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What is Reinforcement Learning?

What is it not?

Supervised Learning For a given input, the learner is also provided with
the desired output (target). Learn mapping from input to
output.

Unsupervised Learning The goal is to build a model of the inputs (e.g.
for clustering, outlier detection, compression, . . . ) without
any feedback.

Reinforcement Learning

is more interactive

does not receive the target

does receive evaluative feedback (rewards)

is more a problem description than a single method
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Problem Statement

ENVIRONMENT

AGENT

new step

action at

state st+1

reward rt+1

st

rt

Definition (agent, environment, state, action, reward)

An agent interacts with an environment at discrete time steps
t = 0, 1, 2, . . . At each time step t, the agent receives state st ∈ S from
the environment. It then chooses to execute action at ∈ A(st) where
A(st) is the set of available actions in st . At the next time step, it
receives the immediate reward rt+1 ∈ R and finds itself in state st+1.
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Problem Statement (comments)

This is a very general definition:

environment does not have to be deterministic: transitions from s to s ′

with action a can be probabilistic, described by Pa
ss′ .

rewards only have the condition of being scalar values. They can
be given sparsely (reward only at goal) or after each
timestep. They can be probabilistic and the expected
reward when transitioning from s to s ′ with action a is
described by Ra

ss′ .

time steps don’t have to refer to fixed intervals of real time, they can
just be successive stages of decision-making.

states can be actual states of a machine (e.g. on/off) or abstract
states of some defined problem. An agent could be in a
state of“I don’t know what this object is”.

actions can be low-level motor controls of a robot or high-level
decisions of a planner, such as“going to lunch”.
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General Assumptions

For now, we assume the following:

Both states and actions are discrete and finite.

Our problem fulfills the Markov property (MDP)

the current state information summarizes all relevant information
from the past (e.g. chess, cannonball)
the next state is only determined by the last state and the last
action, not the entire history
the environment has a stationary Pa

ss′ and Ra
ss′ .
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Example: Chess
Imagine an agent playing one of the players in a chess game.

What are the states? actions? rewards?

Is the environment probabilistic or deterministic?

What is a good move for black?

1

3

3

5

9

Pawn

Bishop

Knight

Rook

Queen
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Example: Chess

state one legal combination of pieces on the board
(≈ 1050 possible states)

actions all possible legal moves in a certain state

rewards end of game (1 = win,−1 = loss)
but: heuristics for taking pieces and certain positions

environment chess itself is deterministic, but since one agent plays
against an opponent, it depends on the opponent. other
player can be considered probabilistic.
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Different Types of RL

π

state

action

Q

state action

value

Pa
ss� Ra

ss�

state action

next state reward

data is cheap
computation is limited
e.g. embedded systems

data is expensive 
computation doesn't matter

e.g. medical trials 

Direct RL Value-based RL Model-based RL
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Value-Based RL – Overview

Returns Rt

Policy π

Value Functions V π(s) and Qπ(s, a)

Optimal Policy π∗ and Optimal Value Functions V ∗ and Q∗

Policy Iteration

Policy Evaluation π → Qπ

Policy Improvement Qπ → π′, π′ ≥ π
Monte Carlo Algorithm

Temporal Difference RL

SARSA
Q-Learning

Eligibility Traces
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Returns

What is the goal of the agent? What should we optimize?

Change agent’s behavior in a way that it
selects the actions that maximize sum of
future rewards: R = rt+1 + rt+2 + rt+3 + · · ·
Problem of infinite sums in continuous
settings (blue path) ⇒ use discounting

Definition (return, discounting factor)

The return Rt is defined as the (discounted) sum of rewards starting at
time t+1.

Rt =
T∑

k=0

γk rt+k+1

where 0 < γ ≤ 1 is the discounting factor which ensures that recent
rewards are more important than older ones. For continuous tasks, where
T =∞, the discounting factor must be strictly less than 1.
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Policy

The agent’s behavior is formally described by its policy. It returns an
action for each state.

state st

reward rt

action at

AGENT

Policy π 

update

ENVIRONMENT

st
a1

a2
a3

Definition (policy)

An agent’s policy is its mapping from observed states to probabilities of
choosing an action. π(st , at) : S ×A(st) 7→ [0, 1], π(st , at) = p(at |st).

