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Machine Learning Worksheet 7

Kernels

1 Infinite Feature Spaces

Lets define a new (infinitely) more complicated feature transformation ¢, : R — R"™ as follows:
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Suppose we let n — oo and define a new feature transformation:
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You can think of this feature transformation as taking some finite feature vector and producing an infinite
dimensional feature vector.

Poo(T) = {6_:]02/2’ 6_I2/2xa ‘

Problem 1. Can we directly apply this feature transformation to data? Is there a finite set of points
that cannot be linearly seperated in this feature space? Explain why or why not!

Problem 2. From the lecture, we know that we can express a linear classifier using only inner products
of input vectors in the transformed feature space. It would be great if we could some how use the feature
space obtained by the feature transformation ¢.,. However, to do this, we must be able to compute the
inner product of samples in this infinite vector space. We define the inner product between two infinite
vectors a and b as the infinite sum given in the following equation:

o0
k(a,b) = aib;
i=1

Now, for the above definition for ¢~,, what is the explicit form of k(a,b)? (Hint: Think of the Taylor
series of e*.) With such a high dimensional feature space, should we be concerned about overfitting?

2 Constructing kernels

Problem 3. One of the nice things about kernels is that new kernels can be constructed out of already
given ones. Assume that ki(x, ') and ko(x, x’) are valid kernels (i.e. they correspond to inner products
of some feature vectors). Show that

o k(x,x') = cki(x, ') for any ¢ > 0,

o k(xz,2') = f(x)k1(z, ') f(x') for any real valued function f(x),
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o k(x,x') =ki(x,2') + ko(x, 2),
o k(x,x') =ki(x,x)ko(x, x’)

are all valid kernels.

3 Perceptron kernel

Problem 4. In this exercise, we develop a dual formulation of the perceptron algorithm. Using the
perceptron learning rule you learned in the lecture, show that the learned weight vector can be written
as a linear combination of the vectors t,¢(x,) where ¢, € {—1,+1}. Denote the coefficients of this linear
combination by «, and derive a formulation of the perceptron learning algorithm, and the predictive
function for the perceptron in terms of the «,,. Show that the feature vector ¢(x) enters only in the form
of the kernel function k(z, x’) = ¢(x)” p(x).

4 Support Vector Machines

You are given a data set with data from a single feature z1 in R! and corresponding labels y € {+1, —1}.
Data points for +1 are at —3, —2,3 and data points for —1 are at —1,0, 1.

Problem 5. Can this data set in its current feature space be separated using a linear separator?
Why /why not?

Let’s define a simple feature map ¢(u) = (u,u?) that transforms points in R! to points in R2.

Problem 6. After applying ¢ to the data, can it now be separated using a linear separator? Why /why
not (plotting the data may help you with your answer ...)?

Problem 7. Draw (approximately) a maximum-margin separating hyperplane (i.e. you do not need to
solve a quadratic program). Clearly mark the support vectors. Also draw the resulting decision boundary
in the original feature space. Is it possible to add another point to the training set in such a way, that
the hyperplane does not change? Why/why not?
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