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From the last session

� General description of plans and planning 
algorithms

� Planning as search for goal states
� GraphPlan algorithm
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The GRAPHPLAN Algorithm

� How to extract a solution directly from the PG

function GRAPHPLAN(problem) return solution or failure
graph ← INITIAL-PLANNING-GRAPH(problem)
goals ← GOALS[problem]
loop do

if goals all non-mutex in last level of graph then do
solution ← EXTRACT-SOLUTION(graph, goals, 

LENGTH(graph))
if solution ≠ failure then return solution
else if NO-SOLUTION-POSSIBLE(graph) then return failure

graph ← EXPAND-GRAPH(graph, problem)
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GRAPHPLAN example

� Initially the plan consist of 5 literals from the initial state and the literals 
resulting from the closed-world-assumption (CWA) (S0).

� Add actions whose preconditions are satisfied by EXPAND-GRAPH (A0)
� Also add persistence actions and mutex relations.
� Add the effects at level S1
� Repeat until goal is in level Si
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GRAPHPLAN example

� EXPAND-GRAPH also looks for mutex relations
– Inconsistent effects

• E.g. Remove(Spare, Trunk) and LeaveOverNight
– Interference 

• E.g. Remove(Flat, Axle) and LeaveOverNight
– Competing needs

• E.g. PutOn(Spare,Axle) and Remove(Flat, Axle)
– Inconsistent support

• E.g. in S2, At(Spare,Axle) and At(Flat,Axle)6



GRAPHPLAN example

� In S2, the goal literal exists and is not mutex with any other
– Solution might exist and EXTRACT-SOLUTION will try to find it

� EXTRACT-SOLUTION can use Boolean CSP to solve the problem 
or a search process:
– Initial state = last level of PG and goal goals of planning problem
– Actions = select any set of non-conflicting actions that cover the 

goals in the state
– Goal = reach level S0 such that all goals are satisfied
– Cost = 1 for each action.7



GRAPHPLAN example

� Termination? YES
� PG are monotonically increasing or decreasing:

– Literals increase monotonically
– Actions increase monotonically
– Mutexes decrease monotonically

� Because of these properties and because there is a finite number of 
actions and literals, every PG will eventually level off !
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Planning with propositional logic

� Planning can be done by proving theorem in situation calculus.

� Here: test the satisfiability of a logical sentence:

� Sentence contains propositions for every action occurrence.
– A model will assign true to the actions that are part of the correct 

plan and false to the others
– An assignment that corresponds to an incorrect plan will not be a 

model because of inconsistency with the assertion that the goal is 
true.

– If the planning is unsolvable the sentence will be unsatisfiable.

initial state ∧ all possible action descriptions ∧ goal
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SATPLAN algorithm

function SATPLAN(problem, Tmax) return solution or failure
inputs: problem, a planning problem

Tmax, an upper limit to the plan length
for T= 0 to Tmax do

cnf, mapping ← TRANSLATE-TO_SAT(problem, T)
assignment ← SAT-SOLVER(cnf)

if assignment is not null then 
return EXTRACT-SOLUTION(assignment, mapping)

return failure
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cnf, mapping ←←←← TRANSLATE-TO_SAT( problem, T)

� Distinct propositions for assertions about each time step.
– Superscripts denote the time step

At(P1,SFO)0 ∧ At(P2,JFK)0

– No CWA thus specify which propositions are not true
¬At(P1,SFO)0 ∧ ¬At(P2,JFK)0\

– Unknown propositions are left unspecified.

� The goal is associated with a particular time-step
– But which one?
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cnf, mapping ←←←← TRANSLATE-TO_SAT( problem, T)

� How to determine the time step where the goal will be 
reached?
– Start at T=0

• Assert At(P1,SFO)0 ∧ At(P2,JFK)0

– Failure .. Try T=1
• Assert At(P1,SFO)1 ∧ At(P2,JFK)1

–
…

– Repeat this until some minimal path length is reached. 
– Termination is ensured by Tmax
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cnf, mapping ←←←← TRANSLATE-TO_SAT( problem, T)

� How to encode actions into PL?
– Propositional versions of successor-state axioms

At(P1,JFK)1 ⇔
(At(P1,JFK)0 ∧ ¬(Fly(P1,JFK,SFO)0 ∧ At(P1,JFK)0))∨
(Fly(P1,SFO,JFK)0 ∧ At(P1,SFO)0)

– Such an axiom is required for each plane, airport and time step
– If more airports add another way to travel than additional disjuncts

are required 

� Once all these axioms are in place, the satisfiability
algorithm can start to find a plan.
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assignment ←←←← SAT-SOLVER(cnf)

� Multiple models can be found
� They are NOT satisfactory: (for T=1)

