

Freespace, Ground Plane Estimation and IPM

Final Project Presentation

Bug Busters

Agenda

- Task Description
- Our Approach
 - Dense Depth Image
 - Ground Plane Estimation
 - Digital Elevation Map
 - Free Space Estimation
 - Inverse Perspective Mapping
- Possible Improvements

Task Description

Find the Ground Plane

 Perform a Free Space Estimation

 Project the Free Space into Bird's Eye View (Inverse Perspective Mapping)

Dense Depth Image

- 1st approach: Disparity image from Assignm. 4
- Results were lacking information in road plane

Dense Depth Image

- Improvement by using ELAS algorithm
- Optimized for smooth ground plane

Ground Plane Estimation

- Only data from lower image half is used to reduce influence from sky artifacts
- Point cloud and prior knowledge are fed into RANSAC framework
- Extrinsic calibration of camera position to 1.65 m above ground level

Ground Plane Estimation

- 4 plane parameters: ax+by+cz+d=0
- Extended Normal vector: $n = (\blacksquare a@b@c@d)$
- Distance calculation: $D=P \uparrow T \cdot n$

Digital Elevation Map (DEM)

- DEM is a 2.5-dimensional grid where intensities represent highest points in n-direction at (x,z)
- Transformation to polar coordinates:

$$r = \sqrt{x^2 + z^2}$$

$$\varphi = \operatorname{atan}(z/x)$$

 Region growing algorithm to create denser representation of elevation data

Digital Elevation Map (DEM)

Free Space Estimation

- Free Space is estimated in dense DEM image
- Propagated from front to back until an obstacle is reached
- Missing data is stepped over (within limits)
- Contour finding: Only the contour with the largest area is kept, others are false positives

Free Space Estimation

Inverse Perspective Mapping

 Backtransformation of Free Space into Cartesian coordinates

$$x=r\sin\varphi$$

$$z=r\cos\varphi$$

 Overlay with pixel intensity DEM image to create Bird's Eye View of situation (IPM)

Inverse Perspective Mapping

Backprojection

Projective transformation of polar Free Space

Backprojection

Possible Improvements

 Further tuning of parameters for better Ground Plane Estimation

 Incorporate models for sloping roads (B-Splines)

Thank you for your attention!

Bug Busters