
DEPARTMENT OF ELECTRICAL AND
COMPUTER ENGINEERING

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Institute for Integrated Systems

Mixed-criticality scheduling of an
autonomous driving car

Lu Cheng

DEPARTMENT OF ELECTRICAL AND
COMPUTER ENGINEERING

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Institute for Integrated Systems

Mixed-criticality scheduling of
an autonomous driving car

Author: Lu Cheng
Supervisor: Prof. Dr.-Ing. Walter Stechele
Advisors: Dr. sc. nat. Kai Huang

M. sc. Biao Hu
Date: September 12, 2016

I confirm that this master’s thesis is my own work and I have documented all sources and
material used.

München, 12. September 2016 Lu Cheng

Acknowledgments

I would like to thank Mr. Biao Hu, Prof. Kai Huang and Prof. Walter Stechele who
have given me such an interesting topic as my master thesis and were always ready and
willing to answer my questions and give suggestions. I also want to thank the students
who participated in the SS 2016 lab course ”Hardware/Software Co-Design with a LEGO
car”. Especially Simon Rummert, Oleksii Moroz, Christoph Wüstner, Yann Fabel, Adnan
Makhani and Fang Yuan who always took part and continuously improved their codes.
Special thanks goes to Roger Rösch and Florian Hisch. Although Roger has already grad-
uated he still keeps providing help for the project. And Florian Hisch has given me such
a lot of suggestions and tips on my works. Without their help my work also the project
would be in a far earlier state. Finally I would like to thank Prof. Dr. -Ing. Elmar Schrüfer,
who is in charge of my double master program, he is such a nice professor, who cares not
only our study but also our lives. With his help I adapted myself into the life in germany
such quickly. I appreciate the accompany and encourage from all of my friends, together
with them I had a great time in germany!

vii

Abstract

An automotive system is a typical mixed-criticality system, in the sense that tasks with
different criticality levels are running on a shared platform. In mixed-criticality system,
the timing of safety-critical tasks must be strictly guaranteed. Especially in a multi-core
platform, the exists of resource conflict, deadlock make the design and analysis of real-
time system even more difficult. There are already several scheduling algorithms, which
are proposed to solve multi-core scheduling problem, such as partitioned EDF-VD, Flex-
ible Time Triggered Scheduler (FTTS). But none of the them is designed for precedence-
constrained tasks system. And the framework used to implement the partitioned EDF-
VD and FTTS is only designed for evaluating the overheads of different scheduling algo-
rithms with simulated busy-waiting tasks. There is no portable framework, which could
implement different scheduling algorithms with real-life task set in multi-core platform.

This thesis is based on the work of the mentioned framework called Hierarchical Schedul-
ing Framework (HSF). This framework is easily extensible, such that some new schedul-
ing algorithms can be implemented and evaluated. The research object is an autonomous
model car, which uses a quad-core platform “Raspberry Pi 3” with a Linux operating sys-
tem as a main processor. After studying the task set of the autonomous car, two schedul-
ing algorithms “Time Triggered Scheduling with Mode Change(TTS-MC)” and “Event-
scheduler in Multi-Core (Event scheduler-MC)” for precedence-constrained task set are
presented and implemented. After all a general method is presented, with which a mixed-
criticality precedence-constrained task set could be easily implemented. The results show
that with the new scheduling algorithms there is no deadline miss of safety-critical tasks
and the scheduling overhead is less than 0.1%.

Except the design of schedulers, the design of the hardware and software structure as
well as the functionality development of path tracking of the autonomous car are also big
parts of this thesis.

ix

x

Contents

Acknowledgements vii

Abstract ix

List of Abbreviations xiii

1. Introduction 1
1.1. Background . 1
1.2. Motivation . 1
1.3. Related Work . 2
1.4. Contributions . 4
1.5. Organization . 4

2. Hardware and software Design for the autonomous car 5
2.1. Project Overview . 5
2.2. Hardware Design . 6
2.3. Software Design . 8

3. Task allocation 11
3.1. Comparison of the global and partitioned scheduling 11
3.2. Notation Declaration . 11
3.3. Worst Case Execution Time measurement . 13
3.4. Makespan Optimization . 13

3.4.1. Graham’s List Scheduling . 14
3.4.2. Polynomial Time Approximation Scheme 14

3.5. Torsche scheduling toolbox . 15

4. Mixed-Criticality scheduling of precedence-constrained task set 19
4.1. Problem description . 19
4.2. Time Triggered Scheduler with Mode Change 20
4.3. Event Scheduler in Multi-Core . 25
4.4. Scheduling examples . 27

5. Implementation 29
5.1. Hierarchical Scheduling Framework . 29

5.1.1. The Thread Hierarchy . 30
5.1.2. Scheduling Mechanism . 32

5.2. Implementation of TTS-MC . 35
5.2.1. Parser Extension and XML sample . 40

xi

Contents

5.2.2. Simulation Output and Visualization 42
5.3. Event scheduler-MC . 42

5.3.1. Parser Extension and XML sample . 44
5.3.2. Simulation Output and Visualization 45

5.4. Real task set support . 46
5.5. Time Measurement . 46

6. Integration of software modules 49
6.1. Path tracking . 49
6.2. integration of tasks . 54

7. Experiments 59
7.1. Evaluation of TTS-MC . 59
7.2. Evaluation of Event scheduler-MC . 61

8. Conclusion and problems 65
8.1. Conclusion . 65
8.2. Problems . 65

Appendix 69

A. Installation of Hierarchical Scheduling Framework 69

B. XML file for experiments 73
B.1. XML file for TTS-MC experiment . 73
B.2. XML file for Event scheduler-MC experiment 76

Bibliography 79

xii

Contents

List of Abbreviations

MCS Mixed-Criticality System
EDF-VD Earliest Deadline first with Virtual Deadline
WCET Worst Case Execution Time
FTTS Flexible Time Triggered Scheduler
HSF Hierarchical Scheduling Framework
TTS-MC Time Triggered Scheduler in Multi-Core
ASIL Automotive Safety Integrity Level
AUTOSAR AUTomotive Open System ARchitecture
GPS Global Position System
LITMUSRT Linux Testbed for Multiprocessor Scheduling in Real-Time Systems
DLS Dynamic List Scheduling
IMU Inertial Measurement Unit
PWM Pulse Width Modulation
I2C Inter-Integrated Circuit
ILP Integer Linear Programming
POSIX Portable Operating System Interface
TSC Time Stamp Counter
RGB Red Green Blue
OpenCV Open source Computer Vision
CPU Central Processing Unit
FIFO First-In First-Out Queue
FPGA Field Programmable Gate Array
GPU Graphics Processing Unit
OS Operating System
RAM Random Access Memory

xiii

1. Introduction

1.1. Background

To integrate components with different critical levels onto a shared hardware platform is
one of the trends in the design of real-time and embedded systems. Such kind of system is
called mixed-criticality system (MCS)[9]. Unmanned aerial vehicles(UAVs)[35] and auto-
motives are typical mixed-criticality systems. Take UAV as an example, there are usually
3 different critical levels of tasks: 1) the most critical tasks are “safety-critical” operations,
which adjust the flight surfaces to maintain stability. These tasks are not allowed to miss
their deadlines (hard real-time). 2) the second critical tasks are “mission-critical” opera-
tions, which are in charge of the jobs such as communication, decision making. Several
misses of deadlines are tolerant, but tasks should not be delayed for a long time (soft
real-time). 3) Tasks in charge of other works are of lowest criticality, such as the optimal
route searching algorithm, which may take a lot time (best effort). A mixed-criticality
system could have two or more distinct levels according different standards. For exam-
ple the Automotive Safety Integrity Levels (ASILs)[38] is a classification scheme defined
by ISO 26262[29][32], which defines 5 criticality levels of automotive systems: ASIL A,
ASIL B, ASIL C, ASIL D and a non-hazardous level QM. There are already some software
standards, which are focus on mixed-criticality issues, such as the AUTOSAR[8] (AUTo-
motive Open System ARchitecture) in automotive industry and ARINC standards in the
avionics industry.

