
Vorlesung

Grundlagen der
Künstlichen Intelligenz

Reinhard Lafrenz / Prof. A. Knoll

Robotics and Embedded Systems
Department of Informatics – I6
Technische Universität München

www6.in.tum.de
lafrenz@in.tum.de
089-289-18136
Room 03.07.055

Wintersemester 2012/13 17.12.2012

Grundlagen der Künstlichen Intelligenz – Techniques in Artificial Intelligence

R. Lafrenz Wintersemester 2012/13 17.12.2012

Chapter 10 (3rd ed.)

Classical Planning

Planning

� The Planning problem
� Planning with State-space search
� Partial-order planning
� Planning graphs
� Planning with propositional logic
� Analysis of planning approaches

3

What is Planning

� Generate sequences of actions to perform tasks and
achieve objectives.
– States, actions and goals

� Search for solution over abstract space of plans.

� Assists humans in practical applications
– design and manufacturing
– games
– space exploration
– Rescue operation (see also RoboCup rescue league)

4

Difficulty of real world problems

� Assume a problem-solving agent
using some search method …

– Which actions are relevant?
• Exhaustive search vs. backward search

– What is a good heuristic functions?
• Good estimate of the cost of the state?
• Problem-dependent vs. -independent

– How to decompose the problem?
• Most real-world problems are nearly decomposable.

5

Planning language

� What is a good language?
– Expressive enough to describe a wide variety of problems.
– Restrictive enough to allow efficient algorithms to operate on it.
– Planning algorithm should be able to take advantage of the logical

structure of the problem.

� STRIPS, ADL, and PDDL

General language features

� Representation of states
– Decompose the world in logical conditions and represent a state

as a conjunction of positive literals.
• Propositional literals: Poor ∧ Unknown
• First Order-literals (grounded and function-free): At(Plane1,

Melbourne) ∧ At(Plane2, Sydney)
– Closed world assumption

� Representation of goals
– Partially specified state and represented as a conjunction of

positive ground literals
– A goal is satisfied if the state contains all literals in goal.

7

General language features

� Representations of actions
– Action = PRECOND + EFFECT

Action(Fly(p,from, to),
PRECOND: At(p,from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)

EFFECT: ¬At(p,from) ∧ At(p,to))

= action schema (p, from, to need to be instantiated)

• Action name and parameter list
• Precondition (conj. of function-free literals)
• Effect (conj. of function-free literals)

� Add-list vs. delete-list in Effect

8

Language semantics?

How do actions affect states?

� An action is applicable in any state that satisfies the
precondition.

� For FO action schema applicability involves a substitution
θ for the variables in the PRECOND.
At(P1,JFK) ∧ At(P2,SFO) ∧ Plane(P1) ∧ Plane(P2) ∧

Airport(JFK) ∧ Airport(SFO)
Satisfies : At(p,from) ∧ Plane(p) ∧ Airport(from) ∧

Airport(to)
With θ ={p/P1,from/JFK,to/SFO}
Thus the action is applicable.

9

Language semantics?

� The result of executing action a in state s is the state s’
– s’ is same as s except

• Any positive literal P in the effect of a is added to s’
• Any negative literal ¬P is removed from s’

At(P1,SFO) ∧ At(P2,SFO) ∧ Plane(P1) ∧ Plane(P2) ∧
Airport(JFK) ∧ Airport(SFO)

– STRIPS assumption: (avoids representational frame
problem)

every literal NOT in the effect remains unchanged

10

Expressiveness and extensions

� STRIPS is simplified
– Important limit: function-free literals
– Allows for propositional representation
– Closed-world assumption

� Function symbols lead to infinitely many states and
actions

� Open-world extension:Action Description language (ADL)
Action(Fly(p:Plane, from: Airport, to: Airport),

PRECOND: At(p,from) ∧ (from ≠ to)
EFFECT: ¬At(p,from) ∧ At(p,to))

Standardization : Planning domain definition language (PDDL)
– Delevoped for 1998/2000 International Planning Competition (IPC)

11

Example: air cargo transport

Init(At(C1, SFO) ∧ At(C2,JFK) ∧ At(P1,SFO) ∧ At(P2,JFK) ∧ Cargo(C1) ∧
Cargo(C2) ∧ Plane(P1) ∧ Plane(P2) ∧ Airport(JFK) ∧ Airport(SFO))

Goal(At(C1,JFK) ∧ At(C2,SFO))
Action(Load(c,p,a)

PRECOND: At(c,a) ∧At(p,a) ∧Cargo(c) ∧Plane(p) ∧Airport(a)
EFFECT: ¬At(c,a) ∧In(c,p))

