
Machine Learning I
Week 1: Introduction and Prerequisites

Christian Osendorfer, Martin Felder

Technische Universität München

2009/10/22

Christian Osendorfer, Martin Felder ML I – 22./23.10.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

What is Machine Learning?

Wikipedia says . . .

Machine learning [. . .] is concerned with [. . .] techniques that
allow computers to ”learn”.

Inductive machine learning methods extract rules and patterns
out of massive data sets.

The major focus of machine learning research is to extract
information from data automatically, by computational and
statistical methods.

Tom Mitchell1

How can we build computer systems that automatically improve
with experience, and what are the fundamental laws that
govern all learning processes.

Ideas from: Statistics, Computer Science, Physics Computational
Neuroscience, Engineering, . . .

1The Discipline of Machine Learning
Christian Osendorfer, Martin Felder ML I – 22./23.10.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Machine “Learning”

Learning denotes changes in the system that are adaptive in the
sense that they enable the system to do the task or tasks drawn
from the same population more efficiently and more effectively
the next time.

Herbert Simon

No one needs “learning” to compute a minimum spanning tree in a graph.

Machine Learning is programming computers to optimize a performance
criterion using example data or past experience.

Christian Osendorfer, Martin Felder ML I – 22./23.10.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Stock Market Prediction

Christian Osendorfer, Martin Felder ML I – 22./23.10.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

DNA Microarray Analysis

Christian Osendorfer, Martin Felder ML I – 22./23.10.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Collaborative Filtering

Christian Osendorfer, Martin Felder ML I – 22./23.10.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

General information, tutorials, . . .

Time and date(s)?!

Books ?!

Tutorials will be every Friday morning in Room MI 00.08.038.

Discuss assignments.

Assignments: Out on Thursday, hand in one week later.

Collaboration: (up to) 3 people can hand in one assignment
together.

In order to take the final exam, you need 2/3 of the assignments – if
you have problems with that, let us know right now.

Christian Osendorfer, Martin Felder ML I – 22./23.10.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

(Canonical) types of ML

Supervised Learning For a given input, the learner is also provided with
the desired output. The goal is to learn to produce correct
outputs for unseen inputs.

Unsupervised Learning The goal is to build a model of the inputs (e.g.
for clustering, outlier detection, compression, . . .), without
knowing in advance what to actually look for.

Reinforcement Learning Instead of simple outputs, the learner produces
actions that affect the state of the world. Depending on
these actions, the learner receives rewards. The goal is to
learn to act in a way that maximizes rewards in the long
term.

Christian Osendorfer, Martin Felder ML I – 22./23.10.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Structure Overview

Christian Osendorfer, Martin Felder ML I – 22./23.10.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Linear Algebra

Vector space, linear independence, (orthogonal) basis, (symmetric)
matrices, Determinant, Eigenvectors, Eigenvalues.

Any real symmetric matrix can be diagonalized.

QR decomposition of a real symmetric matrix A: A = QR, with
QT Q = QQT = I and R an upper triangular matrix.

Singular Value Decomposition (SVD): Factorization of a rectangular
real or complex matrix. Suppose A ∈ Rm×n.
Then

A = UΣV T

with U ∈ Rm×m, UT U = UUT = I , Σ is a diagonal matrix with non
negative entries and V ∈ Rn×n, V T V = VV T = I .

Use QR/SVD to solve2 system of linear equations Ax = y .

2I must also confess a strong bias against the fashion for reusable code. To me
”re-editable code” is much, much better than an untouchable black box or toolkit.
Donald Knuth

Christian Osendorfer, Martin Felder ML I – 22./23.10.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Calculus

The gradient ∇g(a) of a given function
g : Rn 7→ R points in the direction of the
greatest rate of increase of g in a.

Chain rule: (g ◦ h)′(x) = g ′(h(x))h′(x).

Hessian Matrix: second derivatives.

The method of Lagrange multipliers: Find the local extrema of a
function subject to one or more constraints.

Jensen’s inequality: For a real, convex function g defined on interval
I and positive weights λ1, . . . , λn with

∑n
i=1 λi = 1 the following

holds:
g
(∑

λixi

)
≤
∑

λig(xi)

for any x1, . . . , xn ∈ I .

Christian Osendorfer, Martin Felder ML I – 22./23.10.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Probability Basics

You already know a lot about probability theory, e.g.

Kolmogorov Axioms

(discrete/continuous) Random Variables

Expectation

Variance

Independence

Conditional Probability

i.i.d.

Some basic rules that are important for Machine Learning:

Sum rule p(X) =
∑

Y p(X ,Y)

Product rule p(X ,Y) = p(Y |X) · p(X)

Bayes’ rule p(Y |X) = p(X |Y)·p(Y)
p(X)

(X ,Y are random variables)

Christian Osendorfer, Martin Felder ML I – 22./23.10.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Conditional Independence

Conditional Independence is one of the most basic assumptions taken to
make problems computationally tractable.

X and Y are conditionally independent given Z iff
p(X |Y ,Z) = p(X |Z).

I.e. Y does not provide any information about X if Z is already
known.