Another trend in development of real-time and embedded system is the extension of us-
ing multi-core platform[15]. This is due to the demand on higher computational ability,
smaller size, less weight, less power consumption as well as lower cost, so called “SWaP
+C” concerns. Parallelism is an effective solution to improve computational ability. But
problems such as resource conflict, cache contention, deadlock caused by parallelism has
made the development of mixed-criticality system more difficult. The biggest challenge
is to guarantee the safety assurance of safety-critical tasks. A lot of researches have been
done to improve the timing assurance of safety-critical tasks in phases of modeling, veri-
fication, design as well as implementation on both of hardware and software design.

1.2. Motivation

This thesis is based on a project from the lab-course “HW/SW co-design with a LEGO car”
, which targets to build a low-cost autonomous model car. The car has been equipped with
several sensors such as cameras, ultrasonic sensors, GPS module to allow autonomous

1

1. Introduction

driving. The car should be able to drive on a road with clear board towards a target loca-
tion and follow instructions of road signs and traffic lights. In the designed autonomous
car system a quad-cores hard-ware platform Raspberry Pi 3 is used as a main processor.
And there will be 10 tasks with different criticality levels running inside, which makes the
system a typical mixed-criticality system. The car weighs more than 20 kg, could reach
the speed up to 80 km/h. Deadline misses such as the speed control or the steering func-
tion could lead to serious damages. Therefore it is essential to study the timing feature of
this system and provide a solution to guarantee the real-time of safety-critical tasks.

1.3. Related Work

The first research on mixed-criticality scheduling on multiprocessor platform is presented
in 2009 by Anderson et al.[2] and extended in 2010[27]. The main mechanism of their pre-
sented architecture (referred as ”MC2”) is to execute less critical task in the left time of
more critical task, which is called “slack shifting” in order to improve the utilization of
computational bandwidth. This mechanism is achieved by assigning high critical tasks
with multiple Worst Case Execution Time(WCET). The MC2 consists of 5 criticality lev-
els: A, B, C, D, E. Different scheduling methods are used in different layers, e.g. level
A tasks are statistic assigned and cyclic released, level B with a Partitioned-EDF(Eariest
deadline first) scheduler, level-C, D with G-EDF. When scheduling, each task is allocated
a budget equal to its WCET value for its own criticality level. For implementation a
LITMUSRT [10] based scheduler was developed as a testbed for experimentally explor-
ing various implementation-related tradeoffs. With this framework Bommert[7] proposed
a method to segment parallelized algorithms in mixed criticality multi-processor system
in order to obtain proper load distributions with reduced overhead.

Kritikakou et al.[21] provided a new architecture, in which tasks are distinguished as only
two levels: HI-criticality and LO-criticality. Same architecture was proposed by S.Baruah
et al.[4]. The algorithm called EDF-VD(Earliest Deadline First with Virtual Deadlines)[40]
has also two criticality levels. The concept of virtual deadline is introduced, which is
calculated according to a speed up factor and utilization bounds. The schedulability has
been theoretically proved. Both of their works found HI-criticality task will be interfered
by a LO-criticality task running on a different core due to the use of shared buses and
memory controllers. LO-criticality task will be just aborted when some specific event
happened, e.g. when a task overruns its virtual deadline. Implementation of Kritikakou
et al.’s works were applied on a multi-core platform, the TMS320C6678 chip of Texas
Instrument. The scheduler functions such as suspension and the resume of low criticality
tasks is implemented using the event and interrupt mechanisms.

Task allocation in multi-core platform is also an important factor, which impacts the
performance of a scheduler. The research on task allocation varies from different opti-
mization’s objectives. Lakshmanan et al.[20] presented a compress on overload packing
scheme to maximize the tolerance of high-criticality tasks to overloads. Optimization rou-
tines are presented by D.Tamas-Selicean et al.[37] to obtain schedulability with minimum
resource usage. Genetic Algorithms(GA) are used in Zhang et al.[41]’s research to under-

2

1.3. Related Work

take task placement in security-sensitive MCS in order to minimize energy consumption.
There are also works, which target to optimize task allocation for precedence constrained
task graph[31]. The objective is to minimize the makespan. Two optimization approaches
were presented, the simulated annealing and Dynamic List scheduling(DLS) heuristic.
Li and Baruah[24] compare the use of partitioning scheduling and global scheduling for
MCS using a task generation algorithm introduced by Guan et al.[18]. Li and Baruah’s
research shows that partitioning scheduling performs significantly better than algorithm
global scheduling. Socci et al.[34] also studied the task allocation problem of precedence
constrained task graph. In whose work the multiprocessor scheduling problem of a finite
set of precedence related mixed criticality jobs were studied. An algorithm MCPI (Mixed
Criticality Priority Improvement) was presented, which is used to improve the schedula-
bility of a task set. But this algorithm was only for fixed-priority based scheduling and
only for scheduling jobs, not tasks.

With a hierarchical scheduler[11][12][23] partitioning is easily achieved. Components of
Hierarchical are usually managed as Threads. The Hierarchical Scheduling Framework
used by this paper is based on the framework called SF3P[16] from Andres Gomez et
al. in ETH zurich. This framework is used to explore and prototype hierarchical com-
positions of real-time Scheduler. Different from frameworks based on LITMUSRT , this
framework is a reconfigurable scheduling framework running in the user-space, which
means the SF3P could be easily transplanted to other Linux platform since the kernel
is not involved. In this framework common interfaces to all scheduling algorithms are
defined so that scheduling algorithms are separated from its low-level implementation.
Furthermore it could hierarchically compose different scheduling algorithms with its eas-
ily extensible structure. However in the SF3P all the scheduling algorithms are designed
for uni-processor systems. The effectiveness of SF3P is demonstrated by implementing it
on both Raspberry Pi and Intel Core i7 desktop processor.

Later in 2013, a multi-core extension[25] of the SF3P is presented by Lukas Sigrist from
ETH zurich, in whose work a lot of new features are added in this new framework in
order to support multi-core scheduling and evaluation of the overhead. Two multi-core
scheduling algorithms are implemented in this Framework: the Flexible Time Triggered
Scheduler (FTTS) and an extension of the single-core EDF-VD scheduler called Parti-
tioned EDF-VD scheduler. Busy-wait tasks are used in simulation to evaluate the effec-
tiveness and overhead of the schedulers. The results showed that the runtime overhead is
below 0.15% but will increase when periods and execution times of the tasks decreased.
Because only busy-wait tasks are used in simulation, Lukas’s work did not provide a
method about how to apply a real-life task graph with this framework.

From the related works several conclusions could be made: 1) It is necessary to use multi-
ple criticality levels in MCS, different levels should implement with different scheduling
algorithms. 2) Partitioned scheduling has been proved better than global scheduling.
In partitioned scheduling more attention should to be payed on task allocation prob-
lem according to different optimization objectives. 3) There are still no effective sched-
ulers for scheduling precedence constrained task graph. 4) Implementation of schedul-
ing algorithms are usually using kernel patch on linux, e.g. the LITMUSRT [10], the
SCHED DEADLINE kernel patch[13] and the AQuoSA[28] framework. Using kernel

3

1. Introduction

patch needs a lot efforts since it requires re-verification and re-testing of the kernel. An-
other way for implementation is adding new functionalities in the form of dynamically
loaded kernel-space modules, e.g. the Hijack framework[14] and the ExSched framework[3].
But with dynamically loaded kernel-space module the scheduler are still running partly
in the kernel-space and increase the instability of the system. The last way for imple-
mentation is to build the whole framework in user-space. The hierarchical scheduling
framework is a typical user-space framework.