Action(Unload(c,p,a)
PRECOND: In(c,p) ∧At(p,a) ∧Cargo(c) ∧Plane(p) ∧Airport(a)
EFFECT: At(c,a) ∧ ¬In(c,p))

Action(Fly(p,from,to)
PRECOND: At(p,from) ∧Plane(p) ∧Airport(from) ∧Airport(to)
EFFECT: ¬ At(p,from) ∧ At(p,to))

[Load(C1,P1,SFO), Fly(P1,SFO,JFK), Load(C2,P2,JFK),
Fly(P2,JFK,SFO)]

12

Example: Spare tire problem

Init(At(Flat, Axle) ∧ At(Spare,trunk))
Goal(At(Spare,Axle))
Action(Remove(Spare,Trunk)

PRECOND: At(Spare,Trunk)
EFFECT: ¬At(Spare,Trunk) ∧ At(Spare,Ground))

Action(Remove(Flat,Axle)
PRECOND: At(Flat,Axle)
EFFECT: ¬At(Flat,Axle) ∧ At(Flat,Ground))

Action(PutOn(Spare,Axle)
PRECOND: At(Spare,Groundp) ∧¬At(Flat,Axle)
EFFECT: At(Spare,Axle) ∧ ¬At(Spare,Ground))

Action(LeaveOvernight(), PRECOND: <none>
EFFECT: ¬ At(Spare,Ground) ∧ ¬ At(Spare,Axle) ∧ ¬ At(Spare,trunk)
∧ ¬ At(Flat,Ground) ∧ ¬ At(Flat,Axle))

This example goes beyond STRIPS: negative literal in pre-condition13

Example: Blocks world

Init(On(A, Table) ∧ On(B,Table) ∧ On(C,A) ∧ Block(A) ∧ Block(B) ∧
Block(C) ∧ Clear(B) ∧ Clear(C))

Goal(On(A,B) ∧ On(B,C))
Action(Move(b,x,y)

PRECOND: On(b,x) ∧ Clear(b) ∧ Clear(y) ∧ Block(b) ∧ (b≠ x) ∧ (b≠ y)
∧ (x≠ y)
EFFECT: On(b,y) ∧ Clear(x) ∧ ¬ On(b,x) ∧ ¬ Clear(y))

Action(MoveToTable(b,x)
PRECOND: On(b,x) ∧ Clear(b) ∧ Block(b) ∧ (b≠ x)
EFFECT: On(b,Table) ∧ Clear(x) ∧ ¬ On(b,x))

14

Planning with state -space search

� Both forward and backward search possible

� Progression planners
– forward state-space search
– Consider the effect of all possible actions in a given state

� Regression planners
– backward state-space search
– To achieve a goal, what must have been true in the previous state.

15

Progression and regression

16

Progression algorithm

� Formulation as state-space search problem:
– Initial state = initial state of the planning problem

• Literals not appearing are false
– Actions = those whose preconditions are satisfied

• Add positive effects, delete negative
– Goal test = does the state satisfy the goal
– Step cost = each action costs 1

� No functions … any graph search that is complete is a
complete planning algorithm.

� Inefficient: (1) irrelevant action problem (2) good heuristic
required for efficient search

17

Regression algorithm

� How to determine predecessors?
– What are the states from which applying a given action leads to

the goal?
Goal state = At(C1, B) ∧ At(C2, B) ∧ … ∧ At(C20, B)
Relevant action for first conjunct: Unload(C1,p,B)
Works only if pre-conditions are satisfied.
Previous state= In(C1, p) ∧ At(p, B) ∧ At(C2, B) ∧ … ∧ At(C20, B)
Subgoal At(C1,B) should not be present in this state.

� Actions must not undo desired literals (consistent)

� Main advantage: only relevant actions are considered.
– Often much lower branching factor than forward search.

18

Regression algorithm

� General process for predecessor construction
– Give a goal description G
– Let A be an action that is relevant and consistent
– The predecessors is as follows:

• Any positive effects of A that appear in G are deleted.
• Each precondition literal of A is added , unless it already

appears.

� Any standard search algorithm can be added to perform
the search.

� Termination when predecessor satisfied by initial state.
– In FO case, satisfaction might require a substitution.

19

Heuristics for state -space search

� Neither progression or regression are very efficient
without a good heuristic.
– How many actions are needed to achieve the goal?
– Exact solution is NP hard, find a good estimate

� Approaches to find admissible heuristics: Find optimal
solution to relaxed problems
– Heuristic: Remove all preconditions from actions
– Heuristic: Ignore Delete-List

– Use the subgoal independence assumption:
The cost of solving a conjunction of subgoals is approximated by

the sum of the costs of solving the subproblems independently.

