Vorlesung

Grundlagen der
Klnstlichen Intelligenz

Reinhard Lafrenz / Prof. A. Knoll

Robotics and Embedded Systems
Department of Informatics — 16
Technische Universitat Minchen

wwwe6.in.tum.de
lafrenz@in.tum.de
089-289-18136
Room 03.07.055

Wintersemester 2012/13 17.12.2012 E m

Grundlagen der Kinstlichen Intelligenz — Techniques in Artificial Intelligence

Chapter 10 (3rd ed.)

Classical Planning

R. Lafrenz Wintersemester 2012/13 17.12.2012 E m

Planning

= The Planning problem

= Planning with State-space search
= Partial-order planning

= Planning graphs

» Planning with propositional logic
= Analysis of planning approaches

What is Planning

= Generate sequences of actions to perform tasks and
achieve objectives.
— States, actions and goals

= Search for solution over abstract space of plans.

» Assists humans in practical applications
— design and manufacturing
— games
— space exploration
— Rescue operation (see also RoboCup rescue league)

Difficulty of real world problems

= Assume a problem-solving agent
using some search method ...

— Which actions are relevant?
 Exhaustive search vs. backward search

— What is a good heuristic functions?
 Good estimate of the cost of the state?

* Problem-dependent vs. -independent

— How to decompose the problem?

» Most real-world problems are nearly decomposable.

Planning language

= What is a good language?
— Expressive enough to describe a wide variety of problems.
— Restrictive enough to allow efficient algorithms to operate on it.

— Planning algorithm should be able to take advantage of the logical
structure of the problem.

= STRIPS, ADL, and PDDL

General language features

= Representation of states

— Decompose the world in logical conditions and represent a state
as a conjunction of positive literals.

* Propositional literals: Poor //Unknown

» First Order-literals (grounded and function-free): At(Planel,
Melbourne) [/At(Plane2, Sydney)

— Closed world assumption

» Representation of goals

— Partially specified state and represented as a conjunction of
positive ground literals

— A goal is satisfied if the state contains all literals in goal.

General language features

» Representations of actions
— Action = PRECOND + EFFECT
Action(Fly(p,from, to),
PRECOND: At(p,from) /Plane(p) L/Airport(from) [/Airport(to)

EFFECT: -At(p,from) L/At(p,t0))
= action schema (p, from, to need to be instantiated)
« Action name and parameter list

* Precondition (conj. of function-free literals)
» Effect (conj. of function-free literals)

= Add-list vs. delete-list in Effect

Language semantics?
How do actions affect states?

= An action is applicable in any state that satisfies the
precondition.

= For FO action schema applicability involves a substitution
O for the variables in the PRECOND.

At(P1,JFK) [/At(P2,SFO) [/Plane(P1l) [/Plane(P2) [J
Airport(JFK) L/Airport(SFO)

Satisfies : At(p,from) //Plane(p) L/Airport(from) [/
Airport(to)

With 6 ={p/P1,from/JFK,to/SFO}
Thus the action is applicable.

Language semantics?

* The result of executing action a in state s is the state s’
— S’ is same as s except
« Any positive literal P in the effect of ais added to s’
« Any negative literal =P is removed from s’

At(P1,SFO) [JAtL(P2,SFO) [/Plane(P1) [/Plane(P2) [/
Airport(JFK) JAirport(SFO)

— STRIPS assumption: (avoids representational frame

problem)
every literal NOT in the effect remains unchanged

—
10 ;‘

Expressiveness and extensions

= STRIPS is simplified
— Important limit: function-free literals
— Allows for propositional representation
— Closed-world assumption

* Function symbols lead to infinitely many states and
actions

* Open-world extension:Action Description language (ADL)
Action(Fly(p:Plane, from: Airport, to: Airport),
PRECOND: At(p,from) Z(from Zto)
EFFECT: -At(p,from) /At(p,to))

Standardization : Planning domain definition language (PDDL)
— Delevoped for 1998/2000 International Planning Competition (IPC)

—
11

Example: air cargo transport

Init(At(C1, SFO) [JAt(C2,JFK) [/At(P1,SFO) [J/At(P2,JFK) [/Cargo(C1l) [/
Cargo(C2) [/Plane(P1) [/Plane(P2) [/Airport(JFK) L/Airport(SFO))

Goal(At(C1,JFK) [/At(C2,SFO))

Action(Load(c,p,a)
PRECOND: At(c,a) LAt(p,a) Cargo(c) [Plane(p) LAirport(a)
EFFECT: -At(c,a) ZIn(c,p))