1.4. Contributions

The contributions of this thesis can be summarized as follows:

• Present the hardware/software co-design for the autonomous driving car by ex-
tending Roger Rösch’s work[30].

• Design and implementation of two schedulers called Time Triggered Scheduler with
mode change (TTS-MC) and Event scheduler in multi-core to support scheduling
the precedence-constrained task graph of the autonomous driving car..

• Propose a method, with which real-life task graph could be easily implemented
with the hierarchical scheduling framework and provide a method to quantify the
scheduling overhead and performance of the schedulers .

1.5. Organization

The remainder of this thesis is organized as follows: In chapter 2 the hardware and soft-
ware design of the autonomous car are introduced. Chapter 3 describes the modeling of
the task graph and introduces the task allocation problem and its solutions. In chapter 4
the scheduling algorithm TTS-MC and Event Scheduler-MC are introduced and Chapter 5
mainly presents the implementation details of these two schedulers. Chapter 6 introduces
the functionalities development of path tracking and the method about how to integrate
real-life tasks with the HSF. Experiments which evaluate the scheduling overhead and
prove the effectiveness of these two schedulers are presented in chapter 7. Conclusion
and problems are finally presented in Chapter 8. The information about how to get this
framework and installation can be found in Appendix A. Appendix B is the XML files
used for experiments.

4

2. Hardware and software Design for the
autonomous car

2.1. Project Overview

This project was firstly started by Roger Rösch and his team in the winter semester 2015
/2016. All of the mechanical structure has been designed and implemented. Solutions
for functionalities developments were proposed and some of them have already been im-
plemented but somehow still with problems. After Roger finished his master thesis, this
project is handled over on me and the students on the lab-course “: Hardware/Software
Co-Design with a LEGO car” in summer semester 2016. The objectives of this project are
functionalities development of Path tracking(lane processing), Navigation, Compliance
with traffic signs, lights , Collision avoidance and Mixed-criticality scheduling. Students
were working on different subtasks (functionality development), while I am mainly fo-
cus on the system structure design(both software and hardware), the mixed-criticality
scheduling problems, and also part of path tracking functionality development, after all
also the integration of the whole system. Modifications were made both in hardwares and
softwares.

Figure 2.1 and 2.2 show the overview of the model car. It has four wheel drives and four
independent suspensions. Two servo motors are used for steering and a brushless motor
with its EZRUN-150A-PRO brushless speed controller is used for speed control. With a
11.7V lithium battery the speed of this car could reach more than 80km/h.

Figure 2.1.: autonomous car overview profile

5

2. Hardware and software Design for the autonomous car

Figure 2.2.: autonomous car overview overlook

2.2. Hardware Design

Modifications have been made on the hardware design. Figure 2.3 and 2.4 show the old
hardware design and new hardware design. Table 2.1 shows the details of every used
components.

ULTRASONIC SENSOR

... . ,
{ . ,, '

SPEED GPS

IMU

ETHERNET

STEREO CAMERA
> OBSTACLE DETECTION
> LINE DETECTION

WiFi

CAMERA
>TRAFFIC SIGNS
>TRAFFIC LIGHTS

Figure 2.3.: old hardware design

In the old hardware design, Three development boards including Sabre Lite i.MX6, Rasp-
berry Pi and DE0-NANO FPGA are working together, which makes this system a typi-
cal distributed system. This solution was replaced by a combination of a Raspberry Pi 3
model B and Atmega 328 micro-controller. There are several reasons for the replacements:

• A distributed system is usually regarded as much more stable as a multi-core plat-
form, but which has also higher cost. Table 2.2 shows the comparison of the costs
of the two hardware designs. It shows the cost of the old hardware design is more

6

2.2. Hardware Design

Figure 2.4.: new hardware design

Old Hardware Design New Hardware Design
Raspberry Pi 2 Model B Raspberry Pi 3 Model B
DE0-NANO FPGA Development Board Atmega 328 micro-controller
Sabre Lite i.MX6 Development Board
Two KS103 Ultrasonic Sensors Two KS103 Ultrasonic Sensors
Play station eye Camera Play station eye Camera
Stereo camera Stereo camera
GPS module GPS module
IMU IMU
Wifi Adapter Remote receiver

Table 2.1.: Comparison of old hardware design and new hardware design

than 10 times expensive as the new solution. This is exactly one of the meanings of
develop systems on a multi-core platform.

• The new Raspberry Pi 3 model B delivered on February 2016 has the same price
with raspberry pi 2 but is about 1.5 times powerful. As the table 2.3 shows, both of
the CPU ,GPU and RAM frequency of raspberry Pi 3 is higher than pi 2. The image
processing could save much more times with higher frequency[6]. Higher perfor-
mance makes the solution of running the whole system on one hardware platform
possible.

• The replacement from FPGA to a Atmega328 micro-controller is firstly because of
the low cost as the table 2.2 shows. On the other hand in the old design an emu-
lated Nios processor is running on the FPGA. Since it has no permanent memory,
re-programming is always needed every time we restart the system. The advantage

7

2. Hardware and software Design for the autonomous car

Old hardware design costs New hardware design costs
DE0-NANO FPGA 200 Euro Atmega 328 3 Euro
Raspberry Pi 2 40 Euro Raspberry Pi 3 40 Euro
Sabre Lite i.MX6 275 Euro
Total: 515 Euro Total: 43 Euro

Table 2.2.: Cost of processors in old and new hardware design

Raspberry Pi 2 Raspberry Pi 3
CPU frequency Quad-core 900MHz Quad-core 1.2GHz
CPU architecture Cortex-A7, 32-bit Cortex-A53, 64-bit
GPU VideoCore IV 250MHz VideoCore IV 400MHz
RAM 450MHz DDR2 900MHz DDR2

Table 2.3.: Comparison of Raspberry Pi 2 and 3

of FPGA, parallel computing is totally not utilized. Hence we decide to just use a
micro-controller instead of the FPGA. And Atmega328 has a PWM module, sup-
ports hardware interrupts, has serial port and I2C port, which are enough to meet
our requirements.

• The last reason is related to the specific task graph of this system. Using distributed
structure has less impacts on decreasing the makespan due to the precedence-constrained
task graph. More details about this problem will be presented in the section 2.3.

2.3. Software Design

According to the objectives the task graph in figure 2.5 could be designed, and every
task’s functionality is descried in the table 2.4.

The task graph shows four features, which are important for us to design scheduler:

no. name functionality
T1 Capture2 Get a frame from the top camera
T2 SignsProc Detection and processing of traffic signs
T3 LightsProc Detection and processing of traffic lights
T4 Capture0 Get a frame from the left of stereo camera
T5 Capture1 Get a frame from the right of stereo camera
T6 LanesProc Detection of lanes and implementation of steering
T7 DepthMapProc Generate Depth map and implement collision avoidance
T8 GPSProc Get location from GPS and IMU
T9 SensorFusionSpeed Sensor fusion of different sensors and set proper speed
T10 SensorFusionSteering Sensor fusion of different sensors and set proper steering

Table 2.4.: Functions of every task

8

2.3. Software Design

T1
Capture2

T2
SignsProc

T3
LightsPro

c

T9
SensorFu
sionSpee

d

T4
Capture0

T5
Capture1

T6
LanesPro

c

T10
SensorFu
sionSteeri

ng

T7
DepthMa

pProc

T8
GPSProc

Figure 2.5.: task graph of autonomous car

• Parallelism: Inside the task graph there are mainly 5 branches which could be
parallel executed, SignsProc, LightsProc, LanesProc, DepthMapProc and GPSProc.
Proper using of parallelism would improve the system performance significantly.

