
Vorlesung

Grundlagen der
Künstlichen Intelligenz

Reinhard Lafrenz / Prof. A. Knoll

Robotics and Embedded Systems
Department of Informatics – I6
Technische Universität München

www6.in.tum.de
lafrenz@in.tum.de
089-289-18136
Room 03.07.055

Wintersemester 2012/13 21.12.2012

Grundlagen der Künstlichen Intelligenz – Techniques in Artificial Intelligence

R. Lafrenz Wintersemester 2012/13 21.12.2012

Chapter 10 cont‘d (3rd ed.) + 11

Classical Planning, Planning in the
Real World

From the last session

� General description of plans and planning
algorithms

� Planning as search for goal states
� GraphPlan algorithm

3

The GRAPHPLAN Algorithm

� How to extract a solution directly from the PG

function GRAPHPLAN(problem) return solution or failure
graph ← INITIAL-PLANNING-GRAPH(problem)
goals ← GOALS[problem]
loop do

if goals all non-mutex in last level of graph then do
solution ← EXTRACT-SOLUTION(graph, goals,

LENGTH(graph))
if solution ≠ failure then return solution
else if NO-SOLUTION-POSSIBLE(graph) then return failure

graph ← EXPAND-GRAPH(graph, problem)

4

GRAPHPLAN example

� Initially the plan consist of 5 literals from the initial state and the literals
resulting from the closed-world-assumption (CWA) (S0).

� Add actions whose preconditions are satisfied by EXPAND-GRAPH (A0)
� Also add persistence actions and mutex relations.
� Add the effects at level S1
� Repeat until goal is in level Si

5

GRAPHPLAN example

� EXPAND-GRAPH also looks for mutex relations
– Inconsistent effects

• E.g. Remove(Spare, Trunk) and LeaveOverNight
– Interference

• E.g. Remove(Flat, Axle) and LeaveOverNight
– Competing needs

• E.g. PutOn(Spare,Axle) and Remove(Flat, Axle)
– Inconsistent support

• E.g. in S2, At(Spare,Axle) and At(Flat,Axle)6

GRAPHPLAN example

� In S2, the goal literal exists and is not mutex with any other
– Solution might exist and EXTRACT-SOLUTION will try to find it

� EXTRACT-SOLUTION can use Boolean CSP to solve the problem
or a search process:
– Initial state = last level of PG and goal goals of planning problem
– Actions = select any set of non-conflicting actions that cover the

goals in the state
– Goal = reach level S0 such that all goals are satisfied
– Cost = 1 for each action.7

GRAPHPLAN example

� Termination? YES
� PG are monotonically increasing or decreasing:

– Literals increase monotonically
– Actions increase monotonically
– Mutexes decrease monotonically

� Because of these properties and because there is a finite number of
actions and literals, every PG will eventually level off !

8

Planning with propositional logic

� Planning can be done by proving theorem in situation calculus.

� Here: test the satisfiability of a logical sentence:

� Sentence contains propositions for every action occurrence.
– A model will assign true to the actions that are part of the correct

plan and false to the others
– An assignment that corresponds to an incorrect plan will not be a

model because of inconsistency with the assertion that the goal is
true.

– If the planning is unsolvable the sentence will be unsatisfiable.

initial state ∧ all possible action descriptions ∧ goal

9

SATPLAN algorithm

function SATPLAN(problem, Tmax) return solution or failure
inputs: problem, a planning problem

Tmax, an upper limit to the plan length
for T= 0 to Tmax do

cnf, mapping ← TRANSLATE-TO_SAT(problem, T)
assignment ← SAT-SOLVER(cnf)

if assignment is not null then
return EXTRACT-SOLUTION(assignment, mapping)

return failure

10

cnf, mapping ←←←← TRANSLATE-TO_SAT(problem, T)

� Distinct propositions for assertions about each time step.
– Superscripts denote the time step

At(P1,SFO)0 ∧ At(P2,JFK)0

– No CWA thus specify which propositions are not true
¬At(P1,SFO)0 ∧ ¬At(P2,JFK)0\

– Unknown propositions are left unspecified.

� The goal is associated with a particular time-step
– But which one?

11

cnf, mapping ←←←← TRANSLATE-TO_SAT(problem, T)

� How to determine the time step where the goal will be
reached?
– Start at T=0

• Assert At(P1,SFO)0 ∧ At(P2,JFK)0

– Failure .. Try T=1
• Assert At(P1,SFO)1 ∧ At(P2,JFK)1

–
…

– Repeat this until some minimal path length is reached.
– Termination is ensured by Tmax

12

cnf, mapping ←←←← TRANSLATE-TO_SAT(problem, T)

� How to encode actions into PL?
– Propositional versions of successor-state axioms

At(P1,JFK)1 ⇔
(At(P1,JFK)0 ∧ ¬(Fly(P1,JFK,SFO)0 ∧ At(P1,JFK)0))∨
(Fly(P1,SFO,JFK)0 ∧ At(P1,SFO)0)

– Such an axiom is required for each plane, airport and time step
– If more airports add another way to travel than additional disjuncts

are required

� Once all these axioms are in place, the satisfiability
algorithm can start to find a plan.

