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Example: Digit Classification MNIST 
MNIST data set 
http://yann.lecun.com/exdb/mnist/ 

• K=10 classes 

• Each image 28x28 = 784 dimensional 

• N=60000 samples in training set 
10000 samples in test set 

Learning algorithm 
• Linear logistic regression model  

(no feature mapping) 

• Maximum likelihood error function 

• Stochastic Gradient Descent with 
learning rate: 0.13 
batch size: 600 
weights initialized with 0 

Result 
• error rate: 7.5% 
• currently best error rate: 0.21%  

(deep neural network)

http://yann.lecun.com/exdb/mnist/


Multiclass Logistic Regression (K>2)



Multiclass Logistic Regression (K>2)



Logistic Regression — Summary

• Probabilistic discriminative model 

• Cost function by ML or MAP 
• Optimization by gradient descent



Implementation with NumPy 
But before some Vector/Matrix/Tensor Basics

• source code at: http://github.com/bbaeuml/lecture-ss17-deep-learning 

• mnist/logistic_regression_np.py/

http://github.com/bbaeuml/lecture-ss17-deep-learning
https://github.com/bbaeuml/lecture-ss17-deep-learning/blob/master/mnist/logistic_regression_np.py


• A matrix M is a two dimensional array with elements

Mij ,

where i is called the row index and j the column index.
The graphical representation of a N1 ⇥N2 matrix is

M =

0
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• A vector v is a ”one dimensional” matrix with elements

vi,

with dimension N and graphical representation

v =

0

BBB@

v1
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...
vN

1

CCCA

Hence, we have column vectors meaning that v could be interpreted as a
matrix with N2 = 1 column and N1 = N rows.



• Transpose of a matrix
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• Transpose of a column vector is a row vector.

vT
=

�
v1, v2, . . . , vN

�

• Matrix product

C = AB

Cij =

X

k

AikBkj

• Matrix vector product

b = Ma

bi =
X

k

Mikak



• A Tensor of rankK is kind of a multi-dimensional array withK dimensions

or axes. The elements of a tensor A are

Ai1i2...iK ,

with indices ik = 1, . . . , Nk and k = 1, . . . ,K.

• Transpose of a tensor. Elements of the transposed tensor AT
are

⇣
AT

⌘

i1...iK
= AiK ...i1 .

• Generalized matrix product of tensors Ai1...iKA
and Bj1...jKB

,

Ci1...iKA�1j1...jKB�2jKB
=

X

k

Ai1...iKA�1kBj1...kjKB
.

• Tensor product of two tensors A with rank KA and B with KB over L
axes pairs {(a1, b1), . . . , (aL, bL)} results in a tensor C with rank KC =

KA ⇥KB � L.

Ci1...ia1�1ia1+1...iaL�1iaL+1...iKA
j1...jb1�1jb1+1...jbL�1jbL+1...jKB

=

=

X

k1,...,kL

Ai1...ia1�1k1ia1+1...iaL�1kLiaL+1...iKA
Bj1...jb1�1k1jb1+1...jbL�1kLjbL+1...jKB



MNIST Logistic Regression 
Feature (Weights) Visualization

07.06.17, 16(38MNIST For ML Beginners  |  TensorFlow

Page 4 of 11https://www.tensorflow.org/get_started/mnist/beginners

We're now ready to actually make our model!

Softmax Regressions

We know that every image in MNIST is of a handwritten digit between zero and nine. So there are

only ten possible things that a given image can be. We want to be able to look at an image and

give the probabilities for it being each digit. For example, our model might look at a picture of a

nine and be 80% sure it's a nine, but give a 5% chance to it being an eight (because of the top loop)

and a bit of probability to all the others because it isn't 100% sure.

This is a classic case where a softmax regression is a natural, simple model. If you want to assign

probabilities to an object being one of several different things, softmax is the thing to do, because

softmax gives us a list of values between 0 and 1 that add up to 1. Even later on, when we train

more sophisticated models, the <nal step will be a layer of softmax.

A softmax regression has two steps: <rst we add up the evidence of our input being in certain

classes, and then we convert that evidence into probabilities.

To tally up the evidence that a given image is in a particular class, we do a weighted sum of the

pixel intensities. The weight is negative if that pixel having a high intensity is evidence against the

image being in that class, and positive if it is evidence in favor.

The following diagram shows the weights one model learned for each of these classes. Red

represents negative weights, while blue represents positive weights.

We also add some extra evidence called a bias. Basically, we want to be able to say that some

• K classes Ck with 1-of-K coding scheme for target variable t,

e.g., t = (0, 0, 1, 0, 0)

T
.

• For each class Ck a regression model with ”activation function”

ak = a(x,wk) = w

T
k�(x).