• Precedence-constrained: Even though part of the application could be parallel ex-
ecuted, there is no totally independent task. Therefore the makespan of the task
graph is the maximal execution time of all the branches. This is also the reason why
using a distributed system could not decrease the makespan.

• Mixed-criticality: In this task graph not all tasks have the same critical level, e.g.
DepthMapProc(collision avoidance) and LanesProc(path tracking) are more safety
critical compared to other functionalities.

• Synchronous-periodic: Every task in the task graph needs to be executed only once
in one cycle, which means the task graph has the same period with every individual
task.

9

2. Hardware and software Design for the autonomous car

10

3. Task allocation

3.1. Comparison of the global and partitioned scheduling

Works of Giovani Gracioli[17] and Alessandra Melani[26] shows a comparison (table 3.1
) of global scheduling and partitioned scheduling. Even though the global scheduling
has several advantages. This thesis is still focus on partitioned scheduling. Because the
global scheduling will bring a number of preemptions and migrations, which produces
more overheads. Partitioned scheduling could be divided into a job-shop problem and
uniprocessor scheduling problem. The scheduling in uniprocessor is already well-known.
And there are various heuristics for the job-shop problem. The project of this thesis is
development of an autonomous car, which is better to be compatible with the automotive
industry software standard AUTOSAR. Besides the global scheduling algorithms are hard
to be implemented with the hierarchical scheduling framework because of the specific
structure of the framework. Therefore partitioned scheduling is used in our case and task
allocation should be handled properly.

Global Scheduling Partitioned Scheduling
O automatic load balancing O Supported by automotive industry (AUTOSAR)
O lower average response time O No migrations
O more efficient reclaiming O Isolation between cores
O optimal schedulers exist O Mature scheduling framework
X higher migration cost X Cannot exploit unused capacity
X need inter-core synchronization X NP-hard allocation
X Loss of cache affinity X System performance depends on allocation

Table 3.1.: Comparison of global and partitioned scheduling (O means advantages while
X means disadvantages)

3.2. Notation Declaration

In partitioned scheduling, the behaviour of a task τi during scheduling could be defined
by dynamic parameters: start time si, release time ri, process time pi and complete time
ci. Parameters such as WCET(Worst Case Execution Time) Ci, period Ti, static release
time Ri, relative deadline Di, processor index Ni, criticality level χi are static assigned
parameters. m usually indicates the number of processors of a multi-core platform. The
term job of a task τi is used to refer a single execution of the task.

• si: Start time is the time when a job of task start to execute.

11

3. Task allocation

i

pi

ri si ci di t

Figure 3.1.: Parameters of a task

• ri: Release time is the time when the task is released. This parameter is used to
describe the release time of a job of a task.

• pi: Process time is the execution time that a job takes.

• ci: Complete time is the time when a job finishes its execution.

• di: By the deadline a task has to finish its execution. Whether a task has missed its
deadline could be determined by comparing the deadline di with the completion
time ci. It has usually the following relation: di = ri + Di, where Di is the relative
deadline. If a task could not finish before its deadline, we call it deadline miss.

• Ci: Worst case execution time is the maximum length of time a task could take to
execute on a specific hardware platform. Since it is very hard to get the real WCET of
a task, a measured maximal execution time is usually referred as WCET. Therefore
it is possible that a task exceeds its WCET, we call it overrun of a task.

• Ti: Ti is the execution period of a task. In synchronous-periodic task set, T is referred
as the common period of the task set.

• Ri: Ri is a predefined release of a task. This parameter is usually used in time
triggered scheduler, where release time of a task is fixed.

• Di: Relative deadline is a predefined limit time scale, in which a task should have
finished.

• Ni: Ni is the processor index on which a task is assigned.

• χi: χi is the criticality level of a task. This parameter is important in mixed-criticality
system.

Precedence constraints are also important features of a task set. Notation τi � τj is used to
imply that τj cannot be started before τi completes, it could also be represented as τi→ τj .
In implementation a matrix is used to imply the precedence constraints, e.g. the matrix in
equation 3.1 shows the precedence constraints of task graph 2.5, where PREC (i, j) = 1
means τi � τj .

12

3.3. Worst Case Execution Time measurement

PREC =



0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



(3.1)

3.3. Worst Case Execution Time measurement

In order to allocate tasks with right release time. It is necessary to measure the worst case
execution time of a task. Two solutions[39][19][5] are usually used by real-time system
developer to measure the WCET of a task:

• End-to-end measurements of code is usually performed by setting an I/O pin on
the device to high at the start of the task, and to low at the end of the task, using
a logic analyzer to measure the longest pulse width, or by measuring within the
software itself using the system clock or instruction count.

• Manual static analysis techniques is to count the assembler instructions for each
function, loop etc. Once the system clock frequency is known the execution time of
a task could be determined.

In this thesis, the WCETs were measured using the end-to-end measurements of code with
the Linux operating system clock. Every Task is measured for 2 hours and the maximal
execution time is regarded as its WCET. Therefore the WCET in this thesis is not exactly
the notion of ”worst case execution time”. This is also the reason why a task is possible
to overrun its WCET. It is also impossible to get a real WCET because the interference in
a multi-core platform is unpredictable. The maximal measured time will be referred as
WCET in following text of this thesis. After measuring the execution time of every task,
WCETs were determined in table 3.2. The average execution time is also measured on
purpose of analysis the behaviour of a task.

3.4. Makespan Optimization

Makespan indicates the total length of a schedule. It is used as the optimization objective
in this thesis because in an autonomous driving system it is necessary to have a short re-
sponse time. How to get a minimized makespan and its allocation is also called makespan
scheduling problem or Job-shop problem.

13

3. Task allocation

Task name AverExecuT(ms) WCET(ms)
T1 Capture2 3 9
T2 SignsProc 54 70
T3 LightsProc 43 76
T4 Capture0 5 9
T5 Capture1 6 9
T6 LanesProc 4 10
T7 DepthMapProc 50 72
T8 GPSProc 67 106
T9 SensorFusionSpeed 3 10
T10 SensorFusionSteering 4 10

Table 3.2.: WCET measurement

Makespan scheduling problem is an optimization problem in which n jobs are assigned
to m machines. Jobs have varying processing times, which need to be scheduled on m
machines with varying or identical processing power. The objective is to minimize the
makespan, which in our case is to assign all tasks to four cores of Raspberry Pi to get
a task allocation with minimized makespan. As the table 3.1 shows, the task allocation
problem of multi-core scheduling is NP-hard, which means optimal solution could not be
obtained in polynomial time and meanwhile the solution could not be verified in poly-
nomial time as well. Heuristics such as list scheduling, Polynomial Time Approximation
Scheme could be used to get the suboptimal solution of task allocation.

3.4.1. Graham’s List Scheduling

The list scheduling is a heuristic which was designed to solve online scheduling prob-
lem by Graham[22] in 1960s. It could also be used to get task allocation offline. The list
scheduling[1] algorithm works as follows: Determine any ordering of the job set J, stored
in a list L. Starting with all machines empty, determine the machine i with the currently
least load and schedule the respective next job j in L on i. It is proved that list scheduling
is a 2-approximation algorithm. Sorted list scheduling is a modified list scheduling, on
which the list L consist of the jobs in decreasing order of execution length. It is proved
that sorted list scheduling has a 4/3−approximation. List scheduling has a complexity
O(n), while sorted list scheduling has a complexity O(n ∗ log(n)). With a relative low
complexity are list scheduling and sorted list scheduling usually used in online global
scheduling. The algorithm 1 shows the process of using sorted list scheduling to get task
allocation offline.

