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Machine Learning Worksheet 3

Linear Classification

1 Linear separability

Problem 1. Given a set of data points {xn}, we can define the convex hull to be the set of all points x
given by

x =
∑

n

αnxn

where αn ≥ 0 and
∑

n αn = 1. Consider a second set of points {yn} together with their corresponding
convex hull. By definition, the two sets of points will be linearly separable if there exists a vector w and
a scalar w0 such that wTxn +w0 > 0 for all xn, and wTyn +w0 < 0 for all yn. Show that if their convex
hulls intersect, the two sets of points cannot be linearly separable, and conversely that it they are linearly
separable, their convex hulls do not intersect.

Problem 2. Show that for a linearly separable data set, the maximum likelihood solution for the logistic
regression model is obtained by finding a vector w whose decision boundary wTφ(x) = 0 separates the
classes and then taking the magnitude of w to infinity.

2 Multiclass classification

Problem 3. Consider a generative classification model for K classes defined by prior class probablities
p(Ck) = πk and general class-conditional densities p(φ|Ck) where φ is the input feature vector. Suppose
we are given a training data set {φn, tn} where n = 1, . . . , N , and tn is a binary target vector of length
K that uses the 1-of-K coding scheme, so that is has components tnj = Ijk if pattern n is from class
Ck. Assuming that the data points are drawn independently from this model, show that the maximum-
likelihood solution for the prior probabilities is given by

πk =
Nk

N

where Nk is the number of data points assigned to class Ck.

3 Logistic Regression

Problem 4. Show that the Hessian matrix H for the logistic regression model, given by eq. (?) in the
slides is positive definite. Here R is a diagonal matrix with elements yn(1 − yn), and yn is the output
of the logistic regression model for input vector xn. Therefore, show that the error function is a convex
function of w and that it has a unique minimum.
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4 The perceptron ?

An important example of a so called linear discriminant model is the perceptron of Rosenblatt. The following
questions will look more closely at this algorithm. We will assume the following:

• The parameters of the perceptron learning algorithm are called weights and are denoted by w.

• The training set consists of training inputs xi with labels ti ∈ {+1,−1}.
• The learning rate is 1.

• Let k denote the number of weight updates the algorithm has performed at some point in time and wk the
weight vector after k updates (initially, k = 0 and w0 = 0).

• All training inputs have bounded euclidean norms, i.e. ||xi|| < R, for all i and some R ∈ R+.

• There is some γ > 0 such that tiw̃Txi > γ for all i and some suitable w̃ (γ is called a finite margin).

Problem 5. Write down the perceptron learning algorithm.

Problem 6. Given the following training set D of labeled 2D training inputs, find a separating hyperplane using
the perceptron learning rule. Illustrate the consecutive updates of the weight w with a series of plots (do not plot
the bias weight)!

D = {((−0.7, 0.8),+1), ((−0.9, 0.6),+1), ((−0.3,−0.2),+1), ((−0.6, 0.7),+1)}
∪ {((0.6,−0.8),−1), ((0.2,−0.5),−1), ((0.3, 0.2),−1)}

You will now show that the perceptron algorithm converges in a finite number of updates (if the training data is
linearly separable).

Problem 7. Let wk be the kth update of the weight during the perceptron algorithm. Show that (w̃Twk) ≥ kγ.
(Hint: How are (w̃Twk) and (w̃Twk−1) related?)

Problem 8. Show that ||wk||2 < kR2. Note that the algorithm updates the weights only in response to a mistake
(i.e. tixT

i w
k−1 ≤ 0 for some i). (Hint: Triangle inequality for the euclidean norm.)

Problem 9. Consider the cosine of the angle between w̃ and wk and derive

k ≤ R2||w̃||2

γ2
.

Now consider a new data set, D′ (again 2D inputs and two different classes):

D′ = {((0, 0),+1), ((−0.1, 0.1),+1), ((−0.3,−0.2),+1), ((0.2, 0.1),+1)}
∪ {((0.2,−0.1),+1), ((−1.1,−1.0),−1), ((−1.3,−1.2),−1), ((−1,−1),−1)}
∪ {((1, 1),−1), ((0.9, 1.2),−1), ((1.1, 1.0),−1)}

Problem 10. Can you separate this data with the perceptron algorithm? Why/ why not?

Problem 11. Transform every input xi ∈ D′ to x′i with x′i1 = exp(−||xi||2
2 ) and x′i2 = exp(−||xi−(1,1)||2

2 )). If the
labels stay the same, are the x′is now linearly separable? Why/ why not?
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