:
Follow the path of lowest cost, no need to search

&



Modify generic graph -search algorithm
for best-first search

function HEURISTIC-SEARCH(problem, h)
returns a solution or an error

static: open, the initial state (set of nodes)
closed, the nodes already visited, initally empty set

forever
if open is empty then return error
take a node out of open
add this node to closed
if this node contains a goal state then return solution
expand this node (i.e. take all successors not in closed)
add successor nodes to open using h

» Way of adding successor nodes defined by the heuristics

6 &



Greedy best-first search

* The ,goodness” of a node is determined by the distance to
the goal

h (n) = estimated distance from node n to the goal
= Constraint for h: h(n) =0, iIf n is a goal node

* |n path planning: Direct distance between two locations



Greedy best-first search: From Arad to Bucharest

] Oradea

75

Arad L]

18 [ Vaslui
n Timisoara

Pitesti

L] Hirsova

[ | Mehadia Urziceni

75 86

Drobeta [ |

Bucharest

Craiova ™ Giurgiu Eforie

. Arad 366 Mehadia 241
Air-line Bucharest 0 Neamt 234
. Craiova 160 Oradea 380

d Istances Drobeta 242 Pitesti 100
to Bu Ch arest Eforie 161 Rimnicu Vilcea 193
Fagaras 176 Sibiu 253

Giurgiu 77 Timisoara 329

Hirsova 151 Urziceni 80

Iasi 226 Vaslui 199

8 Lugoj 244 Zerind 374



Greedy best-first search

: From Arad to Bucharest

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

(d) After expanding Fagaras

e Use air-line distance
as heuristic function h

r



Heuristics

10

In case of greedy search, the evaluation function h is
called a heuristic function or simply heuristic

Name comes from greek eupiokelv (to find, ,Eureka!)

In Al:

— Heuristics are fast, but probably incomplete methods for solving
problems [Newell, Shaw, Simon 1963]

— Heuristics are a means to accelerate search in average case

A heuristic is problem-specific and focused on search



A* algorithm

» Minimizes the estimated path costs
= Combines uniform cost search and best first greedy

g(n): cost so far to reach n
h(n): estimated cost from n to a goal node
f(n) = g(n) + h(n): estimated total path cost through n

Let h* be the true cost of an optimal path from n to goal
h is admissible, if for all nodes n:
h(n) < h*(n)
h is optimistic, h never overestimates the actual costs

—
11



A*: From Arad to Bucharest

] Oradea

75

Arad L]

118 [ vaslui
n Timisoara

Pitesti

L] Hirsova

[ | Mehadia Urziceni

75 86

Drobeta [ |

Bucharest

iy . Eforie
Craiova [] Giurgiu

L Arad 366 Mehadia 241
Air-line Bucharest 0 Neamt 234

. Craiova 160 Oradea 380

d Istances Drobeta 2472 Pitesti 100

to BUCh arest Eforie 161 Rimnicu Vilcea 193
Fagaras 176 Sibiu 253

Giurgiu 77 Timisoara 329

Hirsova 151 Urziceni 80

Iasi 226 Vaslui 199

12 Lugoj 244 Zerind 374

r



A*: From Arad to Bucharest

(a) The initial state

366=0+366

(b) After expanding Arad

393=140+253 447=118+329 449=75+374

(c) After expanding Sibiu

447=118+329

449=75+374

646=280+366 415=239+176 671=291+380 413=220+193

(d) After expanding Rimnicu Vilcea

449=75+374

526=366+160 417=317+100 553=300+253
13



A*: From Arad to Bucharest

(e) After expanding Fagaras  Arad D

CSibiu D Cimisoarg)

447=118+329

Gr> T oD @i

646=280+366 671=291+380
CSibiu D> Queharesd  CCraiovad PCPitesti D C Sibiu_2
591=338+253 450=450+0 526=366+160 417=317+100 553=300+253
(f) After expanding Pitesti  Arad D

CSibiu > Cimisoars)

447=118+329
CArad D COradea> i Vilsd
646=280+366 671=291+4+380 '
CSibiu D QueharesD  Clraiova> CPitesti D C Sibiu_J
591=338+253 450=450+0 526=366+160 553=300+253

>BucharesD) Craiova )  imnicu Vileed
418=418+0 615=455+160 607=414+193
14

CZerind

449=75+374

CZerind 3

449=75+374



A* algorithm: properties
h is admissible, if for all nodes n: h(n) < h*(n)
A (slightly) more strict condition:

Consistency (monotony):
h is consistent, if for all nodes n:
h(n) < c(n,a,n’) + h(n’)
where c(n,a,n’) are the costs from node n to a successor
node n‘ as a result of the action a

Thesis: If h is consistent, then h is also admissible

15



A* algorithm: properties

Two versions of A*:
= Tree-search based
= Graph-search based

Theorem: A* is optimal if

= his admissible in case of tree-search based A*
*= his consistent in case of graph-search based A*

16



A* algorithm: Optimality of tree-search form

Thesis: A* is optimal, i.e. the first solution found by A* has
minimal costs

Proof: Assume there exists a goal node G with optimal path
costs f*, but A* has found a different goal G, with

9(G,) > f*

start

_
v X



A* algorithm: Optimality of tree-search form

Let n be a node on the optimal path from start to G which
has not been expanded. Since h is admissible,

f(n) < f*.
But because n hasn't been expanded before G,, it holds that
f(G,) < f(n)
From this it follows that
f(G,) < f*.
Because h(G,) = 0 by definition, it follows that
9(G,) < f*.

, to assumption g(G,) > f*. Proof by contradiction.

—
18



A* algorithm: Optimality of graph  -search form

If h Is consistent, the values of f=g+h are monotonically
Increasing (not strictly).

Let n° be a successor node of n. For an action a holds
g(n’) =g(n) + c(n,a,n’)

This leads to

f(n) = g(n*)+h(n‘) = g(n) + c(n,a,n’) + h(n) =g(n)+h(n) = f(n)

‘ — s

19

Ei



A* algorithm: Optimality of graph  -search form

If h Is consistent, the values of f=g+h are monotonically
Increasing (not strictly).

Let n' be a successor node of n. For an action a holds

g(n) = g(n) + c(n,a,n’)
This leads to
f(n°) = g(n)+h(n‘) = g(n) + c(n,a,n’) + h(n‘) =g(n)+h(n) =1(n)

‘ — s

Now to prove: If a node n was chosen for expansion, then
the optimal path to n has been found

—
20




A* algorithm: Optimality of graph  -search form
Assume there is another cheaper path from start to n.

Then there is a node n‘ on that path with f(n‘) < f(n) because
of monotony of f along any path.

Contradiction to algorithm definiton: n‘ would have been
chosen instead of another node in the same set of frontier
nodes because Its costs are lower.

Then, taking h(goal)=0 into account, the function f gives the
true cost for any goal and the costs for all other nodes on
the way are at least as expensive.

—
21



A* algorithm: Optimality of graph  -search form

We can draw a “contour map“ with nodes within a f-cost limit

22



A* algorithm: Properties

= A* expands all nodes with f(n) < C*
— C* are the costs of an optimal path

= Completeness requires that there is only a finite number
of nodes with with f(n) < C*

— True, if step costs > € > 0 and branching factor b is finite
= No node with f(n) > C* is expanded

» |f not all nodes with f(n) < C* are expanded, an algorithms
risks to miss the optimal solution

23



A* algorithm: Properties

= A*is complete

= A*Iis optimal

= But: Number of configurations still exponential, even with
pruning!

* Time exponential, but drastically reduced

= Space is the major problem

» Variation of A*; IDA* (Iterative deepening A*)
— Pruning based on f-costs (g+h) instead of d
— Because of iteration: no need to keep track of priority queue

24



Summary

= There are optimal and complete search algorithms which
are “much better” than blind search

= However, the state spaces and the complexity is still
exponential

= A* always leads to optimal solutions, but space is a
problem.

— Variations of A* to save space

25



Questions:

26

Restriction of costs to positive values:

a) Why would an optimal algorithm need to expand the
whole space in case of arbitrary negative costs?

b) Does a restriction to c(n,a,n‘) > min (negative val.) help?
- In case of trees and in case of graphs?

c) Assume there are loops and the world state is the same

after a finite number of actions. What is the optimal
strategy in case of negative path costs for all actions?

d) Are there negative costs in real life?



Questions:

27

True or false?

a)

b)
C)

d)

Depth-first expands always at least as many nodes as A*
with an admissible hueristic

For the 8-puzzle, h(n) =0 is admissible.

A* Is not suitable for robotics, because percepts, actions,
and states deal with contiuous values.

In chess, a rook (Turm) can move only horizontally or
vertically, but not jump over other chessmen. The
manhatten distance is admissible for a move from A zu B



Questions:

In graph-based A*, there can be state spaces with
suboptimal solutions if h is admissible, but not consistent.
Show an example.

28



