
Machine Learning I
Week 14: Sequence Learning

Introduction

Alex Graves

Technische Universität München

29. January 2009

Alex Graves ML I – 15./16.01.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Literature

Pattern Recognition and Machine Learning
Chapter 13: Sequential Data
Christopher M. Bishop

Machine Learning for Sequential Data: A Review
Thomas G. Dietterich, review paper

Markovian Models for Sequential Data
Yoshua Bengio, review paper

Supervised Sequence Labelling with Recurrent Neural Networks
Alex Graves, Ph.D. thesis

On Intelligence
Jeff Hawkins

Alex Graves ML I – 15./16.01.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

What is Sequence Learning?

Most machine learning algorithms are designed for independent,
identically distributed (i.i.d.) data

But many interesting data types are not i.i.d.

In particular the successive points in sequential data are strongly
correlated

Sequence learning is the study of machine learning algorithms
designed for sequential data. These algorithms should

1 not assume data points to be independent
2 be able to deal with sequential distortions
3 make use of context information

Alex Graves ML I – 15./16.01.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

What is Sequence Learning Used for?

Time-Series Prediction
Tasks where the history of a time series is used to predict the next point.
Applications include stock market prediction, weather forecasting, object
tracking, disaster prediction. . .

Sequence Labelling

Tasks where a sequence of labels is applied to a sequence of data.
Applications include speech recognition, gesture recognition, protein
secondary structure prediction, handwriting recognition. . .

For now we will concentrate on sequence labelling, but most
algorithms are applicable to both

Alex Graves ML I – 15./16.01.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Definition of Sequence Labelling

Sequence labelling is a supervised learning task where pairs (x, t) of
input sequences and target label sequences are used for training

The inputs x come from the set X = (Rm)∗ of sequences of
m-dimensional real-valued vectors, for some fixed m

The targets t come from the set T = L∗ of strings over the alphabet
L of labels used for the task

In each pair (x, t) the target sequence is at most as long as the input
sequence: |t| ≤ |x|. They are not necessarily the same length

Definition (Sequence Labelling)

Given a training set A and a test set B, both drawn independently from a
fixed distribution DX×T , the goal is to use A to train an algorithm
h : X 7→ T to label B in a way that minimises some task-specific error
measure

Alex Graves ML I – 15./16.01.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Comments

We assume that the distribution DX×T that generates the data is
stationary — i.e. the probability of some (x, t) ∈ DX×T remains
constant over time (strictly speaking this does not apply to e.g.
financial and weather data, because markets and climates change
over time)

Therefore the sequences (but not the individual data points) are
i.i.d. This means that much of the reasoning underlying standard
machine learning algorithms also applies here, only at the level of
sequences and not points

Alex Graves ML I – 15./16.01.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Motivating Example

Online handwriting recognition is the recognition of words and
letters from sequences of pen positions

The inputs are the x and y coordinates of the pen, so m is 2

The label alphabet L is just the usual Latin alphabet, possibly with
extra labels for punctuation marks etc.

The error measure is the edit distance between the output of the
classifier and the target sequence

input → itput → utput → output

Alex Graves ML I – 15./16.01.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Online Handwriting with Non-Sequential Algorithms

If we assume the data-points are independent we should classify
each co-ordinate separately

Clearly impossible! Each point is only meaningful in the context of
its surroundings

Obvious solution is to classify an input window around each point

This is the usual approach when standard ML algorithms (SVMs,
MLPs etc) are applied to sequential data

Alex Graves ML I – 15./16.01.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Online Handwriting with Non-Sequential Algorithms

If we assume the data-points are independent we should classify
each co-ordinate separately

Clearly impossible! Each point is only meaningful in the context of
its surroundings

Obvious solution is to classify an input window around each point

This is the usual approach when standard ML algorithms (SVMs,
MLPs etc) are applied to sequential data

Alex Graves ML I – 15./16.01.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Context and Input Windows

One problem is that it is difficult to determine in advance how big
the window should be

Too small gives poor performance, too big is computationally
unfeasible (too many parameters)

Have to hand-tune for the dataset, depending on writing style, input
resolution etc.

Alex Graves ML I – 15./16.01.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Context and Input Windows

One problem is that it is difficult to determine in advance how big
the window should be

Too small gives poor performance, too big is computationally
unfeasible (too many parameters)

Have to hand-tune for the dataset, depending on writing style, input
resolution etc.

Alex Graves ML I – 15./16.01.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Sequential Distortion and Input Windows

A deeper problem is that the same patterns often appear stretched
or compressed along the time axis in different sequences

In handwriting this is caused by variations in writing style

In speech it comes from variations in speaking rate, prosody etc.

Input windows are not robust to this because they ignore the
relationship between the data-points. Even a 1 pixel shift looks like
a completely different image!