Action(Unload(c,p,a)
PRECOND: In(c,p) LAt(p,a) LCargo(c) [Plane(p) [Airport(a)
EFFECT: At(c,a) L/~In(c,p))

Action(Fly(p,from,to)
PRECOND: At(p,from) /Plane(p) LAirport(from) LAirport(to)
EFFECT: = At(p,from) [/At(p,to0))

[Load(C1,P1,SFO), Fly(P1,SFO,JFK), Load(C2,P2,JFK),
Fly(P2,JFK,SFO)]

—
12

Example: Spare tire problem

Init(At(Flat, Axle) [JAt(Spare,trunk))
Goal(At(Spare,Axle))
Action(Remove(Spare, Trunk)

PRECOND: At(Spare, Trunk)

EFFECT: -At(Spare, Trunk) [/At(Spare,Ground))
Action(Remove(Flat,Axle)

PRECOND: At(Flat,Axle)

EFFECT: -At(Flat,Axle) [J/At(Flat,Ground))
Action(PutOn(Spare,Axle)

PRECOND: At(Spare,Groundp) [AAt(Flat,Axle)

EFFECT: At(Spare,Axle) [/-At(Spare,Ground))
Action(LeaveOvernight(), PRECOND: <none>

EFFECT: - At(Spare,Ground) [/~ At(Spare,Axle) [/~ At(Spare,trunk)
[/~ At(Flat,Ground) /- At(Flat,Axle))

. This example goes beyond STRIPS: negative literal in pre-condition D

Example: Blocks world

Init(On(A, Table) //On(B,Table) //On(C,A) [/Block(A) //Block(B) [/
Block(C) L/Clear(B) [/Clear(C))
Goal(On(A,B) /0On(B,C))
Action(Move(b,x,y)
PRECOND: On(b,x) /Clear(b) //Clear(y) L/Block(b) L/(bZ=x) [/(bZYy)
[J(XZY)
EFFECT: On(b,y) Z/Clear(x) /- On(b,x) //~ Clear(y))
Action(MoveToTable(b,x)
PRECOND: On(b,x) /[/Clear(b) /Block(b) /(b#Xx)
EFFECT: On(b,Table) //Clear(x) /- On(b,x))

A
B
C

C
5[]

m H

Planning with state -space search

= Both forward and backward search possible

* Progression planners
— forward state-space search
— Consider the effect of all possible actions in a given state

= Regression planners
— backward state-space search
— To achieve a goal, what must have been true in the previous state.

—
15

Progression and regression

. _FwraR T AMPLA
| AtiP, , Al —_— S o
(a
' AtE, . A e g
i = P —— o
. / ! A
=~ L Fly(F, A.B) h— | At(P, . Al e
At{Fs, B)
I |\~ 1
- .-".H
-~ At A '|
— At(P, , B) ;""“" Fiy(P, ,A.B) | T —
= i T T~ AtfR,.B
ibi
et T s AtiF; . B)
; o - — | 2 3
"'--....; AffH] E} I_...---'" Fiy(P, A.B) 2 L
AtiF; A
..-l"'""'ﬂ x__ ,-f’l

16

Progression algorithm

= Formulation as state-space search problem:
— Initial state = initial state of the planning problem
 Literals not appearing are false
— Actions = those whose preconditions are satisfied
» Add positive effects, delete negative
— Goal test = does the state satisfy the goal
— Step cost = each action costs 1

= No functions ... any graph search that is complete is a
complete planning algorithm.

= |nefficient: (1) irrelevant action problem (2) good heuristic
required for efficient search

17

&

Regression algorithm

= How to determine predecessors?

— What are the states from which applying a given action leads to
the goal?

Goal state = At(C1, B) [/At(C2, B) /... [JAY(C20, B)

Relevant action for first conjunct: Unload(C1,p,B)

Works only if pre-conditions are satisfied.

Previous state= In(C1, p) L/At(p, B) LJAY(C2, B) /... [JAY(C20, B)
Subgoal At(C1,B) should not be present in this state.

= Actions must not undo desired literals (consistent)

= Main advantage: only relevant actions are considered.
— Often much lower branching factor than forward search.

—
18

Regression algorithm

» General process for predecessor construction
— Give a goal description G
— Let A be an action that is relevant and consistent
— The predecessors is as follows:
» Any positive effects of A that appear in G are deleted.

« Each precondition literal of A is added , unless it already
appears.

= Any standard search algorithm can be added to perform
the search.

= Termination when predecessor satisfied by initial state.
— In FO case, satisfaction might require a substitution.

