Continuous Reinforcement Learning Reminder Motivation Value-based methods

Machine Learning |
Continuous Reinforcement Learning

Thomas RiickstieB

Technische Universitdt Miinchen

January 7/8, 2010

Thomas RiickstieB ML I - 07.01.2010

Policy Gradient Methods

@

nnnnnnnnnnnnnnnnnnnnnnnnn

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

RL Problem Statement (reminder)

state sy, 4
ENVIRONMENT
reward ry, 4
(new step)
"t
4 AGENT

action a

Definition (agent, environment, state, action, reward)

An agent interacts with an environment at discrete time steps

t=0,1,2,... At each time step t, the agent receives state s; € S from

the environment. It then chooses to execute action a; € A(s;) where
A(st) is the set of available actions in s;. At the next time step, it
receives the immediate reward r;; € R and finds itself in state s;41.

Thomas RiickstieB ML I - 07.01.2010

CogBotLab

Machine Learming 3 Cogie Robotics

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Different Types of RL (reminder)

state state action state action

! \ / N\

s Q PL, RE

- = e

action value next state reward
Direct RL Value-based RL Model-based RL
data is cheap data is expensive
computation is limited <):(> computation doesn't matter
e.g. embedded systems e.g. medical trials

@) ogBotLab
achine Leonig 3 Cogntve Fotots
Thomas RiickstieB ML I - 07.01.2010

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

General Assumptions (reminder)

For now, we assume the following:
@ Both states and actions are discrete and finite.
@ Our problem fulfills the Markov property (MDP)

o the current state information summarizes all relevant information
from the past (e.g. chess, cannonball)

o the next state is only determined by the last state and the last
action, not the entire history

o the environment has a stationary P2, and RZ,.

@ ogBotLab
achine Leonig 3 Cogntve Fotots
Thomas RiickstieB ML I - 07.01.2010

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Continuous Reinforcement Learning

Why continuous reinforcement learning?
@ Problems with too many states/actions
@ Generalization for similar states/actions

@ Continuous domains, like robotics, computer vision, ...

Let's loosen the restrictive assumptions from last week:

@ Both states and actions are discrete and finite.

What changes when we allow s,a € R" ?
@ No transition graphs anymore
e No Q-table anymore
e Q-function? Q(s,a) — R is possible, but max, Q(s, a) difficult

@CogBotLab
achine Leoning 3 Cogntve Fotots
Thomas RiickstieB ML I - 07.01.2010

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Continuous RL — Overview

@ Value-based Reinforcement Learning

o Continuous states, discrete actions — NFQ
o Continuous states and actions — NFQCA

@ Direct Reinforcement Learning (Policy Gradients)
e Finite Difference methods
o Likelihood Ratio methods
e REINFORCE
o 1D controller example
o Application to Neural Networks

@CogBotLab
achine Leonig 3 Cogntve Fotots
Thomas RiickstieB ML I - 07.01.2010

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

NFQ — Neural Fitted Q-iteration

o We want to apply Q-Learning to continuous states (but discrete
actions for now).

o Instead of a Q-table, we have a Q-function (or function
approximator, e.g. neural network), that maps Q(s;, a;) — R.

@ We sample from the environment and collect (s;, a, r)-tuples

Q-Learning Update Rule

Q7 (st at) — Q7 (s¢,a:) + (rt+1 + 7y max Q7 (St+1,a) — Q" (st, at)>

@ How do we get the maximum over all actions in a certain state s?

@CogBotLab
achine Leonig 3 Cogntve Fotots
Thomas RiickstieB ML I - 07.01.2010

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

NFQ — Neural fitted Q-iteration

Maximum over discrete actions:
1. Use several neural networks, one for each action

action 1 action 2 action 3

2. or encode the action as additional input to the network

@CogBotLab
nnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Thomas RiickstieB ML I - 07.01.2010

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

NFQ — Neural fitted Q-iteration

o a forward pass in the network returns Q™ (s;, at)

@ to train the net, convert the (s, ar, r¢)-tuples to a dataset with

input (s, ar)
target Q™ (s¢, ar) + a(rew1 +ymaxy Q7(st41,a) — Q7 (st, ar))

@ train network with dataset (until convergence)

@ collect new samples by experience and start over

Unfortunately, there is no guarantee of convergence, because the
Q-values change during training. But in many cases, it works anyway.

