Vorlesung

Grundlagen der
Klnstlichen Intelligenz

Reinhard Lafrenz / Prof. A. Knoll

Robotics and Embedded Systems
Department of Informatics — 16
Technische Universitat Minchen

wwwe6.in.tum.de
lafrenz@in.tum.de
089-289-18136
Room 03.07.055

Wintersemester 2012/13 5.11.2012 E m

Grundlagen der Kinstlichen Intelligenz — Techniques in Artificial Intelligence

Chapter 3

Solving Problems by Searching :
Informed (Heuristic) Search

(cont'd)

R. Lafrenz

Wintersemester 2012/13

5.11.2012

& T

Finding heuristic functions

= What is a good heuristic function?

7 2 4 1 2

S 6 3 4 S

8 3 1 6 7 8
Start State Goal State

= h, = number of tiles at wrong location

= h, = sum of distances between tiles and their goal location
(Manhattan distance)

: &

Empirical evaluation of different heuristics

» d = distance to goal
= Average over 100 instances

Search Cost Effective Branching Factor

d IDS A*(hy) | A*(hy) || IDS | A*(hy) A*(hy)
2 10 6 6 || 2.45 1.79 1.79
4 112 13 12 || 2.87 1.48 1.45
6 680 20 18 || 2.73 1.34 1.30
8 6384 39 25 || 2.80 1.33 1.24
10 47127 03 39 || 2.79 1.38 1.22
12 364404 227 73 || 2.78 1.42 1.24
14 || 3473941 539 113 || 2.83 1.44 1.23
16 — 1301 211 — 1.45 1.25
18 — 3056 363 — 1.46 1.26
20 — 7276 676 — 1.47 1.27
22 — | 18094 1219 — 1.48 1.28
24 — | 39135 1641 — 1.48 1.26

Effect of heuristic precision

Effective branching factor: Let N = number of expanded nodes
* d = depth of solution in search space

* then b* is the branching factor of the uniform search tree
with depth d and N nodes

= N+1=1+Db*+ (b*)?+ ... + (b*)

Dominance of heuristics
= h, dominate h,, if for all nodes n is true that:
h,(n) 2 h,(n)
» This also means that A* with h, expands less nodes than h,
on average

5 &

Choice of heuristics

» |f possible, choose heuristics with higher values
— Needs to be admissible/consistent
— Check for calculation time of heuristics

= Example: h; and h, are heuristics for the 8-puzzle

» They also describe the exact path length for relaxed

problems

— Relaxed problem solved by h, : Arbitrary jump of each field to the
empty one

— Relaxed problem solved by h, : Any move (one step horizontally or
vertically) is possible, even if position occupied

6 &

Choice of heuristics

What if there is no “unambiguously best* heuristic?

= Assume, several (admissible/consistent) heuristics hy, h,, ...
h., exist. How to choose?

= Combine all!
h(n) = max (h,(n), h,(n), ... h(n))
This takes the most precise one for each node.

= Given that hy, h,, ... h,, are admissible/consistent. Does this
also hold true for h?

7 &

Grundlagen der Kinstlichen Intelligenz — Techniques in Artificial Intelligence

Chapter 4

Beyond Classical Search

R. Lafrenz Wintersemester 2012/13 5.11.2012 E m

Local search and optimization

= Up to now:
— systematic exploration of search spaces
— Keep track of alteranatives for each node along the path
— The path is the solution

= What if only the final state is of interest for the solution?

Local search

= Examples:
— 8-gueens problem
— VLSI design,
— TSP

Local search and optimization

= Define an objective function that evaluates states
= Use this function to optimize the search for a solution
» |dea: start with a random configuration and increase the

10

solution stepwis

Hill climbing

objective function

shoulder

— global maximum

local maximum

“flat” local maximum

s state space
current

state D

Hill climbing

= Define an objective function that evaluates states
» Goal: maximizing the objective function

11

function HILL-CLIMBING(problem)

returns a state that is a local maximum

inputs: problem, a problem

local variables: current, a node
neighbor, a node

current — MAKE-NODE(problem.INITIAL-STATE)
loop do
neighbor — a highest-valued successor of current
If neighbor. VALUE < current. VALUE then
return current.STATE
current — neighbor
end

Hill climbing : Example 8-queen problem

= Cost function: number of attacks
Next state: Only one vertical move (queens remain in

12

column)
18 (12| 14 13 |[12)| 14 .

16 15 (12| 14 (12| 16
14 |12 18 15 12| 14

14 /113 16 16
N |14 | 17 (15 (N F34 | 16

Gl s 80 i
18 |14 |\ (15 15 (14 |\l

14 17 |[12)] 14 |12}| 18

h=17

N Ny

h=1 (local minimum)
(b)

Problems of local search

= Local maxima: algorithm returns a sub-optimal solution.
= Plateaus: algorithm can only explore randomly.
= Edges: similar to plateaus.

13

Ei

Problems of local search

= Local maxima: algorithm returns a sub-optimal solution.
= Plateaus: algorithm can only explore randomly.
= Edges: similar to plateaus.

Solutions:

= Re-start, if no increase in performance

= Noise, random walk

= Restricted search: the last n operators cannot be applied

Strategies (and their parameters) that perform successfully (on
a certain type of problem) can in most cases only be
determined empirically.

