Deep Learning in Robotics

Neural Networks:

XOR Problem, Multilayer Networks,
Backpropagation

Berthold Bauml

Autonomous Learning Robots Lab
DLR Institute of Robotics and Mechatronics
berthold.baeuml@dir.de

mailto:berthold.baeuml@dlr.de

Organizational

e approval of lecture only for master's course "Robotics, Cognition,
Intelligence”!!!

e Exams on last lecture date: 27.07.2017

e please register asap so that we know the numbers for room selection

 contact: berthold.baeumi@dir.de

 information: http://www®.in.tum.de/Main/TeachingSS2017Deepl earning
» password for lecture slides: TUM17DLR

* important messages by email via TUMOnline

mailto:berthold.baeuml@dlr.de
http://www6.in.tum.de/Main/TeachingSS2017DeepLearning

Example: Digit Classification MNIST
MNIST data set

http://yann.lecun.com/exdb/mnist/
o K=10 classes EIIIIIIEI

® Fach image 28x28 = 784 dimensional

e N=60000 samples in training set
10000 samples in test set

Learning algorithm

® |inear logistic regression model
(no feature mapping)

e Maximum likelihood error function

® Stochastic Gradient Descent with
learning rate: 0.13

batch size: 600
weights initialized with O

Result
® error rate: 7.5%

® currently best error rate: 0.21%
(deep neural network)

http://yann.lecun.com/exdb/mnist/

Multiclass Logistic Regression (K>2)

e K classes () with 1- of-K coding scheme for target variable t,
e.g.,t=(0,0,1,0,0)".

e For each class C} a regression model with ”activation function”
ar = a(x, wi) = wj ¢(x).

e Conditional distribution for class C by the softmax transformation and
distribution for t

P(Cklx, Wk) = yk = ze .Xfx(;fij)

p(t|x, W) Hy

with weight matrix W = (wy,...,wg).

e The discriminant function

f(x) = arg max p(t|z).

Multiclass Logistic Regression (K>2)

e The posterior given data set (T, X) = {(tn,Xn) }n=1.... N

_ p(TIX, W)p(W)
P2 =7 mx)

e Maximum likelihood solution

N
Epn(W) = —log p(T|X, W) = — > "log p(tn|xn, W)

N K
EmL(W) = — Z Z tnk 108 Ynk
n k

N
Vi, EML(W) = Z(ynj — tnj)@p-

with

0
% = Ye(Ikj — Yj);

a;

Logistic Regression — Summary

® Probabillistic discriminative model
e Cost function by ML or MAP
e Optimization by gradient descent

Implementation with NumPy
But before some Vector/Matrix/Tensor Basics

® source code at: http://github.com/bbaeuml/lecture-ss17-deep-learning
® mnist/logistic_regression_np.py/

http://github.com/bbaeuml/lecture-ss17-deep-learning
https://github.com/bbaeuml/lecture-ss17-deep-learning/blob/master/mnist/logistic_regression_np.py

e A matrix M is a two dimensional array with elements
sz ’

where ¢ is called the row index and j the column index.
The graphical representation of a N7 X Ny matrix is

(Mu Myo Mz ... Min, \
Moy Mooy Msog ... Mapn,
M =
\MNll My,2 Mpnyz ... MN1N2/

e A vector v is a "one dimensional”’ matrix with elements
Uy,

with dimension N and graphical representation

Hence, we have column vectors meaning that v could be interpreted as a
matrix with No = 1 column and Ny = N rows.

e Transpose of a matrix

(MT) =My,
ij
(Mn Mo M3y M1 \
AT Mio Moy Mz Mp,2
\]\41N1 Moy, Msn, ... MNQNJ

e Transpose of a column vector is a row vector.

VT:(Ul, Vo, ..., UN)

e Matrix product
C=AB
Cij = Z A, Bi;
k

e Matrix vector product

b = Ma

b; = Z M;ay,
k

e A Tensor of rank K is kind of a multi-dimensional array with K dimensions
or axes. The elements of a tensor A are

A

2129... 0K 9
with indices i, =1,..., Ny and k=1,..., K.

e Transpose of a tensor. Elements of the transposed tensor A’ are

(AT) o =Ai i

11...1K

e Generalized matrix product of tensors A;, ;. and Bj,

K 4 JK g

Ciy ik 11k 20Ky = E Aiy iy 1k By ki, -
k

e Tensor product of two tensors A with rank K4 and B with Kg over L

axes pairs {(a1,b1),...,(ar,br)} results in a tensor C with rank Ko =
Kax Kp — L.

