Vorlesung

Grundlagen der
Klnstlichen Intelligenz

Reinhard Lafrenz / Prof. A. Knoll

Robotics and Embedded Systems
Department of Informatics — 16
Technische Universitat Minchen

wwwe6.in.tum.de
lafrenz@in.tum.de
089-289-18136
Room 03.07.055

Wintersemester 2012/13 21.12.2012 E m

Grundlagen der Kinstlichen Intelligenz — Techniques in Artificial Intelligence

Chapter 10 cont'd (3rd ed.) + 11

Classical Planning, Planning in the

Real World

R. Lafrenz

Wintersemester 2012/13

21.12.2012

& T

From the last session

» General description of plans and planning
algorithms

» Planning as search for goal states
= GraphPlan algorithm

The GRAPHPLAN Algorithm

= How to extract a solution directly from the PG

function GRAPHPLAN(problem) return solution or failure
graph — INITIAL-PLANNING-GRAPH(problem)
goals — GOALS[problem]
loop do
If goals all non-mutex in last level of graph then do

solution —« EXTRACT-SOLUTION(graph, goals,
LENGTH(graph))

If solution # failure then return solution
else if NO-SOLUTION-POSSIBLE(graph) then return failure
graph — EXPAND-GRAPH(graph, problem)

: &

GRAPHPLAN example

At(Spare Trunk]

At(Spare, Trunk) /ﬂ At(Spare, Trunk)
|r\ \&{ H,Emg\,reLSparE Trunk) I\
Remove(Spare, T runk) — At(Spare, Trunk) — — At{Spare, Trunk)
f
A Remove(Flat Axle) Rk / Hemove(Flat Axle) l'l
/ \ / { i
- ' At{Flat Axle) - \‘ Ai(Flat Axie)

At(Fiat, Axi - {}
? N \ A\

Y
__,_1\

ﬂ — At(Flat Axle) — At{Flat, Axle)
0 3 — At{Spare, Axle)

>

>—<

—At{Spare, Axle) 1At Spare, Axle))
\] F'utOnt..apare Axle) %k At{Spare Axle)
— At{Flat, Ground) 1 \ —At(FHat, Ground) /"‘r {1 \.\\ — At{Fat, Ground)
]
\ At{Flat Ground) / t \ At(Flat, Ground)
— At(Spare, Ground) 1 \—| At(Spare, Ground) / T \—1 At(Spare, Ground)
At(Spare Ground) Df At{Spare, Ground)

Initially the plan consist of 5 literals from the initial state and the literals
resulting from the closed-world-assumption (CWA) (S0).

Add actions whose preconditions are satisfied by EXPAND-GRAPH (A0)
Also add persistence actions and mutex relations.

Add the effects at level S1

Repeat until goal is in level Si

Ei

GRAPHPLAN example

B A, S, A1 By

At(Spare, Trunk) /'] At(Spare, Trunk) At(Spare, Trunk)
(\ HemoueLSpare Trunk) }\

\1 T — At(Spare, Trunk) ‘ LY — At{Spare, Trunk)

/ LIEs Eove it Ave) § " . '
At{Fiat Axie) -] At(Flat. Axie) - - ! At{Flat Axle)
_& ‘\ —1At{Flat Axle) \ —At{Flat, Axie)
—At(Spare. Axle) T —1At(Spare Axle)] \ \ —At(Spare, Axle)
\\\ PLtOn|Spare Axle) \ \\ At(Spare Axle)
—AtfFlat, Ground) {} % —At{Flat. Ground) / Iy \\\ — At{Fiat, Ground)
At{Flat. Ground) ! At(Flat. Ground)
— At{Spare, Ground) [l — At{Spare, Ground) // 1 _1 At(Spare, Ground)
\ At(Spare, Ground) Df At Spare.Ground)

» EXPAND-GRAPH also looks for mutex relations
— Inconsistent effects
 E.g. Remove(Spare, Trunk) and LeaveOverNight
— Interference
 E.g. Remove(Flat, Axle) and LeaveOverNight
— Competing needs
* E.g. PutOn(Spare,Axle) and Remove(Flat, Axle)
— Inconsistent support
 E.g.In S2, At(Spare,Axle) and At(Flat,Axle)

GRAPHPLAN example

B A, S, A1 By
At(Spare, Trunk) {} At(Spare, Trunk) At(Spare, Trunk)
Fd .
|" \ HernOVeLSPﬂre Trunk) \
Remove(Spare, Trunk) —At(Spare, Trunk) \'1‘ — At{Spare, Trunk)

| ,I—LH vl aLANE] | [Femoverataxe] k. \|
At(Flat.Axte) / - — At(Flat Axie) 4 ! At(Flat, Axle)
—At{Flat, Axle)