If the policy is deterministic: π(s, a) = 0 ∀a ∈ A(s) \ {a′}, and
π(s, a′) = 1 then we write π(s) = a′.
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Value Functions

We need to make use of the returns Rt to change the agent’s
behavior. One way to do this: value functions.

A value function describes, how good it is for the agent, to be in a
certain state, or how good it is to perform a certain action in a state.

goodness is defined as the expected future return

Value functions depend on the policy π of the agent

2 variants: we can start in a state (state-value function V π) or
during an action (action-value function Qπ).

s1 s2 s3 s4

a1 a2 a3 a4

V π(s1)

Qπ(s1, a1)
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Value Functions

Definition (state-value function)

A state-value function V π(s) with respect to policy π is a function of a
state s, which describes the expected future return Rt if the agent starts
in state s and follows policy π thereafter:

V π(s) = Eπ{Rt |st = s} = Eπ

{
T∑

k=0

γk rt+k+1|st = s

}

Definition (action-value function)

An action-value function Qπ(s, a) with respect to policy π is a function
of a state s and action a, which describes the expected future return Rt if
the agent starts in state s, takes action a and follows policy π thereafter:

Qπ(s, a) = Eπ{Rt |st = s, at = a} = Eπ

{
T∑

k=0

γk rt+k+1|st = s, at = a

}
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Value Functions

We will concentrate on action-value functions. From an action-value
function, we can always get the state-values V π(s) = Qπ(s, π(s)).

Action values can be represented in a Q-Table.

Qπ(s, a) a1 a2 a3

s1 2.0 -0.5 0.1
s2 -1.0 3.35 0.0
s3 0.3 0.3 -0.3
s4 10.4 0.5 0.5

The values can be estimated from experience: Follow π and keep
seperate return estimates for each state-action pair ⇒ Policy Evaluation

Thomas Rückstieß ML I – 11.12.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics



Reinforcement Learning Introduction Value-Based RL Model-Based RL

Optimal Policies & Optimal Value Functions

Definition (Ranking of Policies)

A policy π is considered “better” than π′ if the expected returns of π are
higher than or equal to policy π′s for all states and actions:

Qπ(s, a) ≥ Qπ′(s, a) ∀ s ∈ S, a ∈ A(s)

The best policy (or policies) is denoted π∗ (optimal policy).

The matching value function Qπ∗(s, a) = Q∗(s, a) is known as the
optimal value function and it is a unique solution to a reinforcement
learning problem.

Our goal: finding Q∗
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Policy Evaluation

If we have a policy π, how do we get the corresponding action value
function Qπ? In short: π → Qπ

1 Start in random state with random action

2 Follow π

3 Keep history of all visited (s, a) pairs and received returns R

Average over received returns following a (s, a) pair converges to Q(s, a)
value ⇒ Learning from experience (Monte Carlo)

Example
Assume we play many chess games and encounter (s, a)
a total of 5 times. After finishing these games, we
received the rewards 1, 1, 1,−1, 1. Rt =

PT
k=0 γ

k rt+k+1

but because all except the last reward of this game are
0, Rt = rT and we get Qπ(s, a) = 1+1+1−1+1

5
= 0.6.

With more games containing (s, a) the approximation
improves.
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Policy Improvement

Now, we want to improve a (deterministic) policy π.

Assume π′ identical to π except for state s ′: π selects a and π′

selects a′ (deterministic policies): π(s ′) = a, π′(s ′) = a′

Qπ(s, π′(s)) = Qπ(s, π(s)) ∀s ∈ S \ {s ′}, a ∈ A(s)

if Qπ(s ′, π′(s)) ≥ Qπ(s ′, π(s)) then Qπ′(s, a) ≥ Qπ(s, a) ∀s, a and
therefore π′ is better than π (or at least equal).

s'
a'

a

π′
π

This is called the Policy Improvement Theorem.
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Policy Improvement

All we need to do is find a π′ that improves Q in one or more states. We
can construct a policy that does exactly that:

π′(s) = arg max
a

Qπ(s, a)

This greedy policy uses the current Q-table to execute the currently most
promising action in each state. By above definition,

Qπ′(s, a) ≥ Qπ(s, a) ∀s, a

and therefore
π′ ≥ π
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Policy Iteration

We can evaluate a policy (π → Qπ) and we can find a better policy by
taking the greedy policy of the last value function (Qπ → π′ with
π′ ≥ π).