20

Partial-order planning

� Progression and regression planning are totally ordered
plan search forms.
– They cannot take advantage of problem decomposition.

• Decisions must be made on how to sequence actions on all
the subproblems

� Least commitment strategy:
– Delay choice during search

21

Shoe example

Goal(RightShoeOn ∧ LeftShoeOn)
Init()
Action(RightShoe, PRECOND: RightSockOn

EFFECT: RightShoeOn)
Action(RightSock, PRECOND: <none>

EFFECT: RightSockOn)
Action(LeftShoe, PRECOND: LeftSockOn

EFFECT: LeftShoeOn)
Action(LeftSock, PRECOND: <none>

EFFECT: LeftSockOn)

Planner: combine two action sequences (1)leftsock, leftshoe
(2)rightsock, rightshoe

22

Partial-order planning

� Any planning algorithm that can place two actions into a
plan without which comes first is a Partially Ordered Plan.

23

Partial-order planning as a search problem

� States are (mostly unfinished) plans.
– The empty plan contains only start and finish actions.

� Each plan has 4 components:
1. A set of actions (steps of the plan)
2. A set of ordering constraints: A < B

• Cycles represent contradictions.
3. A set of causal links

• The plan may not be extended by adding a new action C that
conflicts with the causal link. (if the effect of C is ¬p and if C
could come after A and before B)

4. A set of open preconditions.
• If precondition is not achieved by action in the plan.

A p →  B

24

Partial-order planning as a search problem

� A plan is consistent iff there are no cycles in the ordering
constraints and no conflicts with the causal links.

� A consistent plan with no open preconditions is a solution.

� A partial order plan is executed by repeatedly choosing
any of the possible next actions.
– This flexibility is a benefit in non-cooperative environments.

25

Solving Partial-order planning

Assume propositional planning problems:

� The initial plan contains Start and Finish, the ordering
constraint Start < Finish, no causal links, all the
preconditions in Finish are open.

� Successor function :
– picks one open precondition p on an action B and
– generates a successor plan for every possible consistent

way of choosing action A that achieves p.

� Test goal

26

Enforcing consistency

When generating successor plan:

� The causal link A--p->B and the ordering constraing A <
B is added to the plan.
– If A is new also add start < A and A < B to the plan

� Resolve conflicts between new causal link and all existing
actions

� Resolve conflicts between action A (if new) and all
existing causal links.

27

Process summary

� Operators on partial plans
– Add link from existing plan to open precondition.
– Add a step to fulfill an open condition.
– Order one step w.r.t another to remove possible conflicts

� Gradually move from incomplete/vague plans to
complete/correct plans

� Backtrack if an open condition is unachievable or if a
conflict is unresolvable.

28

Example: Spare tire problem

Init(At(Flat, Axle) ∧ At(Spare,trunk))
Goal(At(Spare,Axle))
Action(Remove(Spare,Trunk)

PRECOND: At(Spare,Trunk)
EFFECT: ¬At(Spare,Trunk) ∧ At(Spare,Ground))

Action(Remove(Flat,Axle)
PRECOND: At(Flat,Axle)
EFFECT: ¬At(Flat,Axle) ∧ At(Flat,Ground))

Action(PutOn(Spare,Axle)
PRECOND: At(Spare,Groundp) ∧¬At(Flat,Axle)
EFFECT: At(Spare,Axle) ∧ ¬Ar(Spare,Ground))

Action(LeaveOvernight
PRECOND:
EFFECT: ¬ At(Spare,Ground) ∧ ¬ At(Spare,Axle) ∧ ¬ At(Spare,trunk)
∧ ¬ At(Flat,Ground) ∧ ¬ At(Flat,Axle))

29

Solving the problem

� Intial plan: Start with EFFECTS and Finish with
PRECOND.