3.4.2. Polynomial Time Approximation Scheme

Polynomial Time Approximation Scheme(PTAS)[1] has a (1 + ε)-approximation, ε could
be any value > 0. The PTAS has a complexity of O

Ä
n2k · [log21/ε]

ä
, where k = [log1+ε1/ε]

Which means, the more accurated solution we could get, the more time the algorithm will

14

3.5. Torsche scheduling toolbox

Algorithm 1: Sorted List Scheduling

Sort list L in decreasing order according to execution length;
while List L is not empty do

choose a processor with least task load;
get a task Ti from List L;
while Precedence constraints of Ti is not met do

Ti = next Task in L;
end
assign task Ti on the processor with least task load;
Delete Ti from L;

end

take. The process of PTAS is: (1) Firstly, assume that the optimal makespan T ∗ is given at
the outset. Then we can try to construct a schedule with makespan at most (1 + ε) · T ∗.
Binary search is performed in an interval [α, β], where α is any lower bound on T ∗ and
β any upper bound on T ∗. This binary search will enable us to eventually find a number
B, which is within (1 + ε) times T ∗ and where the number of binary search iterations
depends on the error parameter ε. (2) Secondly, assume that the number of distinct values
of job lengths is a constant k. Then we can determine all configurations of jobs that do not
violate a load bound of t if scheduled on a single machine. This is the basis of a dynamic
programming scheme to determine a schedule on m machines. Of course, this approach
involves rounding the original job lengths to constantly many values, which introduces
some error. The error can be controled by adjusting the constant k of distinct job lengths at
the expense of running time and space requirement for the dynamic programming table.

3.5. Torsche scheduling toolbox

Torsche (Time Optimization of Resources, Scheduling) scheduling toolbox[36] is a Matlab
based tool, which offers a number of solutions that allow the user to formalize various
off-line and online scheduling problems. The task allocation problem in our case could
be easily implemented with this toolbox. Since the Torsche scheduling toolbox already
supports offline list scheduling, it is used to get a suboptimal task allocation solution.
The following sentence shows how the list scheduling is applied in Torsche toolbox.

TS = listsch(T,problem,processors [,strategy])

Here T is the set of tasks. problem indicates the objective of optimization, in our case
problem is ’P|prec|Cmax’, which means to get an suboptimal makespan in precedence
constraints allocation problem. processors indicates the total number of processors. Strat-
egy means the order of list we are using. Since we are using sorted list scheduling,
LPT(Longest Processing Time first) is used as the strategy. If the WCET is taken as every
task’s execution time, the makespan problem could be described in the following codes:

Listing 3.1: Sorted List Scheduling with Torsche scheduling toolbox

15

3. Task allocation

t1=task(’T1’,9);
t2=task(’T2’,73);
t3=task(’T3’,76);
t4=task(’T4’,9);
t5=task(’T5’,9);
t6=task(’T6’,10);
t7=task(’T7’,72);
t8=task(’T8’,106);
t9=task(’T9’,10);
t10=task(’T10’,10);

prec =
[0 1 1 0 0 0 0 0 0 0;%
0 0 0 0 0 0 0 0 1 0;%
0 0 0 0 0 0 0 0 1 0;%
0 0 0 0 0 1 1 0 0 0;%
0 0 0 0 0 0 1 0 0 0;%
0 0 0 0 0 0 0 0 1 1;%
0 0 0 0 0 0 0 0 1 1;%
0 0 0 0 0 0 0 0 0 1;%
0 0 0 0 0 0 0 0 0 0;%
0 0 0 0 0 0 0 0 0 0];%

T = taskset([t1 t2 t3 t4 t5 t6 t7 t8 t9 t10],prec);
p = problem(’P|prec|Cmax’);
TS = listsch(T,p,4,’LPT’);
plot(TS);

As a result we could get the task allocation in figure 3.2 and table 3.3.

0 20 40 60 80 100 120

Processor4

Processor3

Processor2

Processor1

t

T1

T2

T3

T4

T5 T6

T7

T8

T9

T10

Figure 3.2.: Task allocation from Sorted List Scheduling

16

3.5. Torsche scheduling toolbox

Task name Core Index si(ms)
T1 Capture2 2 0
T2 SignsProc 3 9
T3 LightsProc 2 9
T4 Capture0 3 0
T5 Capture1 4 0
T6 LanesProc 4 81
T7 DepthMapProc 4 9
T8 GPSProc 1 0
T9 SensorFusionSpeed 2 91
T10 SensorFusionSteering 1 106

Table 3.3.: Task allocation

17

3. Task allocation

18

4. Mixed-Criticality scheduling of
precedence-constrained task set

In this section the problem of mixed criticality scheduling is presented. A scheduler
named Time Triggered Scheduler with Mode Change(TTS-MC) and Event Scheduler in
Multi-Core(Event Scheduler-MC) are presented. The correctness of these two schedulers
are also be proved.

4.1. Problem description

Mixed Critical Task Set According to section 2.3, the task set in our case is synchronous-
periodic, therefore we only consider the scheduling problem of periodic task system. A
periodic mixed critical task set could be characterized as τ = {τ1 , ...τn}. T is the period of
task set τ . Each task can have a criticality level from 1 (lowest) to L (highest).

A task could be characterized by τi =
{
χi,
−→
Ci ,
−→
Ri , Di, Ni

}
, where the parameters are char-

acterized as follows:

• χi: χi ∈ {1, ..., L}, is the criticality level of the task.

•
−→
Ci : is a size-L vector of different worst case execution time(WCET). Ci (l) indicates
the worst case execution time on criticality level l.

•
−→
Ri : is also a sized-L vector of the defined release times of a task. In our case a task
has multiple release times.

• Di: is the relative deadline of a task.

• Ni: is the assigned core index of task τi.

The reason why we need multiple WCETs is that the WCET is usually unnecessary pes-
simistic especially the WCET of high critical tasks. If we use only one WCET, then this
WCET must be a large value to prevent deadline miss. As a result a lot of computational
resource will be wasted. Therefore different WCET values could be assigned according
to different pessimistic levels. As mentioned in our case we get the WCET by measuring
the maximal execution time of a task in a certain time. This value will be referred as the
Ci(1) (in dual-critical task system Ci(LO)) of task τi. The multiple release times are only
needed in scheduler TTS-MC. This will be declared in section 4.2.

Utilization The utilization[25] of a periodic task is defined as the ratio between the task’s
worst case execution time and its period. For a task set it is the sum of all task utilizations.

19

4. Mixed-Criticality scheduling of precedence-constrained task set

Because the WCET varies from different critical levels. There are also different utilizations
in different critical level. The following formula defines the level−l utilization for the task
τi:

Ui (l) =
Ci (l)

Ti
(4.1)

Mixed-criticality scheduling problem[25] The execution times of jobs of a task varies
from period to period. The mixed-criticality scheduling problem is to assure the following
two points. When the following two points are guaranteed during scheduling, we call the
schedule is correct.

• If all jobs run with the lowest criticality execution profile (i.e. no task τi exceeds its
WCET in level 1 (Ci(1))), then all jobs could complete before their deadlines.

• If any job τi, which has criticality level greater than l (χi > l), exceeds its level − l
WCET(Ci(l)), then all jobs with criticality level l or higher could complete execution
before their deadlines.