This leads to the policy iteration cycle:

π0
E−→ Qπ0

I−→ π1
E−→ Qπ1

I−→ π2
E−→ · · · I−→ π∗

E−→ Q∗

Qπ
π

Evaluation

Improvement

Policy
Iteration

π0

Thomas Rückstieß ML I – 11.12.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics



Reinforcement Learning Introduction Value-Based RL Model-Based RL

Monte Carlo Reinforcement Learning

Monte-Carlo algorithm

1 initialize π,Q arbitrarily, returns(s, a)← empty list

2 generate an episode starting at random (s, a) and follow π
3 for each (s, a) pair in episode

add R to returns(s, a)
Q(s, a)← 〈 returns(s, a) 〉, 〈·〉 sample average

4 for each s in episode

π(s)← arg maxa Q(s, a)

5 goto 2
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Example: Black Jack

state sum of own cards c ∈ [4, 21]
useable ace u ∈ {yes, no}
dealer’s card d ∈ {A, 2, 3, 4, 5, 6, 7, 8, 9, 10}
s = (c, u, d)

action hit or stick

reward +1 or −1 on win or loss, 0 otherwise.

episode one game

return same as reward (if γ = 1)

policy strategy of playing: π(s) 7→ {hit, stick}
with s = (c, u, d)

Q table table of states × actions containing the Q values
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Some Remarks

If the transition probabilities Pa
ss′ and expected rewards Ra

ss′ are
known, Dynamic Programming can be used. We skipped this part,
but you can read it in Sutton & Barto’s Book, Chapter 4.

Often, exploring starts are not possible (real life experiences).
Instead, we can use an exploring policy (called an ε-greedy policy)

π(s) =

{
arg maxa Q(s, a) if r ≥ ε
random action from A(s) if r < ε

with small ε and a random number r ∈ [0, 1], drawn at each time
step.
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Full Backups vs. Bootstraping

Dynamic Programming full model dynamics known, use bootstrapping

Monte Carlo RL collect samples from real experience, full backups

Temporal Differences collect samples and bootstrap

What is bootstrapping?

Figure: Muenchhausen pulled himself out of the swamp on his own hair.

⇒ In our case: We use an approximation of Q to improve Q.
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Temporal Difference Learning

In Monte-Carlo, the targets for the Q updates are the returns Rt

We have to wait until the end of the episode to make an update

Use approximation to Rt by bootstrapping

Qπ(s, a) = Eπ{Rt | st = s, at = a} (1)

= Eπ

{
T∑

k=0

γk rt+k+1 | st = s, at = a

}
(2)

= Eπ

{
rt+1 + γ

T∑
k=0

γk rt+k+2 | st = s, at = a

}
(3)

= Eπ {rt+1 + γQπ(st+1, at+1) | st = s, at = a} (4)

This is called the Bellman Equation for Qπ.
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SARSA

Let’s bootstrap and use the approximation for Rt

Qπ(st , at)← Qπ(st , at) + α (rt+1 + γQπ(st+1, at+1)− Qπ(st , at))

This is our new update rule, and the algorithm is called SARSA. For an
update, we need

current state st and action at ,

the resulting reward rt+1,

next state st+1 and action at+1

s s'

a a'r
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Q-Learning (Watkins, 1989)

SARSA was on-policy (we used the real trajectory)

Q-Learning is an off-policy method

We can pick arbitrary (state, action, reward)-triples to approximate
the Q-function

Q-Learning Update Rule

Qπ(st , at)← Qπ(st , at) + α
(
rt+1 + γmax

a
Qπ(st+1, a)− Qπ(st , at)

)
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Q-Learning vs. SARSA

Q-Learning Update Rule (top and left)
SARSA Update Rule (bottom and right)