19

Heuristics for state -space search

* Neither progression or regression are very efficient
without a good heuristic.
— How many actions are needed to achieve the goal?
— Exact solution is NP hard, find a good estimate

» Approaches to find admissible heuristics: Find optimal
solution to relaxed problems
— Heuristic: Remove all preconditions from actions
— Heuristic: Ignore Delete-List

— Use the subgoal independence assumption:

The cost of solving a conjunction of subgoals is approximated by
the sum of the costs of solving the subproblems independently.

—
20

Partial-order planning

= Progression and regression planning are totally ordered
plan search forms.
— They cannot take advantage of problem decomposition.

» Decisions must be made on how to sequence actions on all
the subproblems

» |east commitment strategy:
— Delay choice during search

21

Shoe example

22

Goal(RightShoeOn [LeftShoeOn)
Init()

Action(RightShoe, PRECOND: RightSockOn
EFFECT: RightShoeOn)

Action(RightSock, PRECOND: <none>
EFFECT: RightSockOn)

Action(LeftShoe, PRECOND: LeftSockOn
EFFECT: LeftShoeOn)

Action(LeftSock, PRECOND: <none>

EFFECT: LeftSockOn)

Planner: combine two action sequences (1)leftsock, leftshoe

(2)rightsock, rightshoe

&

Partial-order planning

* Any planning algorithm that can place two actions into a
plan without which comes first is a Partially Ordered Plan.

Partial Oder Plan: Total Order Plans:
Start Start Start Start Start Start Start
|

i i ' i Y 1

Right Right Laft Laft Right Left
= Rt Sock Sock Sock Beck Sock Sock

Sock Sock +_ T * * * +

Laft Laft Right Right Right Laft
Sock Sock Sock Sock Shoa Shos

LeftSockiOn RightSockOn + + * . +ﬂ * +
Lo Right Right Laft Right & Latt Right
Shaa Shaa STE 5 h:-a STE 5 Irua Sn*ck Scrk
Left Right Left Right Left Right
Shoa Shoa Shos Shoa Shas Shoa

Le#ShoeOn, RightShoaln + i * I' * *
Finigh Finish Finizh Finish Finizsh Finigh Finizh

23

Partial-order planning as a search problem

= States are (mostly unfinished) plans.
— The empty plan contains only start and finish actions.

= Each plan has 4 components:
1. A set of actions (steps of the plan)
2. A set of ordering constraints: A< B
« Cycles represent ¢Bnir: ld?cﬂ@rB
3. A set of causal links

* The plan may not be extended by adding a new action C that
conflicts with the causal link. (if the effect of C is -p and if C
could come after A and before B)

4. A set of open preconditions.
* |f precondition is not achieved by action in the plan.

24

Partial-order planning as a search problem

= A plan is consistent iff there are no cycles in the ordering
constraints and no conflicts with the causal links.

= A consistent plan with no open preconditions is a solution.

= A partial order plan is executed by repeatedly choosing
any of the possible next actions.
— This flexibility is a benefit in non-cooperative environments.

—
25

Solving Partial-order planning

Assume propositional planning problems:

* The initial plan contains Start and Finish, the ordering
constraint Start < Finish, no causal links, all the
preconditions in Finish are open.

= Successor function :
— picks one open precondition p on an action B and

— generates a successor plan for every possible consistent
way of choosing action A that achieves p.

= Test goal

26

Enforcing consistency

When generating successor plan:

= The causal link A--p->B and the ordering constraing A <
B is added to the plan.

— If Ais new also add start < A and A < B to the plan

» Resolve conflicts between new causal link and all existing
actions

» Resolve conflicts between action A (if new) and all
existing causal links.

27

Process summary

= Operators on partial plans
— Add link from existing plan to open precondition.
— Add a step to fulfill an open condition.
— Order one step w.r.t another to remove possible conflicts

= Gradually move from incomplete/vague plans to
complete/correct plans

= Backtrack if an open condition is unachievable or if a
conflict is unresolvable.

28

Example: Spare tire problem

Init(At(Flat, Axle) [JAt(Spare,trunk))
Goal(At(Spare,Axle))
Action(Remove(Spare, Trunk)

PRECOND: At(Spare, Trunk)

EFFECT: -At(Spare, Trunk) [/At(Spare,Ground))
Action(Remove(Flat,Axle)

PRECOND: At(Flat,Axle)

EFFECT: -At(Flat,Axle) [J/At(Flat,Ground))
Action(PutOn(Spare,Axle)

PRECOND: At(Spare,Groundp) [AAt(Flat,Axle)

EFFECT: At(Spare,Axle) [/-Ar(Spare,Ground))
Action(LeaveOvernight

PRECOND:

EFFECT: - At(Spare,Ground) [/~ At(Spare,Axle) [/~ At(Spare,trunk)
[/~ At(Flat,Ground) /- At(Flat,Axle))

—
29

Solving the problem

AN Spare Trurk) Flernc.-m[EpETa.Trunll-;;l—\

Arfopare Trunk]
ArfFia, Al)

AnfSozre. Ground)
ARz Axie)

PutOin| Spare Axle) == Af3nee Ade)] Finish

» [ntial plan: Start with EFFECTS and Finish with
PRECOND.