4.2. Time Triggered Scheduler with Mode Change

The time triggered scheduler with mode change(TTS-MC) is designed for precedence-
constraints task set. Same with the EDF-VD scheduler[4], tasks will be divided into two
criticality levels: HI and LO. And the scheduler has also two scheduling modes: HI crit-
ical mode and LO critical mode(also represented as HI-mode and LO-mode). Different
from EDF-VD, tasks are released at static assigned trigger time. Task set partitioning and
allocation are solved by the makespan minimization algorithm mentioned in section 3.
High critical tasks will be assigned with two WCET values. Rather than virtual deadlines
in EDF-VD, the Ci (LO) is used as the mode change point. Because the task set is time
triggered, overrun of either high critical tasks or low critical tasks will delay other task’s
execution, which might lead to miss deadline of high critical tasks. Therefore scheduler
will change to HI-mode whenever a task has overrun its Ci (LO). At this point the sched-
uler will cancel all the running LO critical tasks in all cores. In HI-mode only high critical
tasks will be scheduled with modified trigger time, which gives the high critical tasks
more budget time to execute but without changing the period. In a new cycle the critical
mode of scheduler will change back to LO. A cycle has also criticality level. We call a
cycle is a high critical cycle(X = HI), if in this cyle the critical mode has changed to HI. A
cycle is a low critical cycle (X = LO) if no overrun happens in this cycle. The utilization
of a task set with TTS-MC is:

Utotal (LO) =

∑n
1 Ci (LO)

T
≤ m (4.2)

Utotal (HI) =

∑
χi=HI Ci (HI)

T
≤ m (4.3)

20

4.2. Time Triggered Scheduler with Mode Change

Where m is the number of processors. We could say the scheduling with TTS-MC is
correct under the following two conditions:

• (1) All tasks in LO critical cycle could finish before their deadlines. Equation 4.4
describes the bound the scheduling should meet.

∀τi ∈ τ,X = LO, si + pi ≤ Ri(LO) +Di (4.4)

• (2) HI critical tasks in HI critical cycle could finish before their deadlines.

∀τi ∈ HI,X = HI, si + pi ≤ max(Ri(LO), Ri(HI)) +Di (4.5)

Where X indicates the critical level of the cycle, si is the start time of a job of the task, pi
is the execution time, Ri(LO) is the low critical release time, Ri(HI) is the high critical
release time., Di is the relative deadline. It needs to be mentioned that in TTS-MC the
release time Ri is also not necessary the same with the start time si. Hence the deadline
of a task is defined from the release time to the absolute deadline. We could say the
scheduling with TTS-MC is correct if the equations 4.4 and 4.5 are met.

The figure 4.1 shows the flow-process of TTS-MC scheduler. Since mode change and task
cancellation are the most important mechanisms of the TTS-MC, they will be discussed in
detail.

Mode change The challenge of mode change is to change the release time of high critical
tasks after mode change without changing the period of task set. It requires double as-
signments of release times. The two release times should be switched properly. A high
critical task’s Ri(HI) could be either bigger or smaller than Ri(LO). The mode change
could happen at different times. Therefore the there are totally six possibilities as the
Figure 4.2 shows. The implementation of mode change will be discussed in section 5.2.
The analysis of the six possibilities shows that mode change could work well only at time
point 1© 2© 4©. But it will not affect the schedulability according to the proof.

• 1© 2© Mode switch happens at the positions before Ri(HI) and Ri(LO). The task
will get enough time to switch its release time.

• 5© 6© Mode switch happens at the positions after Ri(HI) and Ri(LO). The dis-
patcher is not possible to switch its release time because the task has released at
Ri(LO). In this case the task τi has the same release time in high critical mode as in
low critical mode.

• 3©Mode switch happens after Ri(HI) but before Ri(LO). In this case the task still
releases new job at Ri(LO), but the high critical will not get more budget time any
more.

• 4© Mode switch happens after Ri(LO) but before Ri(HI). Task will also release at
Ri(LO), and will get more budget time for execution.

21

4. Mixed-Criticality scheduling of precedence-constrained task set

Start

Wait here
until a task τi

releases

Start execution of τi.
Set a overrun checker, If

exceeds its LO-critical WCET,
call overrun handle()

Set scheduler to
LO-mode

Initialize tasks’ WCET;
initialize scheduler to LO-

mode;

If a period
has finished?

End

Yes

If scheduling
finish?

Yes

No

task τi has released

No

Start

Set scheduler to
HI-mode

Cancel all
executing LO-
critical tasks

Disable the
release of LO-
critical tasks in

this cycle

Update release
time of HI-

critical tasks

End

Overrun handle()

Figure 4.1.: Diagram of TTS-MC

22

4.2. Time Triggered Scheduler with Mode Change

Ri(HI) Ri(LO)

Front Back

Ri(LO) Ri(HI)

Front Back2

1 3

4

3 5

6

LO HI

LO HI

LO HI

Case 1

Case 2

Figure 4.2.: Double release time and mode change

Task cancellation Another challenge of mode change is the cancellation of an executing
task. In simulation, all tasks are busy-waiting, which could be easily canceled with the
code structure (1) in Listing 4.1. But with real-life task in autonomous driving, few task
could be restructured like this. One of the solution is to use a do-while structure as the
structure (2) shows. But apparently this structure is also not suitable for all cases. Because
some of the tasks could not be divided into several operations with small execution time.
Therefore the WCET assignment for low critical tasks, which are not able to be canceled,
should be very careful. If a task is low criticality, and it could not be restructured neither
the structure (1) nor (2). Then it should be assigned with a pessimistic WCET in the
design phase to prevent it from overrun since it cannot be canceled. There is no theory or
good proved method to provide a suitable WCET. Hence in our case twice of the maximal
execution time is regarded as a pessimistic WCET.

23

4. Mixed-Criticality scheduling of precedence-constrained task set

Listing 4.1: Code structure of task cancellation
Structure (1):

cancel_ = false;
for(i:n){
...;
if(cancel_)
break;
}

Structure (2):

cancel_ = false;
do{
operation 1;
if(cancel_ = false)
break;
operation 2;
if(cancel_ = false)
break;
operation 3;
if(cancel_ = false)
break;

...;

}while(false)

Prove of correctiveness In order to prove the correctiveness, some assumption should be
made. (1) We assume high critical tasks will never overrun its Ci(HI). (2) LO critical
tasks, which cannot be canceled, will be assigned with an pessimistic value as its Ci(LO)
so that overrun is not possible.

• In LO criticality cycle, because no overrun of either high critical tasks or low critical
tasks happened, therefore the start time of a task is exactly its release time si =
Ri(LO). The execution time will not exceed its WCET pi ≤ Ci(LO), we could get
the following equation 4.6. If we set the relative deadline Di ≥ Ci(LO), then the
condition of equation 4.4 is met.

∀τi ∈ τ,X = LO, si + pi ≤ Ri(LO) + Ci(LO) (4.6)

• In HI critical cycle, the start time si of the high critical tasks met the following equa-
tion 4.7. And according to our assumption the execution time of high critical tasks
will not exceed their WCET pi ≤ Ci(HI).

si ≤ max(Ri(HI), Ri(LO)) (4.7)

Hence we could get the following equation 4.8. If we set the relative deadline Di ≥
Ci(HI) for high critical tasks, then the condition of equation 4.5 is met.