Qπ(st , at)← Qπ(st , at) + α(rt+1 + γ· maxa Qπ(st+1, a) − Qπ(st , at))

Qπ(st , at)← Qπ(st , at) + α(rt+1 + γ· Qπ(st+1, at+1) − Qπ(st , at))

s s'
a

Q(s′, a1)

Q(s′, a2)

Q(s′, a3)

s s'
a

s''

Q(s′, a′)

a'

on-policyoff-policy
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Q-Learning Algorithm

1 initialize π,Q arbitrarily

2 choose a using ε-greedy policy

a = π(s) =

{
arg maxa Q(s, a) if random(0, 1) ≥ ε
random action from A(s) else

3 execute action a, observe r , s ′

4 Q(s, a)← Q(s, a) + α (r + γmaxaQ(s ′, a)− Q(s, a))

5 s ← s ′

6 goto 2

Thomas Rückstieß ML I – 11.12.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics



Reinforcement Learning Introduction Value-Based RL Model-Based RL

Eligibility Traces

1

0

How do the Q-values change when the robot walks from field to
field? (γ = 1, α = 0.1)

⇒ Qπ(st , at)← Qπ(st , at) + 0.1 · (0 + 1 · Qπ(st+1, at+1)− Qπ(st , at))

⇒ Qπ(st , at)← Qπ(st , at) + 0.1 · Qπ(st+1, at+1)− 0.1 · Qπ(st , at)

⇒ Qπ(st , at)← 0.9 · Qπ(st , at) + 0.1 · Qπ(st+1, at+1)

Answer: not much, we just stir around a bit in the Q-table. If we
initialize the table with 0, then absolutely nothing happens.
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Eligibility Traces

How do the Q-values change when the robot finds the power outlet
(γ = 1, α = 0.1)

⇒ Qπ(st , at)← Qπ(st , at) + 0.1 · (1 + 1 · Qπ(st+1, at+1)− Qπ(st , at))

⇒ Qπ(st , at)← Qπ(st , at) + 0.1 + 0.1 ·Qπ(st+1, at+1)− 0.1 ·Qπ(st , at)

⇒ Qπ(st , at)← 0.9 · Qπ(st , at) + 0.1 · Qπ(st+1, at+1) + 0.1.

Answer: if Q-table was initialized with 0, then the state-action pair
that lead to the goal now has a value of 0.1.
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Eligibility Traces

Q-values (here actually summarized as V-Values) after 1, 2, 3, many runs

for each run (episode) we move backwards from the goal to the start
by one state-action pair.

this is slow!

Eligibility Traces: remember where you came from. Use the trace
(track, route, path, ...) to speed up convergence.
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Eligibility Traces
How does it work?

Each state-action pair (s, a) receives a counter et(s, a), that keeps
track of its eligibility at time t (i.e. how recently it was visited).

Initially, all the counters are set to 0 (no state-action pair has been
visited).

Whenever a state-action pair (s, a) is visited, we add +1 to its
eligibility.

All eligibilities decay over time, with each timestep we multiply them
with γλ, where 0 ≤ λ ≤ 1 as trace decay parameter.

et(s, a) =

{
γλet−1(s, a) if (s, a) 6= (st , at)

γλet−1(s, a) + 1 if (s, a) = (st , at)

Main Difference: After one step, we update all Q-values for all
possible state-action transitions but multiply them with their
eligibility et(s, a)
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SARSA(λ)

Remember SARSA(0) update rule?

Qπ(st , at)← Qπ(st , at) + α(rt+1 + γ · Qπ(st+1, at+1)− Qπ(st , at))

To save space, we subsitute

δt := rt+1 + γQπ
t (st+1, at+1)− Qπ

t (st , at)

The new SARSA(λ) update is then

Qπ(s, a)← Qπ(s, a) + α δt et(s, a)

for all s, a.

⇒ There is a similar extension for Q(λ).
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Planning / Model-Based RL / Dyna-Q

WORLD

AGENT

ac
tio

n

state t+1

rew
ard

input / output
teaching signal

new step
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Planning / Model-Based RL / Dyna-Q

WORLD

AGENT

ac
tio

n

state t+1

rew
ard

input / output
teaching signal

new step

MODEL

state t
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