30 -
&

31

Solving the problem

.4r|'m=.'."n.rj-:;|ﬁ?m:-w [&-_EETrunk,‘l—\

—

Ii.ﬂ Trumk, —
o rfEp=re Trunkl ArfSoare. Grou J]_I:'UTCJH[EPETEA“EJ i Al Spizre Al) \F|n|5h

Al A=) ARz Axie) /

= [Intial plan: Start with EFFECTS and Finish with PRECOND.
* Pick an open precondition: At(Spare, Axle)

= Only PutOn(Spare, Axle) is applicable
= Add causal link: PutOn(Spare Axle) O ™Y - Finish

» Add constraint : PutOn(Spare, Axle) < Finish

Ei

Solving the problem

.4r|'%:Ter®E [@Eram

Arfopar e Trumk —
s e A e Bnl Spare Axle) At Sore Adel| Finish
A Flar A=) = TR Feiam il e

» Pick an open precondition: At(Spare, Ground)

Only Remove(Spare, Trunk) is applicable
Add causal link: Remove(Spare, Trunk) O f199 Y - PutOn(Spare, Axle)

Add constraint : Remove(Spare, Trunk) < PutOn(Spare,Axle)

32 @

Solving the problem

.4r|'?'."m:l-:,ll Flern-:-'-.e[E]:-_Er-B.TrunHl—\

4 Tk i —
s i e PutCNTSRare Axle) b= AfSnare Adel] Finish |

AN AL A=)

ra

Az Axl=]
Az Groumd]

| LeaneiThie g ht_Ijlﬂg re,_-‘l.;-:le_,l
—lﬂq% i

A FLar, Anch=)

* Pick an open precondition: At(Spare, Ground)
= LeaveOverNight is applicable
= conflict: Remove(Spare, Trunk) O 1T . PutOn(Spare, Axle)

= Toresolve, add constraint : LeaveOverNight < Remove(Spare,
Trunk)

33

Solving the problem

.4r|'5:-:.-.-.-i.-.'."r|.ul-:,|| Flern-:-'-.-E[E]:-_Er-B.Trunm\
Arfepare, Trunk i —
[Start e Tren e PutCTSRars Axle) |—""q“'5:“1"’"““"’5'

A FLar, Anch=) AN AL A=)

ra

I=.|.zr.-1;-:le_:l
F.L:r GroLmas]

|_I_B.Er-.rECh.rerm;| ht_I—lﬂﬁ%reﬂxleﬂle

—1.AY

* Pick an open precondition: At(Spare, Ground)

= LeaveOverNight is applicable
= conflict: Remove(Spare, Trunk) O 19T - PutOn(Spare, Axle)

= Toresolve, add constraint : LeaveOverNight < Remove(Spare,
Trunk)

= Add causal link:
LeaveOverNight 0 THFFSHY . PutOn(Spare Axle)

Ei

Solving the problem

.4r|'5:-:.-.-.-i.-.'."r|.ul-:,|| ﬁ@-m-:-m[ﬁp_ﬂarﬁ.Trunm—\
A , Trumk —
|75tart rie e Trunk) AnfSoare, Groung), _.-| L1on| Spare Axlke) I_-___,qrr":ugrer.q_;.;le_:l

A FLar, Anch=) AN AL A=)

ra

AN Bz Al =]
Az Groumd]

—1A
|_I_B.Er-.rECh.rerm;| mjﬁﬂﬁ%:ﬂ?w-ll

145 re=, Tk

* Pick an open precondition: At(Spare, Trunk)
= Only Start is applicable
= Add causal link: Sart O ¥ . Remove(Fpare, Trunk)

= Conflict: of causal link with effect At(Spare, Trunk) in
LeaveOverNight

— No re-ordering solution possible.
» backtrack

35 @

Solving the problem

.4r|'me.'."r|.d-:,llﬁ?;:-m [Sp_Era.Trunk,'l—\

Arfopare Trumnk —
s i A Sl Sppare Axle) b AffSore Adel| Finish
A L, A=) AR A e e e

"3

= Remove LeaveOverNight, Remove(Spare, Trunk) and
causal links
= Repeat step with Remove(Spare, Trunk)

= Add also Remove(Flat,Axle) and finish

ﬁrn':.l.:.-qx-'e.ll Remowel Flat, Axle)

36 @

Some detalls ...