This means poor generalisation and lots of training data needed

Alex Graves ML I – 15./16.01.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Hidden State Architectures

A better solution is to use an architecture with an internal hidden
state that depends on both the previous state and the current data
point

The chain of hidden states acts like a ‘memory’ of the data

Can be extended to look several states back with no change to the
basic structure (but an increase in computational cost)

There are many types of hidden state architecture,
including Hidden Markov models, recurrent neural networks, linear
dynamical systems, extended Kalman filters. . .

Alex Graves ML I – 15./16.01.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Advantages of Hidden State Architectures

Context is passed along by the ‘memory’ stored in the previous
states, so the problem of fixed-size input windows are avoided

Pr(sn|xi) = Pr(sn|sn−1) Pr(sn−1|sn−2) . . .Pr(si |xi)

And typically require fewer parameters than input windows

Sequential distortions can be accommodated by slight changes to
the hidden state sequence. Similar sequences ‘look’ similar to the
algorithm.

The general principle is that the structure of the architecture
matches the structure of the data. Put another way, hidden state
architectures are biased towards sequential data.

Alex Graves ML I – 15./16.01.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Hidden Markov Models

Hidden Markov models (HMMs) are a generative hidden state
architecture where sequences of discrete hidden states are matched
to observation sequences.

Recap: generative models attempt to determine the probability of
the inputs (observations) given some class or label: Pr(x |Ck)

Fitting a mixture of Gaussians to data is a well known example of a
generative model with a hidden state

Can think of HMMs as a sequential version of a mixture model

Alex Graves ML I – 15./16.01.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Hidden Markov Models

In a simple mixture model the observations are conditioned on the
states. This is still true for HMMs, but now the states are
conditioned on the previous states as well

This creates the following joint distribution over states and
observations

Pr(x, s|θ) = Pr(s1|π)
N∏

i=2

Pr(si |si−1,A)
N∏

i=1

Pr(xi |si , φ)

where θ = {π,A, φ} are the HMM parameters and N is the sequence
length

Alex Graves ML I – 15./16.01.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

HMM Parameters

Pr(s1 = k|π) = πk are the initial probabilities of the states

Pr(si = k|si−1 = j ,A) = Ajk is the matrix of transition probabilities
between states. Note that some of its entries may be zero, since not
all transitions are necessarily allowed

Pr(xi |si , φ) are the emission probabilities of the observations given
the states. The form of Pr(xi |si , φ) depends on the task, and the
performance of HMMs depends critically on choosing a distribution
able to accurately model the data. For cases where a single Gaussian
is not flexible enough, mixtures of Gaussian and neural networks are
common choices.

Pr(xi |si , φ) =
n∏

k=1

ai
kN (xi |µi

k ,Σ
i
k)

Alex Graves ML I – 15./16.01.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Training and Using HMMs

Like most parametric models, HMMs are trained by adjusting the
parameters to maximise the log-likelihood of the training data

log Pr(A|θ) =
∑

(x,t)∈A

log
∑

s

Pr(x, s|θ)

This can be done efficiently with the Baum-Welch algorithm

Once trained, we use the HMM to label a new data sequence x by
finding the state sequence s∗ that gives the highest joint probability

s∗ = arg max
s

p(x, s|θ).

This can be done with the Viterbi algorithm

Note: HMMs can be seen as a special case of probabilistic graphical
models (Bishop chapter 8). In this context Baum-Welch and Viterbi
are special cases of the sum-product and max-sum algorithms.

Alex Graves ML I – 15./16.01.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Evaluation Problem

Given an observation sequence x and parameters θ what is the probability
Pr(x|θ)?

First need to compute Pr(s|θ). For example, with s = s1s2s3:

Pr(s|θ) = Pr(s1, s2, s3|θ)

= Pr(s1|θ)Pr(s2, s3 | s1, θ)

= Pr(s1|θ)Pr(s2 | s1, θ)Pr(s3 | s2, θ)

= π2A21A11A12

Then compute Pr(x|s, θ):

Pr(x | s, θ) = Pr(x1x2x3 | s1s2s3, θ)

= Pr(x1 | s1, θ)Pr(x2 | s2, θ)Pr(x3 | s3, θ) (1)

Alex Graves ML I – 15./16.01.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Evaluation Problem

Then use sum rule for probabilities to get

Pr(x|θ) =
∑

s

Pr(s|θ)Pr(x|s, θ) (2)

PROBLEM: number of possible state sequences = | s |N

Alex Graves ML I – 15./16.01.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Unfold the HMM

If we unfold the state transition diagram of the above example, we obtain
a lattice, or trellis, representation of the latent states. This makes it
easier to understand the following derivations.