—&) —VAt(Flat Axle) \ iy "
—At(Spare. Axle) T \\\ —1At(Spare Axle)] \ \ — At(Spare Axle)
, PLﬂOn{SEare:AxIBJ : At(Spare Axle)
—AffFlat, Ground) {3 —At(Flat. Ground) \\3}? — At{Fiat, Ground)

\\\ At{Flat. Ground) // At(Flat, Ground)
— At{Spare, Ground) [l — At{Spare, Ground) — At{Spare, Ground)
\ At(Spare, Ground) / \‘ At Spare.Ground)

1

L0 L

* In S2, the goal literal exists and is not mutex with any other
— Solution might exist and EXTRACT-SOLUTION will try to find it

= EXTRACT-SOLUTION can use Boolean CSP to solve the problem
or a search process:

— Initial state = last level of PG and goal goals of planning problem

— Actions = select any set of non-conflicting actions that cover the
goals in the state

— Goal = reach level SO such that all goals are satisfied
— Cost = 1 for each action.

&

GRAPHPLAN example

S, A, S, A1 S5

1

At(Spare, Trunk) pu At(Spare, Trunk) At(Spare, Trunk)
|: \ HemoVeLSPare Trunk) \
ove Lrrun — "l‘-‘

Remove(Spare, Trunk) —At(Spare, Trunk) — At{Spare, Trunk)
J HemouetFIat,}-\xleﬁ L
At(Flat Axie) / - 1 At{Flat Axle)

L1
f Remove(Flat, Axle] L. ||

- At{Flat, Axla)

‘\ —1At{Flat Axle) \ —At{Flat, Axie)

—At(Spare. Axle) T —1At(Spare Axle) : T \ \ —At(Spare, Axle)
\\\ PLtOn|Spare Axle) \ \\ At(Spare Axle)

—AtfFlat, Ground) {} \ —At{Flat. Ground) / Iy \\\ — At{Fiat, Ground)
At{Flat. Ground) ! At(Flat. Ground)

— At{Spare, Ground) [l — At{Spare, Ground) // 1 _1 At(Spare, Ground)
\ At(Spare, Ground) W At Spare.Ground)

» Termination? YES

= PG are monotonically increasing or decreasing:
— Literals increase monotonically
— Actions increase monotonically
— Mutexes decrease monotonically

= Because of these properties and because there is a finite number of
actions and literals, every PG will eventually level off !

Ei

Planning with propositional logic
= Planning can be done by proving theorem in situation calculus.

» Here: test the satisfiability of a logical sentence:

Initial state [all possible action descriptions [goal

= Sentence contains propositions for every action occurrence.

— A model will assign true to the actions that are part of the correct
plan and false to the others

— An assignment that corresponds to an incorrect plan will not be a
model because of inconsistency with the assertion that the goal is
true.

— If the planning is unsolvable the sentence will be unsatisfiable.

SATPLAN algorithm

function SATPLAN(problem, T, ,,) return solution or failure
iInputs: problem, a planning problem
Tax: @N upper limit to the plan length
for T=0to T, do
cnf, mapping —« TRANSLATE-TO_SAT(problem, T)
assignment — SAT-SOLVER(cnf)
If assignment is not null then
return EXTRACT-SOLUTION(assignment, mapping)

return failure

10

cnf, mapping « TRANSLATE-TO_SAT(problem, T)

= Distinct propositions for assertions about each time step.

— Superscripts denote the time step
At(P1,SFO)° [JAt(P2,JFK)°

— No CWA thus specify which propositions are not true
-At(P1,SFO)° [7-At(P2,JFK)%

— Unknown propositions are left unspecified.

* The goal is associated with a particular time-step
— But which one?

11

cnf, mapping « TRANSLATE-TO_SAT(problem, T)

* How to determine the time step where the goal will be
reached?
— Startat T=0
« Assert At(P1,SFO)° JAt(P2,JFK)°
— Failure .. Try T=1
« Assert At(P1,SFO)! JAt(P2,JFK)!

— Repeat this until some minimal path length is reached.

— Termination is ensured by T,.,

12

cnf, mapping « TRANSLATE-TO_SAT(problem, T)

= How to encode actions into PL?
— Propositional versions of successor-state axioms
At(P1,JFK)! =

(At(P1,JFK)® /7 =(Fly(P1,JFK,SFO)° FAL(P1,JFK)%))/7
(Fly(P1,SFO,JFK)° JAt(P1,SFO)°)

— Such an axiom is required for each plane, airport and time step

— If more airports add another way to travel than additional disjuncts
are required

= Once all these axioms are in place, the satisfiability
algorithm can start to find a plan.

13

assignment — SAT-SOLVER(cnf)

Multiple models can be found

They are NOT satisfactory: (for T=1)
Fly(P1,SFO,JFK)? JFly(P1,JFK,SFO)° [7Fly(P2,JFK, SFO)°
The second action is infeasible
Yet the plan IS a model of the sentence

initial state Call possible action descriptionsC goal®
» Avoiding illegal actions: pre-condition axioms

Fly(P1,SFO,JFK)? = At(P1,JFK)

= Exactly one model now satisfies all the axioms where the
goal is achieved at T=1.