• Conditional distribution for class Ck by the softmax transformation and

distribution for t

p(Ck|x,wk) = yk =

exp(ak)P
j exp(aj)

p(t|x,W) =

KY

k

y

tk
k ,

with weight matrix W = (w1, . . . ,wK).

• The discriminant function

f(x) = argmax

t
p(t|x).



XOR-Problem 
Classical Approach
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Curse of Dimensionality

• For general, flexible model need many additional features 

• Leads in effect to “local interpolation” around training samples for 
generalization. 

• Curse of dimensionality:  needed training data to cover whole space increases 
exponentially with dimension. 

• Countermeasure: dimensionality reduction (e.g., with PCA) before feeding into 
general classifier 

• -> non-homogenous learning algorithm

1.4. The Curse of Dimensionality 35

Figure 1.20 Illustration of a simple approach
to the solution of a classification
problem in which the input space
is divided into cells and any new
test point is assigned to the class
that has a majority number of rep-
resentatives in the same cell as
the test point. As we shall see
shortly, this simplistic approach
has some severe shortcomings.
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fall in the same cell. The identity of the test point is predicted as being the same
as the class having the largest number of training points in the same cell as the test
point (with ties being broken at random).

There are numerous problems with this naive approach, but one of the most se-
vere becomes apparent when we consider its extension to problems having larger
numbers of input variables, corresponding to input spaces of higher dimensionality.
The origin of the problem is illustrated in Figure 1.21, which shows that, if we divide
a region of a space into regular cells, then the number of such cells grows exponen-
tially with the dimensionality of the space. The problem with an exponentially large
number of cells is that we would need an exponentially large quantity of training data
in order to ensure that the cells are not empty. Clearly, we have no hope of applying
such a technique in a space of more than a few variables, and so we need to find a
more sophisticated approach.

We can gain further insight into the problems of high-dimensional spaces by
returning to the example of polynomial curve fitting and considering how we wouldSection 1.1

Figure 1.21 Illustration of the
curse of dimensionality, showing
how the number of regions of a
regular grid grows exponentially
with the dimensionality D of the
space. For clarity, only a subset of
the cubical regions are shown for
D = 3.
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XOR Problem 
Neural Network Approach
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Multilayer Neural Networks

Input Layer  
 x

Output Layer 
y

Hidden Layer 
h1

Hidden Layer 
h2

Neuron



2-Layer Neural Networks
5.1. Feed-forward Network Functions 231

Figure 5.3 Illustration of the ca-
pability of a multilayer perceptron
to approximate four different func-
tions comprising (a) f(x) = x2, (b)
f(x) = sin(x), (c), f(x) = |x|,
and (d) f(x) = H(x) where H(x)
is the Heaviside step function. In
each case, N = 50 data points,
shown as blue dots, have been sam-
pled uniformly in x over the interval
(−1, 1) and the corresponding val-
ues of f(x) evaluated. These data
points are then used to train a two-
layer network having 3 hidden units
with ‘tanh’ activation functions and
linear output units. The resulting
network functions are shown by the
red curves, and the outputs of the
three hidden units are shown by the
three dashed curves.

(a) (b)

(c) (d)

will show that there exist effective solutions to this problem based on both maximum
likelihood and Bayesian approaches.

The capability of a two-layer network to model a broad range of functions is
illustrated in Figure 5.3. This figure also shows how individual hidden units work
collaboratively to approximate the final function. The role of hidden units in a simple
classification problem is illustrated in Figure 5.4 using the synthetic classification
data set described in Appendix A.

5.1.1 Weight-space symmetries
One property of feed-forward networks, which will play a role when we consider

Bayesian model comparison, is that multiple distinct choices for the weight vector
w can all give rise to the same mapping function from inputs to outputs (Chen et al.,
1993). Consider a two-layer network of the form shown in Figure 5.1 with M hidden
units having ‘tanh’ activation functions and full connectivity in both layers. If we
change the sign of all of the weights and the bias feeding into a particular hidden
unit, then, for a given input pattern, the sign of the activation of the hidden unit will
be reversed, because ‘tanh’ is an odd function, so that tanh(−a) = − tanh(a). This
transformation can be exactly compensated by changing the sign of all of the weights
leading out of that hidden unit. Thus, by changing the signs of a particular group of
weights (and a bias), the input–output mapping function represented by the network
is unchanged, and so we have found two different weight vectors that give rise to
the same mapping function. For M hidden units, there will be M such ‘sign-flip’

• Regression: 3 hidden units

232 5. NEURAL NETWORKS

Figure 5.4 Example of the solution of a simple two-
class classification problem involving
synthetic data using a neural network
having two inputs, two hidden units with
‘tanh’ activation functions, and a single
output having a logistic sigmoid activa-
tion function. The dashed blue lines
show the z = 0.5 contours for each of
the hidden units, and the red line shows
the y = 0.5 decision surface for the net-
work. For comparison, the green line
denotes the optimal decision boundary
computed from the distributions used to
generate the data.
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symmetries, and thus any given weight vector will be one of a set 2M equivalent
weight vectors .