Alex Graves ML I – 15./16.01.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

A smart solution for the Evaluation Problem

αt(i) = Pr(x1x2 . . . xt |st = i)

α1(i) = Pr(x1|s1 = i)πi

αt+1(j) =
∑

i

AijPr(xt+1|st = j)αt(i)

Therefore the probability of a given observation sequence ending in state
si can be computed as follows

Pr(x1x2 . . . xt) =
N∑

i=1

αt(i)

Pr(st = i | x1x2 . . . xt) =
αt(i)∑N
j=1 αt(j)

Alex Graves ML I – 15./16.01.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

A smart solution for the Evaluation Problem

αt(i) = Pr(x1x2 . . . xt |st = i)

α1(i) = Pr(x1|s1 = i)πi

αt+1(j) =
∑

i

AijPr(xt+1|st = j)αt(i)

Therefore the probability of a given observation sequence ending in state
si can be computed as follows

Pr(x1x2 . . . xt) =
N∑

i=1

αt(i)

Pr(st = i | x1x2 . . . xt) =
αt(i)∑N
j=1 αt(j)

Alex Graves ML I – 15./16.01.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

The Viterbi Algorithm

Given an observation sequence x, which is the state sequence s with the
highest probability?

arg max
s

Pr(s|x1x2 . . . xT)

with Bayes

= arg max
s

Pr(x1x2 . . . xT | s)Pr(s)

Pr(x1x2 . . . xT)

= arg max
s

Pr(x1x2 . . . xT | s)Pr(s)

Again: Dynamic programming to the rescue!

Alex Graves ML I – 15./16.01.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

The Viterbi Algorithm

The variable δt(i) is the maximum probability of

the existence of the state path s1s2 . . . st−1

ending in state i

and producing the output Pr(x1x2 . . . xt)

δt(i) = max
s1s2...st−1

Pr(s1s2 . . . st−1, st = i , x1x2 . . . xt)

Alex Graves ML I – 15./16.01.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

The Viterbi Algorithm

The variable δt(i) is the maximum probability of

the existence of the state path s1s2 . . . st−1

ending in state i

and producing the output Pr(x1x2 . . . xt)

δt(i) = max
s1s2...st−1

Pr(s1s2 . . . st−1, st = i , x1x2 . . . xt)

Alex Graves ML I – 15./16.01.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

The Viterbi Algorithm

So for any δt(j) we are looking for the most probable path of length t
that has as the last two states i and j .

But this is the most probable path (of length t − 1) to i followed by the
transition from i to j and the corresponding observation xt . Thus, the
most probable path to j has i∗ as its penultimate state, with

i∗ = arg max
i

δt−1(i)AijPr(xt |st = j)

Hence
δt(j) = δt−1(i∗)Ai∗jPr(xt |st = j)

Alex Graves ML I – 15./16.01.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

The Viterbi Algorithm

So for any δt(j) we are looking for the most probable path of length t
that has as the last two states i and j .

But this is the most probable path (of length t − 1) to i followed by the
transition from i to j and the corresponding observation xt . Thus, the
most probable path to j has i∗ as its penultimate state, with

i∗ = arg max
i

δt−1(i)AijPr(xt |st = j)

Hence
δt(j) = δt−1(i∗)Ai∗jPr(xt |st = j)

Alex Graves ML I – 15./16.01.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Sequence Labelling with HMMs
Could define a simple HMM with one state per label
But for most data multi-state models are needed for each label, such
as this one used for a phoneme in speech recognition

Note that only left-to-right and self transitions are allowed. This
ensures that all observation sequences generated by the label pass
through similar ‘stages’
For good performance, the states should correspond to ‘independent’
observation segments within the label
Can concatenate label models to get higher level structures, such as
words

Alex Graves ML I – 15./16.01.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

N-Gram Label Models

Using separate label models assumes that the observation sequences
generated by the labels are independent

But in practice this often isn’t true. e.g. in speech the pronunciation
of a phoneme is influenced by those around it (co-articulation)

Usual solution is to use n-gram label models (e.g. triphones), with
the label generating the observations in the centre

Improves performance, but also increases the number of models
(L→ Ln for L labels) and amount of training data required

Can reduce the parameter explosion by tying similar states in
different n-grams

Alex Graves ML I – 15./16.01.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Duration Modelling

The only way an HMM can stay in the same state is by repeatedly
making self-transitions

This means the probability of spending T timesteps in some state k
decays expontentially with T

Pr(T) = (Akk)T (1− Akk) ∝ exp(−T ln Akk)

However this is usually an unrealistic model of state duration

One solution is to remove the self-transitions and model the duration
probability p(T |k) explicitly

When state k is entered, a value for T is first drawn from p(T |k)
and T successive observations are then drawn from p(x |k)

Alex Graves ML I – 15./16.01.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Variant HMM structures

Many variant architectures can be created by modifying the basic HMM
dependency structure. Three of them are described below

Input-output HMMs

Turn HMMs into a discriminative
model by reversing the dependency
between the states and the
observations and introducing extra
output variables

Alex Graves ML I – 15./16.01.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Variant HMM structures

Autoregressive HMMs

Add adding explicit dependencies
between the observations to improve
long-range context modelling

Factorial HMMs

Add extra chains of hidden states,
thereby moving from a single-valued
to a distributed architecture and
increasing the memory capacity of
HMMs: O(log N)→ O(N)

Alex Graves ML I – 15./16.01.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