@CogBotLab
achine Leonig 3 Cogntve Fotots
Thomas RiickstieB ML I - 07.01.2010

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

NFQCA — NFQ with continuous actions

With continuous actions, getting the maximum value of a state over all
actions is infeasable. Instead, we can use an actor / critic architecture:

@ One network (the actor) predicts actions from states

@ The second network (the critic), predicts values from states and
actions

state

hidden_actor

hidden_critic

value

action

@CogBotLab
achine Leonig 3 Cogntve Fotots
Thomas RiickstieB ML I - 07.01.2010

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

NFQCA Training

@ Backprop TD error through critic network

@ Backprop resulting error further through actor network

state

8Qt (St7 at) 87r(st)

o e e

K2

action

OQL(SM (11,)
a6%

@CogBotLab
nnnnnnnnnnnnnnnnnnnnnnnnnn e
Thomas RiickstieB ML I - 07.01.2010

HiQ o 0? + a(ry + IDaaXQt(St+1,(l) — Q1(st,a))

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

More value-based continuous RL

There are other methods of using function approximation with
value-based RL (— Sutton&Barto, Chapter 8).

Thomas RiickstieB ML I - 07.01.2010

@CogBotLab

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Continuous RL — Overview

@ Value-based Reinforcement Learning

e Continuous states, discrete actions — NFQ
e Continuous states and actions — NFQCA

@ Direct Reinforcement Learning (Policy Gradients)

Finite Difference methods
Likelihood Ratio methods
REINFORCE

1D controller example
Application to Neural Networks

@ ogBotLab
achine Leonig 3 Cogntve Fotots
Thomas RiickstieB ML I - 07.01.2010

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Direct Reinforcement Learning

Key aspects of direct reinforcement learning:
@ skip value functions (change policy directly)
@ sample from experience (like MC methods)
@ calculate gradient of parameterized policy

o follow gradient to local optimum

= Methods that follow the above description are called
Policy Gradient Methods or short Policy Gradients.

Thomas RiickstieB ML I - 07.01.2010

@

CogBotLab

e Leaning & Cagnite ttics

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Policy Gradients — Notation

For now, we will even loosen our second assumption:
@ Our problem fulfills the Markov property.
The next state can now depend on the whole history h, not just the last
state-action pair (s, a).
Policy m(a|h,d) probability of taking action a when encountering
history h. The policy is parameterized with 6.

History h™ history of all states, actions, rewards following policy 7.
hg = {so}
h?‘ = {507 a0, 10,51, - - -5 dt—1, l't—1, St}

Return R(h™) = ELO v

@CogBotLab
achine Leonig 3 Cogntve Fotots
Thomas RiickstieB ML I - 07.01.2010

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Performance Measure J()

We need a way to measure the performance for the whole policy . We
define the overall performance of a policy as:

Jm) = EARGMY = [pUmR(T) db” (1

T

Optimize the parameters 6 of the policy to improve J:
Vod(m) = Vg/ p(hM)R(A™) dh™
= / Vop(h")R(h™) dh™. (2)

Knowing the gradient, we can update 6 as

9t+1 = 9t + OZVQJ(’/T) (3)

@CogBotLab
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Thomas RiickstieB ML I - 07.01.2010

Continuous Reinforcement Learning Reminder Motivation Value-based methods

Finite Differences

One method to approximate the gradient of the performance is
Finite Differences:

l

8J(0) _ J(6 + 66) — J(6)

J(0 + 66) — J(9)

<V

06

Thomas RiickstieB ML I - 07.01.2010

Policy Gradient Methods

@

CogBotLab

ine Leaning & Cagnite ot

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Finite Differences

Or even better: take many samples with different 60's and run a linear
regression (= pseudo inverse)

J(m) A

<V

matrix ©; = [060; 1], vector J; =[J(6 + d6;)]

g=(©7Te)te’y

@ ogBotLab
achine Leonig 3 Cogntve Fotots
Thomas RiickstieB ML I - 07.01.2010

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Finite Differences

Problems with Finite Differences

@ For Finite Differences, the chosen action can be written as
a="f(h0+e),

where € ~ N(0,2) is some exploratory noise.

o We change the policy parameters 6 directly = the resulting
controller is not predictable.

Example robot control: changing the parameters randomly can
damage the robot or cause a risk for nearby humans

@ In some recent publications, finite differences perform badly in
probabilistic settings = most real problems are probabilistic.

@CogBotLab
Machine earing & CogiveRobotis
Thomas RiickstieB ML I - 07.01.2010

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Likelihood Ratio

The safer (and currently more popular) method is to estimate the
gradient with likelihood ratio methods.

@ Policy Gradients explore by perturbing the resulting action instead of
the parameters
a="f(h6)+e,

again with some exploratory noise € ~ N(0, o?).

@ The policy, that causes this behavior is unknown (and might not
even exist).

@ J(0 + 60) cannot be measured.

@ Another method of estimating VyJ is needed.