Similarly, imagine that we interchange the values of all of the weights (and the
bias) leading both into and out of a particular hidden unit with the corresponding
values of the weights (and bias) associated with a different hidden unit. Again, this
clearly leaves the network input–output mapping function unchanged, but it corre-
sponds to a different choice of weight vector. For M hidden units, any given weight
vector will belong to a set of M ! equivalent weight vectors associated with this inter-
change symmetry, corresponding to the M ! different orderings of the hidden units.
The network will therefore have an overall weight-space symmetry factor of M !2M .
For networks with more than two layers of weights, the total level of symmetry will
be given by the product of such factors, one for each layer of hidden units.

It turns out that these factors account for all of the symmetries in weight space
(except for possible accidental symmetries due to specific choices for the weight val-
ues). Furthermore, the existence of these symmetries is not a particular property of
the ‘tanh’ function but applies to a wide range of activation functions (Ku̇rková and
Kainen, 1994). In many cases, these symmetries in weight space are of little practi-
cal consequence, although in Section 5.7 we shall encounter a situation in which we
need to take them into account.

5.2. Network Training

So far, we have viewed neural networks as a general class of parametric nonlinear
functions from a vector x of input variables to a vector y of output variables. A
simple approach to the problem of determining the network parameters is to make an
analogy with the discussion of polynomial curve fitting in Section 1.1, and therefore
to minimize a sum-of-squares error function. Given a training set comprising a set
of input vectors {xn}, where n = 1, . . . , N , together with a corresponding set of

A. DATA SETS 683
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Figure A.6 The left-hand plot shows the synthetic regression data set along with the underlying sinusoidal
function from which the data points were generated. The right-hand plot shows the true conditional distribution
p(t|x) from which the labels are generated, in which the green curve denotes the mean, and the shaded region
spans one standard deviation on each side of the mean.
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Figure A.7 The left plot shows the synthetic classification data set with data from the two classes shown in
red and blue. On the right is a plot of the true posterior probabilities, shown on a colour scale going from pure
red denoting probability of the red class is 1 to pure blue denoting probability of the red class is 0. Because
these probabilities are known, the optimal decision boundary for minimizing the misclassification rate (which
corresponds to the contour along which the posterior probabilities for each class equal 0.5) can be evaluated
and is shown by the green curve. This decision boundary is also plotted on the left-hand figure.

• Classification: 2 hidden units



Universal Approximation Theorem

“A two-layer network with linear outputs can uniformly 
approximate any continuous function on a compact input domain 
to arbitrary accuracy provided the network has a sufficiently large 
but finite number of hidden units.” 

• Holds for a wide range of hidden unit activation functions 

• But theorem does not state: 

• How to find the parameters? 

• How well does it generalize in learning settings? 

• Very nice interactive visual proof for sigmoid activation function in 
http://neuralnetworksanddeeplearning.com/chap4.html



Multilayer Neural Networks
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Gradients in Multilayer Neural Networks
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Basics of Derivatives of Higher Dimensional Functions



Gradients in Multilayer Neural Networks
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Adding nodes for the derivatives to the computation graph
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Backpropagation Algorithm

• Special case of more general Automatic Differentiation (AD) in reverse mode 

• AD can be applied to arbitrary acyclic computation graphs 

• Maximum O(N^2) operations for gradients for N nodes in graph 
(naive chain rule would be exponential in N) 

• Operations for derivatives added to the computation graph 

• Higher order derivatives are straightforward: derive the computation graph of 
the derivatives operations 

• Some deep learning frameworks implement this “graph rewrite” method, e.g., 
TensorFlow and Theano



MNIST Example with Backpropagation and TensorFlow

• http://github.com/bbaeuml/lecture-ss17-deep-learning 

• logistic_regression_tf.py 

• model is constructed and run as tensorflow computation graph 

• logistic_regression_tf_gradient.py 

• use automatic differentiation to add subgraph for gradient of cost 

• logistic_regression_tf_full.py 

• add node for weight update inside the graph 

• logistic_regression_tf_optimizer.py 

• automatically add subgraph for complete gradient descent step

http://github.com/bbaeuml/lecture-ss17-deep-learning
http://github.com/bbaeuml/lecture-ss17-deep-learning/blob/master/mnist/logistic_regression_tf.py
http://github.com/bbaeuml/lecture-ss17-deep-learning/blob/master/mnist/logistic_regression_tf_gradient.py
http://github.com/bbaeuml/lecture-ss17-deep-learning/blob/master/mnist/logistic_regression_tf_full.py
http://github.com/bbaeuml/lecture-ss17-deep-learning/blob/master/mnist/logistic_regression_tf_optimizer.py