This is written as: X⊥Y |Z .

Intuition tells us that X⊥Y |Z ⇔ Y⊥X |Z .

The joint conditional probability decomposes:
X⊥Y |Z ⇔ p(X ,Y |Z) = p(X |Z)p(Y |Z)

Example application: Näıve Bayes Classifier

Christian Osendorfer, Martin Felder ML I – 22./23.10.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Information Theory
Shannon Entropy, or information entropy, is a measure for the
information contained in a random variable (or message, picture, . . .). In
the discrete case:

H[x] = −
∑

x

p(x) logb p(x)

The unit of H is bit for b = 2, nat for b = e, and dit (or digit) for
b = 10. By default we will use b = e.

pr
ob

ab
ili

tie
s

H = 1.77

0

0.25

0.5

pr
ob

ab
ili

tie
s

H = 3.09

0

0.25

0.5

A uniform distribution has maximum entropy (here H = 3.40).
Christian Osendorfer, Martin Felder ML I – 22./23.10.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Information Theory

Entropy in the continuous case = differential entropy

H[x] = −
∫

p(x) ln p(x) dx

What about maximum differential entropy?

there is no uniform distribution in the unbounded continuous case!

turns out Gaussian has maximum entropy:

H[x] =
1

2
(1 + ln(2πσ2))

Conditional entropy of y given x :

H[y |x] = −
∫ ∫

p(y , x) ln p(y |x) dx dy

Christian Osendorfer, Martin Felder ML I – 22./23.10.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Comparing Distributions
Assume we have a true distribution p(x), and model it by q(x). How
good is our model?
The Kullback-Leibler divergence is a measure for the similarity of
distributions:

KL(p||q) = −
∑

x

p(x) ln
q(x)

p(x)

Note that KL(p||q) ≥ 0, but KL it is not a distance metric, because
KL(p||q) 6= KL(q||p).
A related measure is Mutual information:

I[x , y] = KL(p(x , y)||p(x)p(y))

which can also be written as

I[x , y] = H[x]−H[x |y] (1)

= H[y]−H[y |x] (2)

= H[x] + H[y]−H[x , y] (3)

Christian Osendorfer, Martin Felder ML I – 22./23.10.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Probability Distributions

The Bernoulli distribution takes value 1 with success probability θ and
value 0 otherwise:

Bern(x |θ) =

 θ if x = 1,
1− θ if x = 0,

0 otherwise.

special case of the Binomial distribution with N = 1 trials

hence can also be written as

Bern(x |θ) = θx(1− θ)1−x

we’ll get back to this later!

Christian Osendorfer, Martin Felder ML I – 22./23.10.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Probability Distributions

Beta:

Beta(µ|a, b) =
Γ(a + b)

Γ(a)Γ(b)
µa−1(1− µ)b−1, µ ∈ [0, 1]

Multivariate Gaussian distribution:

N(x|µ,Σ) =
1

|2πΣ|1/2
exp

{
−1

2
(x− µ)T Σ−1(x− µ)

}
also Gamma, Wishart, Dirichlet, Von Mises, Student’s t, . . .

Christian Osendorfer, Martin Felder ML I – 22./23.10.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Beta Distribution

Beta is a distribution over µ ∈ [0, 1]

Beta(µ|a, b) =
Γ(a + b)

Γ(a)Γ(b)
µa−1(1− µ)b−1

E[µ] =
a

a + b

var[µ] =
ab

(a + b)2(a + b + 1)

The prefactor is for normalization, with Γ(x) =
∫∞

0
e−uux−1du being the

generalized factorial function.

a and b are called hyperparameters of the distribution.

The Beta distribution is the conjugate prior of the Bernoulli distribution –
we’ll get back to this in a minute.

Christian Osendorfer, Martin Felder ML I – 22./23.10.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Beta Distribution

µ

a = 1

b = 1

0 0.5 1
0

1

2

3

µ

a = 2

b = 3

0 0.5 1
0

1

2

3

µ

a = 8

b = 4

0 0.5 1
0

1

2

3

µ

a = 0.1

b = 0.1

0 0.5 1
0

1

2

3

Christian Osendorfer, Martin Felder ML I – 22./23.10.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Multivariate Gaussian Distribution

You should know the univariate
Gaussian Distribution . . .

The multivariate Gaussian is the extension of the univariate Gaussian to n
dimensions.

N(x|µ,Σ) = 1
|2πΣ|1/2 exp

{
− 1

2 (x− µ)T Σ−1(x− µ)
}

Σ is symmetric matrix w.l.o.g! It is called the covariance matrix.

One can show with some fancy linear algebra (diagonalization) that
this is actually a distribution (i.e. it is normalised).
Even though it looks complicated, everything is as expected:

E[x] = µ

cov[x] = Σ

Christian Osendorfer, Martin Felder ML I – 22./23.10.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Multivariate Gaussian Distribution

The covariance matrix is defined as: cov[x] = E[(x− E[x])(x− E[x])T]

general Σ Σ diagonal Σ = σI

Christian Osendorfer, Martin Felder ML I – 22./23.10.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Multivariate Gaussian Distribution

Conditional and marginal distributions are also Multivariate Gaussian!