~
- &

assignment — SAT-SOLVER(cnf)

15

A plane can fly at two destinations at once

They are NOT satisfactory: (for T=1)
Fly(P1,SFO,JFK)? [JFly(P2,JFK,SFO)° [JFly(P2,JFK, LAX)"
The second action is infeasible
Yet the plan allows spurious relations

Avoid spurious solutions: action-exclusion axioms
-(Fly(P2,JFK,SFO)° [JFly(P2,JFK,LAX))
Prevents simultaneous actions

Lost of flexibility since plan becomes totally ordered : no
actions are allowed to occur at the same time.
— Restrict exclusion to preconditions

&

Plannning in the Real World

Until now: planning considered as search for goal states

In real-world applications, additional constraints apply
= Time
— Execution times are relevant, especially in concurrent plans

= Resources
— Availability of reusable resources, e.g. machines, robots, ...
— Availability of consumable resources, e.g. fuel, screws, ...

» [n addition to finding a valid plan, scheduling is important

— Execution order in concurrent plans determines overall execution
time

16

&

Scheduling example — critical path method

lack 15
Start times as [9,15] [30.43] [60,73]
; AddEnginel [—— AddWheels1 — Inspecil
[earliest, latest] A i i
[0.0] [83.85]
Start Finish
[00] [60,60] [75.73]
AddEngings | ACdV(hee |l (=——im |nspect2
a0 13 10

Bold arrows: critical path, i.e. maximal duration, actions with slack zero

<‘ AddWheels1 --)
AddEngine1 ") C Inspect

AddEnginsz i Inspect2
< AddWheels2

17

Scheduling example — critical path method

= Example with limited resources
— Only 1 engine hoist leads to sequentialisation of AddEngine

EngineHaoists(1)

WheelStations(1)

Inspectors(2)

18

IA\
AddEngine1 N \ AddEngine2
-
AddWheels \} k" AddWheels2 7
qflnsg:uee-::.t‘l /
(‘ Inspect2
I I I I 1 I I I] I I 1
10 20 S0 40 50 G0 70 50 20 100 110 120

Hierarchical planning

= Several levels of abstraction for the plans

= Detalling out the plan during the planning steps, can be
deferred to plan execution phase for the sake of flexibility
— Off-line vs. on-line planning

— E.g. in driving, route with cities planned off-line, exact steering
parameters on-line based on sensor information

= Plan refinement
— Simplest form: Description as tuple

(original plan, refined plan)

—
19

Hierarchical planning

Plan refinement example

= List of possible substitutions
(start and termination conditions not shown)

((transport), (road —transport))

((transport), (road —transport, railroad —transport, road —transport))

((transport), (road —transport, sea - Transport, road —transport))

((transport), (road —transport, railroad —transport, sea—transport, road —transport))
((transport), (road —transport, air —transport, road —transport))

= Choice of actual substitutions needs semantic information
= Choice can be restricted by pre-conditions

—
20

Hierarchical planning

21

Plan refinement example with resource limitations

= Move object on table
= Resources are 1 mobile manipulator, 1 mobile base

= Abstract operation move can be re-written as

((move), (attach push)) mobile base
((move), (grasp, pull)) ~ mobile manipulator

= The mobile manipulator can perform both alternatives, the
mobile base only the first

Hierarchical planning

Plan refinement example with resource limitations

» Refinement of move operation

((move), (push))
((move), (attach, push))

((move), (approach, attach, push))
alternatively stepwise refinement

((move), (push))
((push), (attach, push))

((attach), (approach, attach))

22

Hierarchical planning

Plan refinement example with resource limitations

= Formal description of the refinement by replace operator

replace(original, substitute, precondition, aditional_property)

* |n the example (off-line variant)

(move),
(grasp(manipulator), pull (manipulator),
(available{manipulator),
(addcost(rentalfee))

replace

23

Hierarchical planning

Plan refinement example with resource limitations

* On-line variant with dynamic resource allocation during

run-time:
(move),
eolace (request(manipulator), grasp(manipulator), pull(manipulator)),
ep (own(rentalfee)),
(consumed(rentalfee), addcost(rentalfee))

24

Additional aspects of planning

Not considered in the context of this course

» Single vs. multi agent plans
= Centralized vs. decentralized planning
* Plan coordination

» Fault-tolerance aspects
— Concurrent alternatives
— Plan repair techniques

= Motion planning techniques
— See module IN2138 Robot Motion Planning

25

Summary

26

Planning is an area of great interest within Al

Biggest problem is the combinatorial explosion in states.

Planning described as set of preconditions, actions, and
postconditions

Use of search strategies to create plans
Use of theorem proving

Consideration of limited resources and time

Hierarchical planning approaches

Evaluation

Please fill in the evaluation forms