24

4.3. Event Scheduler in Multi-Core

si + pi ≤ max(Ri(LO), Ri(HI)) + Ci(HI) (4.8)

Therefore under the assumption (1)(2) we could get the condition of correctiveness is to
set a right relative deadline as in 4.9 shows.®

∀τi ∈ (χi = LO) , Di ≥ Ci(LO)
∀τi ∈ (χi = HI) , Di ≥ Ci(HI)

(4.9)

4.3. Event Scheduler in Multi-Core

Even though the TTS-MC’s correctiveness could be proved. With WCET set as the as-
sumed execution time of tasks are still too pessimistic. A lot of computational resource
will be wasted. A direct way to solve this problem is to release a task as soon as its
precedence tasks have finished. With this idea the event scheduler is presented. In event
scheduler task τi in τi → τj has finished or not is regarded as an event for task τj . The task
τj should wait for the event of τi finished happen then continue its execution. All of tasks
are triggered at the start point of a period with a predefined order. Like the task allocation
of TTS-MC, the WCET of tasks could be used in makespan optimization to get a period T
of the task set. In practice we observed that the period T is usually not necessary. Max-
imal makespan measured by running the system for a certain time could also be used as
the period. Same with the TTS-MC, overrun of LO critical tasks will be canceled. Figure
4.3 shows the diagram of the flow-process of event scheduler-MC.

Prove of correctiveness If we define the correctiveness of event scheduler the same with
TTS-MC. When the period of task set in event scheduler is set the same value with TTS-
MC, then the correctiveness of event scheduler could be easily proved since si ≤ max(Ri(HI), Ri(LO)).
Equation 4.5 and 4.4 are met.

25

4. Mixed-Criticality scheduling of precedence-constrained task set

Start

Wait until a
task’s

precedence is met

Start executioni.
Set a overrun checker, If

exceeds its LO-critical WCET,
call overrun handle()

Initialize tasks’ WCET;
initialize scheduler to LO-

mode;

If a period
has finished?

End

Start

Set scheduler to
HI-mode

Cancel all
executing LO-
critical tasks

End

Overrun handle()

Release all tasks as a certain
order

If the task is LO-
critical and

scheduler is HI-
mode

No

Cancel the
task

Notify the task has finished

Yes

Set scheduler to
LO-mode

Yes

If scheduling
finish?

No

No

Yes

Figure 4.3.: Diagram of Event scheduler-MC

26

4.4. Scheduling examples

4.4. Scheduling examples

In order to illustrate how the introduced TTS-MC and event scheduler works, an example
task set with four tasks is introduced in figure 4.4.

T1

T2 T3

T4

T1

T4

Low criticality
mode

High criticality
mode

Figure 4.4.: An example task set with four tasks

The task set could be characterized as τ = {T1, T2, T3, T4}. The individual task can be
characterized as follows, the time unit is millisecond:


T1 =

{
80, HI,

−→
C1(25, 40)),

−→
R1(0, 0), 80, 1

}
T2 = {80, LO, 25, 30, 80, 1}
T3 = {80, LO, 25, 30, 80, 2}
T4 =

{
80, HI,

−→
C4(15, 30)),

−→
R4(65, 50), 80, 1

} (4.10)

As the Figure 4.5 shows, the TTS-MC scheduler is running for three cycles with period
80ms. First cycle without any overrun, second cycle with an overrun of high critical task
T1. Therefore the low critical tasks T2 and T3 are aborted. At the same time the release
times as well as the WCET of tasks T1 and T4 are changed and the scheduler switches to
high critical mode. In third cycle there is an overrun of low critical task T2, but actually
the low critical task will never overrun because it will be canceled exactly at the time
point when it overruns. When a new cycle comes at time point 160ms the critical mode
of scheduler switches back to low. It is necessary to mention that between the allocation
of two tasks, there should be an offset time, which gives the scheduler a little bit time
(1-2ms) to switch the critical mode when an overrun occurs.

27

4. Mixed-Criticality scheduling of precedence-constrained task set

T1 T2

T3

T4 T1 T4 T1 T2

T3

T4

0 80 160 240

W1(LO) W2(LO) W4(LO)

LO-mode

W3(LO)

W1(HI) W4(HI)

HI-mode LO-mode

Core 1

Core 2

Overrun of HI-critical
tasks

offset

HI-
mode

Cancel T2's
execution

Overrun of LO-critical
tasks

Figure 4.5.: TTS-MC example schedule

T1 T2

T3

T4 T1 T4 T1 T2

T3

T4

0 80 160 240

Core 1

Core 2

Overrun
Low critical mode High critical mode Low critical mode

Figure 4.6.: Event scheduler example schedule

The Figure 4.6 shows an example scheduling with event scheduler-MC. In the second
cycle there is also an overrun of task T1. Same with the TTS-MC low critical tasks T2 and
T3 are aborted. As a result task T4 could start immediately after T1 finish.

28

5. Implementation

5.1. Hierarchical Scheduling Framework

The framework called hierarchical scheduling framework(HSF) is based on a framework
to explore and prototype hierarchical compositions of real-time schedulers(SF3P)[16] .The
SF3P enables the comparison and verification of different scheduling algorithm on unipro-
cessor platform. It separates the configuration of scheduler from the implementation of
the algorithm itself, configuration is written in a XML file. HSF[25] has extended the SF3P
to support multi-core mixed-criticality scheduling. Both of the SF3P and HSF operates di-
rectly on top of the Linux concurrency manager in user space and adds an additional layer
between the tasks and the scheduling mechanisms of the operating system. The figure 5.1
shows the overview SF3P and HSF. Since the framework is located in user space without
kernel involved, it allows the framework to be portable and compatible with almost all
hardware platforms with Linux operation system.

User
Space

Kernel
Space

-------1

: I Task N I:
I I

------- 1

: I Task1 I :
I I
1 Wrapper 1
I

1 Wrapper 1
I

J J --- --- --- ---

' II ' II
Concurrency Mngr

Scheduler

HW-dep. SW

Hardware

Linux Tasks

Task 1 ... I Task N I

\ v \ v
Sched 1 .. . Sched N Config --

HSF Analysis ,

Concurrency Mngr

Scheduler

HW-dep. SW

Hardware

HSF Tasks

Figure 5.1.: Added HSF layer

The Figure 5.2 shows the overview of the structure of Hierarchical Scheduling Frame-
work. As the Figure shows, the framework consists of INPUT, RUNTIME and OUTPUT.
INPUT is a XML File while the OUPPUT are CSV files. Different from our case the origi-

29

5. Implementation

nal HSF has a part named SIMULATION rather than RUNTIME without tasks. The first
part of RUNTIME is the parser, which is in charge of reading configurations from the
XML file. Configurations consist of properties of dispatchers, schedulers, workers and
tasks. The new added component task is because the original HSF is only used for sim-
ulating and evaluate different scheduling algorithms with busy-waiting tasks, but in our
case real tasks are used for scheduling, therefore a parser for different tasks are needed.
Dispatcher is used to release a new job of a task. A task could be released by time, event
or in specific condition. Scheduler is used to manage the whole scheduling with a given
scheduling algorithm. Worker is used to manage the execution of a task. Workers, sched-
ulers and dispatchers are running as threads. The last part is the statistics and output
module, which collects traces during runtime. Scheduling overhead will be calculated
according the traces data and finally all the data will be saved in different CSV files.

XML File Parser Statistics

Traces.csv

Runtimes.csv

missedDeadlines.csv

Dispatchers

Schedulers

Workers

Tasks

INPUT RUNTIME OUTPUT

Figure 5.2.: Overview of Hierarchical Scheduling Framework

5.1.1. The Thread Hierarchy

In order to understand how the framework works in code level, it is necessary to un-
derstand the thread hierarchy. The thread hierarchy represents the derive relation of
different components used in scheduling. In order to support the TTS-MC and Event
scheduler-MC that presented in chapter 4, several modifications have been done and sev-
eral new components are added to the original thread hierarchy. We describe here briefly
the functionalities of used components and then present the changes that were made. The
structure of the thread hierarchy is showed in figure 5.3. New or added components are
marked as red. Modified components are marked as green.

