Vorlesung

Grundlagen der
Klunstlichen Intelligenz

Reinhard Lafrenz / Prof. A. Knoll

Robotics and Embedded Systems
Department of Informatics — 16
Technische Universitat Mlnchen

WwWw6.in.tum.de
lafrenz@in.tum.de
089-289-18136
Room 03.07.055

Wintersemester 2012/13 28.1.2013 E WM

Grundlagen der Kinstlichen Intelligenz — Techniques in Artificial Intelligence

Chapter (16+) 18

Decisions and Learning

with material from Russel/Norvig original slides and Michael Beetz

R. Lafrenz

Wintersemester 2012/13

28.1.2013

& T

Rational preferences

|dea: preferences of a rational agent must obey constraints.
Rational preferences =
behavior describable as maximization of expected utility

Constraints:

Orderability
(A= B)V (B = AV (A~ B)

Transitivity
(A-DB)N(B~C) = (A>=C)
Continuity
A-B»~C = dp [p,A; 1 —p,C| ~B
Substitutability
A~B = [p,A; 1 —p,Cl~[p,B;1—p,C]
Monotonicity
A-B = (p>q e [pA 1-p,BZ[q, A 1 —q, B

Rational preferences (cont’'d)

Violating the constraints leads to self-evident irrationality

For example: an agent with intransitive preferences can be induced to give

away all its money

If B > (', then an agent who has (' -4

would pay (say) 1 cent to get I3 Ic Ic
If A = I3, then an agent who has I3 '
would pay (say) 1 cent to get A B C

If '~ A, then an agent who has A N———"

] 1
would pay (say) 1 cent to get (' ‘

Maximizing expected utility

Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944):
Given preferences satisfying the constraints
there exists a real-valued function UU such that

UA)>UB) & AZB

(/T([])1. 511 vy Pny Sn-h — E:-f piU (Si)
MEU principle:

Choose the action that maximizes expected utility

Note: an agent can be entirely rational (consistent with MEU)
without ever representing or manipulating utilities and probabilities

E.g., a lookup table for perfect tictactoe

Learning

Learning is essential for unknown environments,
I.e., when designer lacks omniscience

Learning is useful as a system construction method,
l.e., expose the agent to reality rather than trying to write it down

Learning modifies the agent’s decision mechanisms to improve performance

Performance standard

——— am

Critic t—— . Sensors =

feedback

m
=
changes <.
Learning [™| Performance o
element e element S
nowledge 3
learning ®
goals =
-

Problem experiments

generator

Agent Effectors -
& g

Learning element

Design of learning element is dictated by
{> what type of performance element is used
> which functional component is to be learned
{> how that functional compoent is represented

{> what kind of feedback is available

Example scenarios:

Performance element Component Representation Feedback
Alpha-beta search Eval. fn. Weighted linear function Win/loss

Logical agent Transition model Successor—state axioms Outcome
Utility—based agent Transition model Dynamic Bayes net Outcome

Simple reflex agent

Supervised learning:

Percept-action fn

Neural net

correct answers for each instance

Reinforcement learning: occasional rewards

Correct action

Learning in Al context

= Many learning algorithms widely used in practice:
— (Artificial) Neural Networks
— Support Vector Machines
— Reinforcement learning
— Learning from examples
— efc.

= Special lecture “Machine learning”

= Here, we concentrate on Decision tree learning

Inductive learning

Simplest form: learn a function from examples (tabula rasa)

f is the target function

O 0|X
An example is a pair =, (1), e.g., X . +1
X

Problem: find a(n) hypothesis /
such that h ~ f
given a training set of examples

(This is a highly simplified model of real learning;:
— Ignores prior knowledge
— Assumes a deterministic, observable “environment”
— Assumes examples are given
— Assumes that the agent wants to learn f—why?)

Approximate inference

* |n general, inference in Bayesian networks is NP-hard

* For polytrees, exact inference has linear time and space
complexity.

* For all other network topologies, approximate algorithms
are needed

Approximate inference

Construct/adjust /» to agree with f on training set
(/2 is consistent if it agrees with f on all examples)

E.g., curve fitting:

Jx)
\

Approximate inference

Construct/adjust /1 to agree with [on training set
(/2 is consistent if it agrees with [on all examples)

E.g., curve fitting:

Jx)
\

=X

Approximate inference
Construct/adjust /: to agree with f on training set
(/2 is consistent if it agrees with f on all examples)

E.g., curve fitting:

Jix
A

Approximate inference

Construct/adjust /i to agree with | on training set
(/. is consistent if it agrees with [on all examples)

E.g., curve fitting:

Jx)
\

Approximate inference

Construct/adjust /1 to agree with f on training set
(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

Jx)
\

Decision trees

One possible representation for hypotheses
E.g., here is the “true” tree for deciding whether to wait:

Patrons?

None ome Full

WaitEstimate?

Alternate? Hungry?
I*sz No Yes
Reservation? Fri/Sat? Alternate?
No Yes No Yes No Yes
Bar? Raining?