13

assignment ←←←← SAT-SOLVER(cnf)

� Multiple models can be found
� They are NOT satisfactory: (for T=1)

Fly(P1,SFO,JFK)0 ∧ Fly(P1,JFK,SFO)0 ∧ Fly(P2,JFK, SFO)0

The second action is infeasible
Yet the plan IS a model of the sentence

� Avoiding illegal actions: pre-condition axioms

Fly(P1,SFO,JFK)0
⇒ At(P1,JFK)

� Exactly one model now satisfies all the axioms where the
goal is achieved at T=1.

initial state ∧ all possible action descriptions∧ goal1

14

assignment ←←←← SAT-SOLVER(cnf)

� A plane can fly at two destinations at once

� They are NOT satisfactory: (for T=1)
Fly(P1,SFO,JFK)0 ∧ Fly(P2,JFK,SFO)0 ∧ Fly(P2,JFK, LAX)0

The second action is infeasible
Yet the plan allows spurious relations

� Avoid spurious solutions: action-exclusion axioms
¬(Fly(P2,JFK,SFO)0 ∧ Fly(P2,JFK,LAX))

Prevents simultaneous actions

� Lost of flexibility since plan becomes totally ordered : no
actions are allowed to occur at the same time.
– Restrict exclusion to preconditions

15

Plannning in the Real World

Until now: planning considered as search for goal states

In real-world applications, additional constraints apply
� Time

– Execution times are relevant, especially in concurrent plans

� Resources
– Availability of reusable resources, e.g. machines, robots, …
– Availability of consumable resources, e.g. fuel, screws, …

� In addition to finding a valid plan, scheduling is important
– Execution order in concurrent plans determines overall execution

time

16

Scheduling example – critical path method

17

Start times as
[earliest, latest]

Slack 15

Bold arrows: critical path, i.e. maximal duration, actions with slack zero

Scheduling example – critical path method

18

� Example with limited resources
– Only 1 engine hoist leads to sequentialisation of AddEngine

Hierarchical planning

19

� Several levels of abstraction for the plans

� Detailing out the plan during the planning steps, can be
deferred to plan execution phase for the sake of flexibility
– Off-line vs. on-line planning
– E.g. in driving, route with cities planned off-line, exact steering

parameters on-line based on sensor information

� Plan refinement
– Simplest form: Description as tuple

(original plan, refined plan)

Hierarchical planning

20

Plan refinement example

� List of possible substitutions
(start and termination conditions not shown)

� Choice of actual substitutions needs semantic information
� Choice can be restricted by pre-conditions

() ()()
() ()()
() ()()
() ()()
() ()()transportroadtransportairtransportroadtransport

transportroadtransportseatransportrailroadtransportroadtransport

transportroadTransportseatransportroadtransport

transportroadtransportrailroadtransportroadtransport

transportroadtransport

−−−
−−−−

−−−
−−−

−

,,,

,,,,

,,,

,,,

,

Hierarchical planning

21

Plan refinement example with resource limitations

� Move object on table
� Resources are 1 mobile manipulator, 1 mobile base

� Abstract operation move can be re-written as

mobile base
mobile manipulator

� The mobile manipulator can perform both alternatives, the
mobile base only the first

() ()()
() ()()pullgraspmove

pushattachmove

,,

,,

Hierarchical planning

22

Plan refinement example with resource limitations

� Refinement of move operation

alternatively stepwise refinement

() ()()
() ()()
() ()()pushattachapproachmove

pushattachmove

pushmove

,,,

,,

,

() ()()
() ()()
() ()()attachapproachattach

pushattachpush

pushmove

,,

,,

, pull push

Hierarchical planning

23

Plan refinement example with resource limitations

� Formal description of the refinement by replace operator

� In the example (off-line variant)

()propertyaditionalonpreconditisubstituteoriginalreplace _,,,

()
() ()()

()()
()() 




















rentalfee

rmanipulato

rmanipulatormanipulato

move

addcost

,available

,pull,grasp

,

replace

Hierarchical planning

24

Plan refinement example with resource limitations

� On-line variant with dynamic resource allocation during
run-time:

()
() () ()()

()()
() ()() 




















rentalfeerentalfee

rentalfee

rmanipulatormanipulatormanipulato

move

addcost,consumed

,own

,pull,grasp,request

,

replace

Additional aspects of planning

25

Not considered in the context of this course

� Single vs. multi agent plans
� Centralized vs. decentralized planning
� Plan coordination
� Fault-tolerance aspects

– Concurrent alternatives
– Plan repair techniques

� Motion planning techniques
– See module IN2138 Robot Motion Planning

Summary

� Planning is an area of great interest within AI
� Biggest problem is the combinatorial explosion in states.

� Planning described as set of preconditions, actions, and
postconditions

� Use of search strategies to create plans
� Use of theorem proving

� Consideration of limited resources and time

� Hierarchical planning approaches

26

Evaluation

Please fill in the evaluation forms

27