Christian Osendorfer, Martin Felder ML I – 22./23.10.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

“My first machine learning problem”

We are now ready to develop our first ML algorithm.

recap from introduction: want to extract rules/patterns from data

what does this mean in a concrete case?

obviously data-driven approach, inductive

simple example: coin flip – can generate observations easily:
x1 = head, x2 = head, x3 = tail, . . .

find the rule that explains observations D = x1, x2, . . . best

the rule can take the form of some model, which has parameter θ

the likelihood of our observations for a given rule θ is p(x1, x2, . . . |θ)

how do we find the best rule θ? → yields maximum likelihood!

but joint distribution of all observations is hard to deal with

make i.i.d. assumption! p(x1, x2, . . . |θ) =
∏

p(xi |θ)

introduce model assumption: p(xi |θ) is probably a Bernoulli
distribution

Christian Osendorfer, Martin Felder ML I – 22./23.10.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

N tosses of a coin, say we get m heads (assume i.i.d. tosses)

what is the probability for the next toss to yield ’head’?

trick: Log likelihood (MLE)

`(θ) = ln p(D|θ)
(i.i.d.)

= ln
∏

p(xi |θ) =
∑

ln p(xi |θ)

log is convex, does not change location of maximum

differentiate wrt. θ, and set equal zero

p(x = head) = argmaxθ `(θ) = θML = m/N!

MLE is consistent: limN→inf θML = θ

Problem: Point estimate! MLE is often a bad idea: e.g. N = 3, got
three heads =⇒ p(x = head) = 1 ?!

intuition says next 3 trials may well produce a tail

but if N = 3000, got 3000 heads: our intuition is not worth much

need to incorporate a prior belief to modulate results of a small
number of trials

θ itself then has some distribution

Christian Osendorfer, Martin Felder ML I – 22./23.10.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

calculate the posterior distribution from Bayes’ law:
p(θ|D) ∝ p(D|θ)p(θ)

very important idea! In words: posterior ∝ likelihood × prior

µ

prior

0 0.5 1
0

1

2

µ

likelihood function

0 0.5 1
0

1

2

µ

posterior

0 0.5 1
0

1

2

∝ is enough, because can always normalize to
∫

pdθ = 1

ideally use a conjugate prior: given p(D|θ) (here: Bernoulli), choose
distribution p(θ) such that p(θ|D) ends up having the same
functional form

because then can use it as a prior for the next experiment!

prior for Bernoulli is the Beta distribution, with (hyper-)parameters
a, b

hence our prior is p(θ|a, b) = Beta(θ|a, b)

Christian Osendorfer, Martin Felder ML I – 22./23.10.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

this yields the posterior

p(θ|D, a, b) ∝ p(D|θ)p(θ|a, b)

= θm(1− θ)N−m · θa−1(1− θ)b−1

= θm+a−1(1− θ)N−m+b−1

a− 1 and b − 1 can be interpreted as previous heads and tails!

hence now have a solid statistical model for θ, where observations
have been assimilated into the prior

e.g. a = b = 5, N = 3 with three heads coming up:
p(head) = θMAP = argmaxθ p(θ|D, a, b) = 7

11

this is called maximum a posteriori (MAP) estimate

but wait a minute, we can do better than that: Given the
hyperparameters, we can calculate the full predictive distribution

Christian Osendorfer, Martin Felder ML I – 22./23.10.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

p(x |D, a, b) =

∫ 1

0

p(x , θ|D, a, b) dθ

=

∫ 1

0

p(x |θ)p(θ|D, a, b) dθ (used cond. indep.!)

=

∫ 1

0

θx(1− θ)1−x Γ(a + b)

Γ(a)Γ(b)
θa−1(1− θ)b−1 dθ

=
Γ(a + b)

Γ(a)Γ(b)

∫ 1

0

θx+a−1(1− θ)b−x dθ

=
Γ(a + b)

Γ(a)Γ(b)

Γ(x + a)Γ(b − x + 1)

Γ(a + b + 1)

now remember that Γ(a) = (a− 1)! for a ∈ N
using the example above, with the three additional heads
assimilated, we have a = 8, b = 5

inserting this for x = 1 yields p(x = 1|a, b) = 8/13

this is called the fully Bayesian treatment

Christian Osendorfer, Martin Felder ML I – 22./23.10.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Conclusion

We have obtained three different results for the coin flip experiment with
N = 3,m = 3, a = b = 5, depending on where we collapse our probability
distribution and what kind of prior knowledge we introduce:

MLE: p(x = head) = 1
pro: easy to calculate, consistent (large N!)
con: point estimate, misleading for small N

MAP: p(x = head) = 7/11 ' 0.636
pro: introduce prior, often still tractable
con: may still fail if posterior multimodal etc.

fully Bayesian: p(x = head) = 8/13 ' 0.615
pro: make the most out of your model!
con: usually analytically intractable

Christian Osendorfer, Martin Felder ML I – 22./23.10.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