C; =

1---%aq—1%aq+1---%ay —1%ap +1---0K 4 J1---Jbqy —1Jby41---Jbp —1Jbp +1---JK g

= E Aiy iy 1kviay11eiay —1kniay 41ix s Bt dvy—1k1dby41edby —1KLb, 1G5
kp,... kL

MNIST Logistic Regression
Feature (Weights) Visualization

ay, = a(x,wy) = wj, ¢(x)

0 1 2 3 4
5 6 7 38 9

XOR-Problem

Classical Approach
1.0~ T _

05- o : ° 0'..'._-

X2 0ot

0.5} *°

~1.0

0 -05 00 05
X1

e Linear logistic regression for K = 2

= o(w' ¢(x)).

e Not linear separable; linear feature map not working

b(x) =

(1,21, 22)

1.0——————— _
::o * o'.;
05 . :\‘o. .
.‘.: :. ..:....' o
2 K .'...: o ..?.t 4 . ° .:
00 RS
A R Y R
| @ ° P o) °
—05 ° o * &° .3
) ° ..fc
190 "05 00 05
x1 x2

e (Classical approach: add new static features!

¢(X) = (13 Ir1,T2, 331332)

Curse of Dimensionality

® For general, flexible model need many additional features

® | eads in effect to “local interpolation” around training samples for
generalization.

e Curse of dimensionality: needed training data to cover whole space increases
exponentially with dimension.

® Countermeasure: dimensionality reduction (e.g., with PCA) before feeding into
general classifier

® -> non-homogenous learning algorithm

XOR Problem

e Stacking linear classifiers with linear mapping (weights w and bias b)

y =o(w'x + b)
Here, three layers of classifiers

h1 = O'(WITX == bl)
hy = o(wy ' hy + by)
y = o(wz " hy + b3)

e Interpretation: learning features!

y = U(WT¢(X,) +b)

Neural Network /-1\|é>proach

1.0

0.8

0.6

0.4

0.2

0.0

,,,,,,,,,,,,,,,,,,,,

e Nonlinearity is essential for
making "hard decisions”.

h1 h2 y

Multilayer Neural Networks

Neuron

Input Layer Hidden Layer Hidden Layer Output Layer
X h1 h2 y

e Neurons/Units compute weighted sum of inputs & apply activation func-
tion.

h = g(z w;x; + b)

e [-layer neural network with one input, L — 1 hidden, one output layers.
e Each layer [has NN; identical neurons n with distinct weights and biases.

e Typically, the activation functions of the hidden layers are the same and
nonlinear and the one of the output layer is linear.

2-Layer Neural Networks

e (Classification: 2 hidden units ® Regression: 3 hidden units

Universal Approximation Theorem

“A two-layer network with linear outputs can uniformly
approximate any continuous function on a compact input domain
to arbitrary accuracy provided the network has a sufficiently large
but finite number of hidden units.”

e Holds for a wide range of hidden unit activation functions
e But theorem does not state:
e How to find the parameters?

e How well does it generalize in learning settings?

® \ery nice interactive visual proof for sigmoid activation function in
http://neuralnetworksanddeeplearning.com/chap4.htmi

Multilayer Neural Networks

TR
@ @ e >_>..._.@ ,@

e In vector/tensor notation with all N; neurons of a layer | combined:

h;, = gl(WlThl_l -} bl), forl=1,...L,
with hg=x and y=hp,

with W, the N;_; X N; dimensional weight matrix, bias vector b;, and

vectorized activation function g;(v) = (gi(v1), ..., qi(vn))" forv = (v,...,on)".

e Output of each layer h; depends on the previous layer’s output and the
model parameters 8; = (W, b;).

h; = h;(h;—1,6))

e Training by minimizing error function (e.g., cross entropy) for all param-
eters ®@ = (04,...,0) with gradient descent,

E =E(®) = E(y).