No Yes No Yes

Attribute-based representations

Examples described by attribute values (Boolean, discrete, continuous, etc.)
E.g., situations where | will /won't wait for a table:

Example Attributes Target
Alt| Bar | Fri| Hun | Pat | Price | Rain | Res | Type | Est | WillWait
X1 ¥| E | FE T | Some| $3% F T | French| 0-10 T
Xs T | F - T | Full 3 F F | Thai |30-60 F
X; F| T | F| F |Some| $ F F | Burger | 0-10 T
X4 | P i T | Full $ F F | Thai |10-30 T
X5 ¥ | B T F Full | $$% F T | French| >60 F
Xe F T F T | Some| $$% ¥ T | ltalian | 0-10 T
X~ F| T | F F | None| § F F | Burger| 0-10 2
X3 F | F = T | Some| $$ i 3 T | Thai | 0-10 T
Xy F| T T F | Full $ F F | Burger| >60 F
X10 T | T | T T | Full | $%% F T | Italian | 10-30 F
X11 F | F 2 F | None| § E F | Thai | 0-10 F
X192 T | T T F Full $ F F | Burger | 30-60 T

Classification of examples is positive (T) or negative (F)

Example

Decision tree learned from the 12 examples:

Patrons?
None NI
Hungry?
Yes No
Type?

French i Burger

Fri/Sat?
No Yes

Substantially simpler than “true” tree—a more complex hypothesis isn't jus-
tified by small amount of data

Expressiveness

Decision trees can express any function of the input attributes.
E.g., for Boolean functions, truth table row — path to leaf:

A

A xor B y\

- mm >
—M—-T W
M- -

Trivially, there is a consistent decision tree for any training set
w/ one path to leaf for each example (unless f nondeterministic in)
but it probably won't generalize to new examples

Prefer to find more compact decision trees

Hypothesis space

How many distinct decision trees with n Boolean attributes??

— number of Boolean functions
— number of distinct truth tables with 2" rows = 22

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

How many purely conjunctive hypotheses (e.g., Hungry A = Rain)??

Each attribute can be in (positive), in (negative), or out
= 3" distinct conjunctive hypotheses

More expressive hypothesis space
— increases chance that target function can be expressed (2
— increases number of hypotheses consistent w/ training set
= may get worse predictions @

Decision tree learning

Aim: find a small tree consistent with the training examples

|dea: (recursively) choose “most significant” attribute as root of (sub)tree

function DTL(ezamples, attributes, default) returns a decision tree

if examples is empty then return default
else if all ezamples have the same classification then return the classification
else if attributes is empty then return MODE(examples)
else
best «— CHOOSE-ATTRIBUTE(attributes, examples)
tree <— a new decision tree with root test best
for each value v; of best do
examples; < {elements of examples with best = wv;}
subtree — D'TL(exzamples;, attributes — best, NNODE(examples))
add a branch to tree with label ©v; and subtree subtree
return tree

Choosing an attribute

|dea: a good attribute splits the examples into subsets that are (ideally) “all

., " T . "
positive’ or “all negative

000000
000000
Patrons?
None Some Full
0000 00
X 000

000000
000000
Type?
French ltalian Thai Burger
O © 00 00
O @ 00 0

Patrons? is a better choice—gives information about the classification

Information

Information answers questions

The more clueless | am about the answer initially, the more information is
contained in the answer

Scale: 1 bit = answer to Boolean question with prior (0.5, 0.5)
Information in an answer when prior is (F;, PB,) is
2T 5 - :E;?:l P; log, P

(also called entropy of the prior)

Information (cont’d)

Suppose we have p positive and 7. negative examples at the root

= H((p/(p+n),n/(p+n))) bits needed to classify a new example
E.g., for 12 restaurant examples, p =71 =0 so we need 1 bit
An attribute splits the examples £ into subsets F;, each of which (we hope)

needs less information to complete the classification

Let £; have p; positive and 7; negative examples
= H({(p:/(pi+n;),n;/(pi+n;))) bits needed to classify a new example
= expected number of bits per example over all branches is

v D T , , , :
E’a’ j H{ <j)?'/(_])'i 2 ”-e'.)- '”-i/{f).! o ”-'-f.]>)
P-+—n

For Patrons?, this is 0.459 bits, for T'ype this is (still) 1 bit

= choose the attribute that minimizes the remaining information needed

Performance measurement

How do we know that /o ~ f? (Hume's Problem of Induction)
1) Use theorems of computational/statistical learning theory

2) Try /» on a new test set of examples
(use same distribution over example space as training set)

Learning curve = % correct on test set as a function of training set size
1 .

o o O O
o N o ©

% correct on test set

o O
N O

0 10 20 30 40 50 60 70 80 90100
Training set size

Performance measurement (cont’'d)

Learning curve depends on
— realizable (can express target function) vs. non-realizable
non-realizability can be due to missing attributes
or restricted hypothesis class (e.g., thresholded linear function)
— redundant expressiveness (e.g., loads of irrelevant attributes)

% correct

1 realizable

= redundant

nonrealizable

»# Of examples

Summary

» Learning needed for unknown environments, lazy designers
= |earning agent = performance element + learning element

= Learning method depends on type of performance element, available
feedback, type of component to be improved, and its representation

» For supervised learning, the aim is to find a simple hypothesis that is
approximately consistent with training examples

= Decision tree learning using information gain

= Learning performance = prediction accuracy measured on test set