_
“ X

Simulated annealing

= |ntroduction of noise

* |magine rough surface, “shake" the system to overcome
local minima

function SIMULATED-ANNEALING(problem, schedule) returns a solution state

inputs: problem, a problem
schedule, a mapping from time to "“temperature”
local variables: current, a node
next, a node
T, a “temperature” controlling prob. of downward steps

current <— MAKE-NODE(INITIAL-STATE[problem])
for t + 1 to co do
T < schedule(t]
if T = 0 then return current
next <— a randomly selected successor of current
AE + VALUE[next] — VALUE[current]
if AE > 0 then current < next

else current <— next only with probability eDE/T

15

L ocal beam search

» Restrict the nodes in memory to constant k
= [nitialize list with k random nodes
= EXxplore all successors of all k nodes

» Take the “best" k nodes out of this list, according to
optimization function and use them for next step

Problem: concentration on small area (promising?) of the
search space

» Updated list not with best k nodes, but with randomly
chosen ones, based on a distribution given by the objective

function

—
16

Genetic algorithms

Evolution seems to be successful

ldea: Similar to evolution, solutions are searched by applying
operators like "cross-over”, “mutation” and “selection” to
already successful solutions.

Components:
= Encoding of configurations as string or bit-string

= “Fitness" function that evaluates the goodness of a
configuration

= Populations of configurations, initially random choice

Example: 8 queens problem encoded as string of 8 digits.
Fitness function is computed based on the number of
non-attacks (28=7+6+5+...+1 for a solution)

Population consists of the set of queen configurations. D

17

Genetic algorithms: 8-queen problem

24748552

32752411

23 29%

24415124

20 26%

i

32543213

11 14%

(a)

Initial Population

(b)

Fitness Function

32752411

24748552

>~

32752411

>~

24415124

(¢)

Selection

32748552

32749152

24752411

24752411

32752124

320252124

24415411

(d)

Crossover

2441541[7]

(e)

Mutation

= Compute fithess for each configuration in population
» Choose two pairs for crossover, probability based on fitness

» Randomly choose crossover position for each pair

* Choose mutation with low probability

18

&

Genetic algorithms: 8-queen problem

19

Search with non -deterministic action results

= Result of an action can be

unobservable (or partially) =) 2 =)
observable 28 | %R 38| %2R
= Result of an action can be 3 }
non-deterministic 3 e 4 5%
= No clear sequence of 5 =) 6 =)
actions possible %R S
contingency plan
or strategy 7 | =X 8 =)

zo H

Search with non -deterministic action results

= Reconsider vacuum world with additional properties of the
“suck” action:
— Somtimes also the other field is cleaned
— In case of a clean field, dirt may be released

= No unigue result of an action, but a set of possible
outcomes

5 =K

21 — _

Search with non -deterministic action results

= Describe contingency plan in form of result-dependent
action seguence
[action, result-dependent successor actions]

= Example:
[Suck, if state=5 then [RIGHT, Suck] else []]

* These resulting if-then-else cascades lead to decision trees

= Two types of branching out possible
— Agent's own decision (what is the next action?)
— Depending of the (non-deterministic) outcome of an action

—
22

Search with non -deterministic action results

23

Search trees can be described as tree with two types of
nodes

— OR-nodes describe actions chosen by the agent

— AND-nodes describe possbile outcomes

Alternating “layers” of nodes (OR,AND) in the search tree

A solution to a problem is a subtree with
— A goal node at each leave
— An action for each OR node
— All branches of an AND-node included

Several search strategies can be applied, e.g. depth-frist, ...

Finding heuristic functions is more complicated

— Estimation of costs for a contingency plan instead of an action
seguence

Search with non -deterministic action results

Posshile outcomes

2R

(AND node)
Agent's choice
(OR node)
. =) 5 =] -
Suck \ﬁghr Left
5 =4 038 ‘%ﬁ se ﬁ 1 “-::_.,f‘ﬂ 2o
LOOP LOOP LOOP

24

=)
5 o5

LOOP

Suck

=)

=S

GOAL

Search with non -deterministic action results

= \What if “move” actions fail?

E.g. “Right* — —
| =t
| é@ —J s s -
03] 0%
Q oQ , o od@
2R | %R

= No acyclic solution anymore, search fails

* |ntroduce labels for parts of plans
[SUCK, L, : RIGHT, If state=5 then L, else Suck]

or simply while state=5 do right

25

Search with non -deterministic action results

26

Summary
= Criteria for choosing “good” heuristics

» |Local search and optimization
— Useful if only the final state is of interest
— Problem: local minima, plateaus, etc.

— Several algorithms: hill-climbing, simulated annealing, local beam
search, genetic algorithms, etc.

= Search with non-deterministic action results

— Contingency plan instead of action sequence
— AND-OR-trees

27

No class on Friday, 9 ™ November 2012!

9. November 2012

Infomesse

Campus Innenstadt

Immatrikulationshalle
www.tum.de/studium/master/mastermesse/

When? 9-17h
Where? Immatrikulationshalle Campus Stadtmitte

by
28 E;