* What happens when a first-order representation that
Includes variables is used?

— Complicates the process of detecting and resolving conflicts.
— Can be resolved by introducing inequality constraints.

= CSP’s most-constrained-variable constraint can be used
for planning algorithms to select a PRECOND.

37

Planning graphs

» Used to achieve better heuristic estimates.
— A solution can also directly extracted using GRAPHPLAN.

»= Consists of a sequence of levels that correspond to time
steps in the plan.
— Level O is the initial state.
— Each level consists of a set of literals and a set of actions.

 Literals = all those that could be true at that time step,
depending upon the actions executed at the preceding time
step.

» Actions = all those actions that could have their preconditions
satisfied at that time step, depending on which of the literals
actually hold.

38

Planning graphs

= “Could”?
— Records only a restricted subset of possible negative interactions

among actions.

= They work only for propositional problems.

= Example:
Init(Have(Cake))
Goal(Have(Cake) [Eaten(Cake))
Action(Eat(Cake), PRECOND: Have(Cake)
EFFECT: -Have(Cake) I Eaten(Cake))
Action(Bake(Cake), PRECOND: - Have(Cake)

EFFECT: Have(Cake))

39

Cake example

Sy Ag S; A Sz
/ Bake(Cake)
Have({Cake) 44 Have{Cake) |-+4 Hawve(Caks)
\ — Have(Cake) >< = — Have(Cake)
Eat(Cake) |< Eat(Cake))<
Eaten(Cake) — Eaten{Caks)
— Eaten{Cake) H — Eaten{Cake) = — Eaten{Cake)

= Start at level SO and determine action level AO and next level S1.

— A0 >> all actions whose preconditions are satisfied in the
previous level.

— Connect precond and effect of actions SO --> S1

— Inaction is represented by persistence actions.
= Level AO contains the actions that could occur

— Conflicts between actions are represented by mutex links

40

Cake example

Sy Ag S; A Sz
/ Bake(Cake) |\
Have{Cake) 1 Hawve(Caks)

Hawve(Cake) =
— Have(Cake) >< = — Have(Cake)
Eat(Cake) |< \ Eat(Cake) <
|
=

Eaten(Cake) — Eaten{Caks)
— Eaten{Cake) = — Eaten{Cake)

— Eaten{Cake)

= Level S1 contains all literals that could result from picking any
subset of actions in AO

— Conflicts between literals that can not occur together are
represented by mutex links.

— S1 defines multiple states and the mutex links are the
constraints that define this set of states.

= Continue until two consecutive levels are identical: leveled off
— Or contain the same amount of literals (explanation follows later)

41

Cake example

Sy Ao 5,

=

1 Sz

/ Bake(Cake) |\
Have(Cake)

Have(Cake) Hawve({Cake) >< |-+
— Have{Cake) = — Have(Cake)
Eat{Cake) I< \ Eat(Cake) <

Eaten(Cake) Eaten{Cake)
— Eaten{Cakse) — Eaten{Cake) — Eaten{Cake)

[

= A mutex relation holds between two actions when:
— Inconsistent effects: one action negates the effect of another.

— Interference: one of the effects of one action is the negation of a
precondition of the other.

— Competing needs: one of the preconditions of one action is
mutually exclusive with the precondition of the other.

= A mutex relation holds between two literals when (inconsistent
support):
— If one is the negation of the other OR

42 — if each possible action pair that could achieve the literals is D
mutex.

PG and heuristic estimation

PGs provide information about the problem

= A literal that does not appear in the final level of the graph
cannot be achieved by any plan.

— Useful for backward search (cost = inf).

» Level of appearance can be used as cost estimate of achieving
any goal literals = level cost.

= Small problem: several actions can occur

— Restrict to one action using serial PG (add mutex links
between every pair of actions, except persistence actions).

= Max-level, sum-level and set-level heuristics.
PG is a relaxed problem.

43

The GRAPHPLAN Algorithm

= How to extract a solution directly from the PG

function GRAPHPLAN(problem) return solution or failure
graph — INITIAL-PLANNING-GRAPH(problem)
goals — GOALS[problem]
loop do
If goals all non-mutex in last level of graph then do

solution —« EXTRACT-SOLUTION(graph, goals,
LENGTH(graph))

If solution # failure then return solution
else if NO-SOLUTION-POSSIBLE(graph) then return failure
graph — EXPAND-GRAPH(graph, problem)

44

&