Fly(P1,SFO,JFK)0 ∧ Fly(P1,JFK,SFO)0 ∧ Fly(P2,JFK, SFO)0

The second action is infeasible
Yet the plan IS a model of the sentence

� Avoiding illegal actions: pre-condition axioms

Fly(P1,SFO,JFK)0
⇒ At(P1,JFK)

� Exactly one model now satisfies all the axioms where the 
goal is achieved at T=1.

initial state ∧ all possible action descriptions∧ goal1
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assignment ←←←← SAT-SOLVER(cnf)

� A plane can fly at two destinations at once

� They are NOT satisfactory: (for T=1)
Fly(P1,SFO,JFK)0 ∧ Fly(P2,JFK,SFO)0 ∧ Fly(P2,JFK, LAX)0

The second action is infeasible
Yet the plan allows spurious relations

� Avoid spurious solutions: action-exclusion axioms
¬(Fly(P2,JFK,SFO)0 ∧ Fly(P2,JFK,LAX))

Prevents simultaneous actions

� Lost of flexibility since plan becomes totally ordered : no 
actions are allowed to occur at the same time.
– Restrict exclusion to preconditions 
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Plannning in the Real World

Until now: planning considered as search for goal states

In real-world applications, additional constraints apply
� Time

– Execution times are relevant, especially in concurrent plans

� Resources
– Availability of reusable resources, e.g. machines, robots, …
– Availability of consumable resources, e.g. fuel, screws, …

� In addition to finding a valid plan, scheduling is important
– Execution order in concurrent plans determines overall execution 

time
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Scheduling example – critical path method
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Start times as
[earliest, latest]

Slack 15

Bold arrows: critical path, i.e. maximal duration, actions with slack zero 



Scheduling example – critical path method
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� Example with limited resources
– Only 1 engine hoist leads to sequentialisation of AddEngine



Hierarchical planning
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� Several levels of abstraction for the plans

� Detailing out the plan during the planning steps, can be 
deferred to plan execution phase for the sake of flexibility
– Off-line vs. on-line planning 
– E.g. in driving, route with cities planned off-line, exact steering 

parameters on-line based on sensor information

� Plan refinement
– Simplest form: Description as tuple 

(original plan, refined plan) 



Hierarchical planning
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Plan refinement example

� List of possible substitutions
(start and termination conditions not shown)

� Choice of actual substitutions needs semantic information
� Choice can be restricted by pre-conditions

( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( )transportroadtransportairtransportroadtransport

transportroadtransportseatransportrailroadtransportroadtransport

transportroadTransportseatransportroadtransport

transportroadtransportrailroadtransportroadtransport

transportroadtransport

−−−
−−−−

−−−
−−−

−

,,,

,,,,

,,,

,,,

,



Hierarchical planning
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Plan refinement example with resource limitations

� Move object on table
� Resources are 1 mobile manipulator, 1 mobile base 

� Abstract operation move can be re-written as

mobile base
mobile manipulator

� The mobile manipulator can perform both alternatives, the 
mobile base only the first

( ) ( )( )
( ) ( )( )pullgraspmove

pushattachmove

,,

,,



Hierarchical planning
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Plan refinement example with resource limitations

� Refinement of move operation

alternatively stepwise refinement

( ) ( )( )
( ) ( )( )
( ) ( )( )pushattachapproachmove

pushattachmove

pushmove

,,,

,,

,

( ) ( )( )
( ) ( )( )
( ) ( )( )attachapproachattach

pushattachpush

pushmove

,,

,,

, pull push



Hierarchical planning
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Plan refinement example with resource limitations

� Formal description of the refinement by replace operator

� In the example (off-line variant)

( )propertyaditionalonpreconditisubstituteoriginalreplace _,,,

( )
( ) ( )( )

( )( )
( )( ) 




















rentalfee

rmanipulato

rmanipulatormanipulato

move

addcost

,available

,pull,grasp

,

replace



Hierarchical planning
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Plan refinement example with resource limitations

� On-line variant with dynamic resource allocation during 
run-time:

( )
( ) ( ) ( )( )

( )( )
( ) ( )( ) 




















rentalfeerentalfee

rentalfee

rmanipulatormanipulatormanipulato

move

addcost,consumed

,own

,pull,grasp,request

,

replace



Additional aspects of planning 
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Not considered in the context of this course

� Single vs. multi agent plans
� Centralized vs. decentralized planning
� Plan coordination
� Fault-tolerance aspects

– Concurrent alternatives
– Plan repair techniques

� Motion planning techniques
– See module  IN2138 Robot Motion Planning



Summary

� Planning is an area of great interest within AI
� Biggest problem is the combinatorial explosion in states.

� Planning described as set of preconditions, actions, and 
postconditions

� Use of search strategies to create plans
� Use of theorem proving

� Consideration of limited resources and time

� Hierarchical planning approaches
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Evaluation

Please fill in the evaluation forms
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