30

Solving the problem

� Intial plan: Start with EFFECTS and Finish with PRECOND.
� Pick an open precondition: At(Spare, Axle)
� Only PutOn(Spare, Axle) is applicable
� Add causal link:
� Add constraint : PutOn(Spare, Axle) < Finish

PutOn(Spare, Axle) At(Spare,Axle) →     Finish

31

Solving the problem

� Pick an open precondition: At(Spare, Ground)
� Only Remove(Spare, Trunk) is applicable
� Add causal link:
� Add constraint : Remove(Spare, Trunk) < PutOn(Spare,Axle)

),(),(),(AxleSparePutOnTrunkSpareRemove GroundSpareAt  →

32

),(),(),(AxleSparePutOnTrunkSpareRemove GroundSpareAt  →

Solving the problem

� Pick an open precondition: At(Spare, Ground)
� LeaveOverNight is applicable
� conflict:
� To resolve, add constraint : LeaveOverNight < Remove(Spare,

Trunk)

33

),(),(),(AxleSparePutOnTrunkSpareRemove GroundSpareAt  →

Solving the problem

� Pick an open precondition: At(Spare, Ground)
� LeaveOverNight is applicable
� conflict:
� To resolve, add constraint : LeaveOverNight < Remove(Spare,

Trunk)
� Add causal link:

LeaveOverNight ¬At(Spare,Ground) →      PutOn(Spare,Axle)

Solving the problem

� Pick an open precondition: At(Spare, Trunk)
� Only Start is applicable
� Add causal link:
� Conflict: of causal link with effect At(Spare,Trunk) in

LeaveOverNight
– No re-ordering solution possible.

� backtrack

),(),(TrunkSpareRemoveStart TrunkSpareAt  →

35

Solving the problem

� Remove LeaveOverNight, Remove(Spare, Trunk) and
causal links

� Repeat step with Remove(Spare,Trunk)
� Add also Remove(Flat,Axle) and finish

36

Some details …

� What happens when a first-order representation that
includes variables is used?
– Complicates the process of detecting and resolving conflicts.
– Can be resolved by introducing inequality constraints.

� CSP’s most-constrained-variable constraint can be used
for planning algorithms to select a PRECOND.

37

Planning graphs

� Used to achieve better heuristic estimates.
– A solution can also directly extracted using GRAPHPLAN.

� Consists of a sequence of levels that correspond to time
steps in the plan.
– Level 0 is the initial state.
– Each level consists of a set of literals and a set of actions.

• Literals = all those that could be true at that time step,
depending upon the actions executed at the preceding time
step.

• Actions = all those actions that could have their preconditions
satisfied at that time step, depending on which of the literals
actually hold.

38

Planning graphs

� “Could”?
– Records only a restricted subset of possible negative interactions

among actions.

� They work only for propositional problems.

� Example:
Init(Have(Cake))
Goal(Have(Cake) ∧ Eaten(Cake))
Action(Eat(Cake), PRECOND: Have(Cake)

EFFECT: ¬Have(Cake) ∧ Eaten(Cake))
Action(Bake(Cake), PRECOND: ¬ Have(Cake)

EFFECT: Have(Cake))

39

Cake example

� Start at level S0 and determine action level A0 and next level S1.
– A0 >> all actions whose preconditions are satisfied in the

previous level.
– Connect precond and effect of actions S0 --> S1
– Inaction is represented by persistence actions.

� Level A0 contains the actions that could occur
– Conflicts between actions are represented by mutex links

40

Cake example

� Level S1 contains all literals that could result from picking any
subset of actions in A0
– Conflicts between literals that can not occur together are

represented by mutex links.
– S1 defines multiple states and the mutex links are the

constraints that define this set of states.
� Continue until two consecutive levels are identical: leveled off

– Or contain the same amount of literals (explanation follows later)

41

Cake example

� A mutex relation holds between two actions when:
– Inconsistent effects: one action negates the effect of another.
– Interference: one of the effects of one action is the negation of a

precondition of the other.
– Competing needs: one of the preconditions of one action is

mutually exclusive with the precondition of the other.
� A mutex relation holds between two literals when (inconsistent

support):
– If one is the negation of the other OR
– if each possible action pair that could achieve the literals is

mutex.
42

PG and heuristic estimation

PGs provide information about the problem

� A literal that does not appear in the final level of the graph
cannot be achieved by any plan.
– Useful for backward search (cost = inf).

� Level of appearance can be used as cost estimate of achieving
any goal literals = level cost.

� Small problem: several actions can occur
– Restrict to one action using serial PG (add mutex links

between every pair of actions, except persistence actions).

� Max-level, sum-level and set-level heuristics.
PG is a relaxed problem.

43

The GRAPHPLAN Algorithm

� How to extract a solution directly from the PG

function GRAPHPLAN(problem) return solution or failure
graph ← INITIAL-PLANNING-GRAPH(problem)
goals ← GOALS[problem]
loop do

if goals all non-mutex in last level of graph then do
solution ← EXTRACT-SOLUTION(graph, goals,

LENGTH(graph))
if solution ≠ failure then return solution
else if NO-SOLUTION-POSSIBLE(graph) then return failure

graph ← EXPAND-GRAPH(graph, problem)

44