Gradients in Multilayer Neural Networks

S
@ @ e >_>..._.@ ,@

e Forward sweep: about O(LN 2) operations, assuming N; = N neurons in
each layer.

e Need gradients

oF
00,

for all LN parameters 0;.

e We already know how to compute the ”local” gradients

OE Ohy., Oh
ahL’ (9hl ’601.

e Need to compute gradients along the network layers.

Basics of Derivatives of Higher Dimensional Functions

e Higher dimensional function

z=2zy), y=vy), z=2zx) =2(yx)

e Jacobian matrix

. yi

_ Oy
J - 8a:j

= o

e Chain rule

0z 0z 0y Oz Z 0z; OYk
k

a_x B ga_x’ 8a:j 8yk 833j

e (Generalizes to matrix and tensor functions.

Gradients in Multilayer Neural Networks

N
@ @ e >_>..._.@ ,@

e Numerical differentiation e Forward sweep: O(L N2) operations
~ (© +€in) (), n=1,...Nj.
801n €

— for each of the LN? parameters one forward sweep.
— O(LN?*LN?) operations; slow in deep networks, L > 10%, N > 10°

e Naive chain rule

OE _OE 0hy Ohys Ohyy Ohy
50, 0Ohy oh, , ~Oh,., Oh, 00,

— for each 6; sweep back through chain of Jacobian-vector products
— O(LLN?) operations

Gradients in Multilayer Neural Networks

3
@ @ e >_>_.@ @

e Can we do better?

OE OE 0hy Ohy. o Ohy 1 Ohy
00, Ohpohy_, ~~Ohy, Oh; 00,

-

OF

h;

8E o 3E 8hL 3h1+2 8h[+1
00141 Ohp Ohy_, Ohyyy 00141

OF
dhy 4

e Reuse already computed terms!

OE OE 0hyy,
oh; — Ohy, Ohy
OE OE Oh
00, ~ Oh,; 06,

, withl=L,...,2.

Backpropagation Algorithm!

Adding nodes for the derivatives to the computation graph

h;

3
Ol D+ <—0

OE OE 0h

oh; Oh;y; Oh,

OE _ OE 0h,
00; Oh; 00,
4
>

Gradients in Multilayer Neural Networks

3
@ @ e >_>_.@ @

e Numerical differentiation Forward sweep: O(LN?) operations
~ (+€l) (), 'n,=1,...Nl.
(991n €

— for each of the LN? parameters one forward sweep.
— O(LN?*LN?) operations; slow in deep networks, L > 10%, N > 10°

e Naive chain rule

8E OE dhp Ohyp Ohyyy Ohy
06, ~ Ohy dhy_; " Ohyy, Oh; 96,

— for each 6; sweep back through chain of Jacobian-vector products
— O(LLN?) operations

e Backpropagation (smart chain rule)

— O(LN?) operations; only one forward and one backward sweep!

Backpropagation Algorithm

® Special case of more general Automatic Differentiation (AD) in reverse mode
® AD can be applied to arbitrary acyclic computation graphs

e Maximum O(N”2) operations for gradients for N nodes in graph
(naive chain rule would be exponential in N)

® Operations for derivatives added to the computation graph

e Higher order derivatives are straightforward: derive the computation graph of
the derivatives operations

e Some deep learning frameworks implement this “graph rewrite” method, e.g.,
TensorFlow and Theano

MNIST Example with Backpropagation and TensorFlow

® http://github.com/bbaeuml/lecture-ss17-deep-learning

® |oqistic_regression_tf.py
e model is constructed and run as tensorflow computation graph

® |oqistic_regression_tf _gradient.py
® use automatic differentiation to add subgraph for gradient of cost
® |oqistic_regression_tf full.py

e add node for weight update inside the graph
® |oqistic_regression_tf optimizer.py

¢ automatically add subgraph for complete gradient descent step

http://github.com/bbaeuml/lecture-ss17-deep-learning
http://github.com/bbaeuml/lecture-ss17-deep-learning/blob/master/mnist/logistic_regression_tf.py
http://github.com/bbaeuml/lecture-ss17-deep-learning/blob/master/mnist/logistic_regression_tf_gradient.py
http://github.com/bbaeuml/lecture-ss17-deep-learning/blob/master/mnist/logistic_regression_tf_full.py
http://github.com/bbaeuml/lecture-ss17-deep-learning/blob/master/mnist/logistic_regression_tf_optimizer.py