@CogBotLab
Machine earing & Cogive Robots
Thomas RiickstieB ML I - 07.01.2010

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Likelihood Ratio

We start from the performance gradient equation:
VoJ(r) = /h Vop(H)R(H") db™
where the probability of encountering history h under policy is:
p(h™) = p(so)m(aolhg)p(si|hg, ao)m(a1|hT)p(s2|hi, a1) -

T
= p(so) Hw ac—1|hi_1) p(se|hi_1, ac—1)
t=1

Multiplying with 1 = Z(Zzg gives

V() = /h ZE:Z;Vgp(h”)R(h”) dh™

@CogBotLab
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Thomas RiickstieB ML I - 07.01.2010

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Likelihood Ratio

Vod(r) = /h ZE::;vgp(h”)R(h”) dh™

can be simplified by applying 1 - Vx = V log(x):
Vod(m) = / p(h™) Vg log p(h™) R(h™) dh™

where — after a few more steps — we get

Vo log p(h™) ZVg log m(a;r—1]hi_1)
t=1

which we will insert into above equation.

@CogBotLab
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Thomas RiickstieB ML I - 07.01.2010

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Likelihood Ratio — REINFORCE
This leads to the likelihood ratio gradient estimate

Ved(m) = /p(hﬂ).vaogw(at_ﬂh:,l).R(hﬂ) dh™

t=1

;
Ex {Z Vo log m(ac—1|h7_y) - R(h“)}

t=1

Just like in the classical case, the expectation cannot be calculated
directly. We use Monte-Carlo Sampling of episodes to approximate and
get Williams' REINFORCE algorithm (1992):

;
1
Ved(m) = 4 > > Vglogm(ar_a|h7 ;) - R(h™)

h™ t=1

@CogBotLab
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Thomas RiickstieB ML I - 07.01.2010

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Example: Linear Controller (1D)

After this general derivation, we now go back to an MDP
m(atlhy, 0) = w(at|st, 0)
Here with a linear controller:
a="f(s,0)+e=0s+e, e~N(0,0°)
The actions are distributed like
a~ N(0s,5?)

and the policy is thus

m(als) = p(als, 0, 0) =

@CogBotLab
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Thomas RiickstieB ML I - 07.01.2010

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Example: Linear Controller (1D)

Policy from last slide:

w(als) = p(als, b,0) =

Deriving the policy with respect to the free parameters 6 and o results in

(a—0s)s
Vologm(als) = Y

(a—0s)? — o2
Vo logm(als) = Vg

@CogBotLab
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Thomas RiickstieB ML I - 07.01.2010

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Example: Linear Controller (1D)

REINFORCE Algorithm

@ initialize € randomly

@ run N episodes, draw actions a ~ 7(als, d), remember all 7, a7, r]!

© approximate gradient with REINFORCE

2

17—

._.

Vod(m Vo logm(al|s]) - R

t=0

Z\H
Il
o

n

@ update the parameter 6 — 0 + aVyJ(r)
Q goto 2

@CogBotLab
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Thomas RiickstieB ML I - 07.01.2010

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Application to Neural Network Controllers

How does the policy for a NN controller look like?

uk up, ~ N(ux, o)

Probabilistic .
Output Layer { Q Q ‘ action
2k = fact(ar)
Deterministic /\ - .
Output Layer { O O + ag = ZGMZJ
A !

Hidden Layer { . . () gaussian unit

/\ squashing unit
I:DJ summing unit

Input Layer { . . - (O neuron

@) ogBotLab
orin i Con ot

Thomas RiickstieB ML I - 07.01.2010

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Application to Neural Network Controllers

Again we need to derive the log of the policy with respect to the
parameters, which here are the weights 0;; of the network

dlogm(als) Z 0 log mi(ak|s) Opk

39j,‘ ke 8/Lk 39j'

The factor % describes the back-propagation through the network.

= use existing NN implementation, but back-propagate the log likelihood

derivatives 218 7(2l9) inctead of the error from supervised learning.

= use REINFORCE to approximate VyJ(7) which results in the weight
update 6 «— 0 + aVgJ(7).

@CogBotLab
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘
Thomas RiickstieB ML I - 07.01.2010

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Where did the exploration go?

@ no explicit exploration

@ probabilistic policy w(s, a) = p(a| s)

@ covers two “random” concepts: non-deterministic policies and
exploration

o this is actually not very efficient = State-Dependent Exploration

a="f(s,0+¢) a="f(s,0)+e a="1(s,0)+e(s)

@CogBotLab
achine Leonig 3 Cogntve Fotots
Thomas RiickstieB ML I - 07.01.2010

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Conclusion

Does it work?
@ Yes, for few parameters and many episodes
@ Policy Gradients converge to a local optimum

@ There are ways to improve REINFORCE: baselines, pegasus,
state-dependent exploration, ...

@ New algorithms use data more efficiently: ENAC

@ ogBotLab
achine Leonig 3 Cogntve Fotots
Thomas RiickstieB ML I - 07.01.2010

	Continuous Reinforcement Learning
	Reminder
	Motivation
	Value-based methods
	Policy Gradient Methods