From the figure 5.3 we could see that everything is derived from a Thread class. Different
hierarchy level in this structure has different functionalities. Introduction of important
used components:

30

5.1. Hierarchical Scheduling Framework

Thread

Core_
joined_
policy_
thread_
thread_attr_
thread_id_
thread_param_
thread_type_

+ Thread()
+ ~Thread()
+ join()
+ join2()
+ startThread()
+ wrapper()
+ getCore()
+ getID()
+ getPriority()
+ getRuntime()
+ getRuntimeMs()
+ setCore()
+ setPriority()

Periodic

+ Periodic()
+ ~Periodic()
+ getPeriod()
+ setPeriod()

PeriodicJitter

+ PeriodicJitter()
+ ~PeriodicJitter()
+ getPeriod()
+ setPeriod()
+ setJitter()

EventschedulerPeriodic

workers_core_[4]
numofWorkers_[4]
IsCoreflag_[4]

+ EventschedulerPeriodic()
+ ~EventschedulerPeriodic()
+ getPeriod()
+ setPeriod()
+ setCriticality()
+ imsertWorkers()

Idle

+ Idle()
+ ~wrapper()
+ run()
+ end()
+ setCountThresh()

JobSwitcher

criticality_level_
job_stop_
job_start_
stop_watch_

+ JobSwitcher()
+ ~JobSwitcher()
+ join()
+ setStopWatch()
+ switchJob()
+ wrapper()

OverrunChecker

runnable_
timeout_
sem_run_
sem_end_
sem_join_
+ OverrunChecker()
+ ~OverrunChecker()
+ join()
+ wrapper()
+ fire()
+ reset()
+ setRelativeTimeout()
+ setAbsoluteTimeout()
+ debug()
+ info()
+ overrunHandler()
+ waitOverrun()
+ signalHandler()

AbsoluteOverrunChecker

+ AbsoluteOverrunChecker()
+ ~AbsoluteOverrunChecker()
+ waitOverrun()

RuntimeOverrunChecker

timeout_relative_

+ RuntimeOverrunChecker()
+ ~RuntimeOverrunChecker()
+ waitOverrun()
+ setRelativeTimeout()
+ setAbsoluteTimeout()

WorkerOverrunChecker

+ WorkerOverrunChecker()
+ ~WorkerOverrunChecker()
+ overrunHandler()

Scheduler

stop_watches
level_
cores_
worker_core_base_
sched_type_

+ Scheduler()
+ ~Scheduler()
+ wrapper()
+ activate()
+ deactivate()
+ finishedJob()
+ newJob()
+ updateRunnable()
+ schedule()
+ getWorkerCoreCount()
+ getWorkerCoreBasse()
+ debug()

EventBased

active_queue_
current_runnable_
overrun_job_deque_
finished_job_deque_
update_deque_
activation_sem_
event_sem_
schedule_sem_

+ EventBased()
+ ~EventBased()
+ join()
+ activate()
+ deactivate()
+ finishedJob()
+ overrunJob()
+ newJob()
+ updateRunnable()
+ schedule()
handleUpdate()
handleOverrun()
handleFinish()

FTTS

criticality_levels_
criticality_level_
cycle_duration_
frames_
current_frame_
current_subframe_
active_cores_
job_switchers_
arrived_tasks_
subframe_barrier_

+ FTTS()
+ ~FTTS()
+ join()
+ activate()
+ deactivate()
+ newJob()
+ finishedJob()
+ updateRunnable()
+ overrunJob()
+ schedule()
+ addLoad()
+ getCriticalityLevel()
+ printStructure()
startTasks()
stopTasks()
cancelTasks()
finishedJob()

MCRF_TDMA

+ MCRF_TDMA()
+ join()
+ activate()
+ deactivate()
+ newJob()
+ finishedJob()
+ updateRunnable()
+ overrunJob()
+ schedule()
+ debug()
+ add_load()
+ add_slot()
+ set_period()

PartitionedEDF_VD< S >

+ PartitionedEDF_VD()
+ ~PartitionedEDF_VD()
+ join()
+ activate()
+ deactivate()
+ partitionTasks()
+ finishedJob()
+ newJob()
+ updateRunnable()
+ schedule()
+ setParent()

TDMA

+ TDMA()
+ join()
+ activate()
+ deactivate()
+ newJob()
+ finishedJob()
+ updateRunnable()
+ schedule()
+ add_load()
+ add_slot()

Server

+ Server()
+ wrapper()
+ activate()
+ deactivate()
+ finishedJob()
+ newJob()
+ updateRunnable()
+ serve()

CBS

+ replenish()
+ serve()

DBS

EDF

+ EDF()

EDF_VD

+ EDF_VD()
+ handleFinish()
+ handleOverrun()
+ handleUpdate()
+ newJob()
+ updateVirtualDeadlines()
+ debug()

EDF_VD1

+ EDF_VD1()
+ handleFinish()
+ handleOverrun()
+ handleUpdate()
+ newJob()

EDF_VD2

+ EDF_VD2()
+ handleFinish()
+ handleOverrun()
+ handleUpdate()
+ newJob()

FIFO

+ FIFO()
+ ~FIFO()

FixedPriority

+ FixedPriority()
+ ~FixedPriority()

RateMonotonic

+ RateMonotonic()
+ ~RateMonotonic()

Aperiodic

+ Aperiodic()
+ ~Aperiodic()
+ getReleaseTime()
+ setReleaseTime()

TTS_MCPeriodic

hastriggeredflag
time_seg1
time_seg2
offset_hi

+ TTS_MCPeriodic()
+ ~TTS_MCPeriodic()
+ getPeriod()
+ setPeriod()
+ setCriticality()
+ imsertWorkers()

EventScheduler

active_queue_
current_runnable_
overrun_job_deque_
finished_job_deque_
update_deque_
activation_sem_
event_sem_
schedule_sem_
master_

+ EventScheduler()
+ ~EventScheduler()
+ join()
+ activate()
+ deactivate()
+ finishedJob()
+ overrunJob()
+ newJob()
+ updateRunnable()
+ schedule()
+ handleUpdate()
+ handleOverrun()
+ handleFinish()
+ SetMaster()
+ WaitEvent()
+ PostEvent()
+ PostAllEvents()

TimeTriggered

active_queue_
current_runnable_
overrun_job_deque_
finished_job_deque_
update_deque_
activation_sem_
event_sem_
schedule_sem_
master_

+ TimeTriggered()
+ ~TimeTriggered()
+ join()
+ activate()
+ deactivate()
+ finishedJob()
+ overrunJob()
+ newJob()
+ updateRunnable()
+ schedule()
+ handleUpdate()
+ handleOverrun()
+ handleFinish()
+ SetMaster()
+ setCurrentCritiLevel()
+ setMasterCurrentCritiLevel()

TTS_MC< S >

tts_mc_schedulers
tasks_names
criticality_level_

+ TTS_MC()
+ ~TTS_MC()
+ join()
+ activate()
+ deactivate()
+ finishedJob()
+ newJob()
+ updateRunnable()
+ schedule()
+ setParent()
+ setCurrentCritiLevel()
+ getCurrentCritiLevel()
+ remap()

EventScheduler_MC< S >

EventScheduler_MC_schedulers
tasks_names
dep_event_

+ EventScheduler_MC()
+ ~EventScheduler_MC()
+ join()
+ activate()
+ deactivate()
+ finishedJob()
+ newJob()
+ updateRunnable()
+ schedule()
+ setParent()
+ setTaskEventMap()
+ waitEventScheduler()
+ WaitAllEvents()
+ PostAllEvents()
+ PostEvent()

Dispatcher

Periodicity_
offset_
worker_
preempt_sem_
offset_hi_
double_offset_

+ Dispatcher()
+ ~Dispatcher()
+ wrapper()
+ activate()
+ dispatch()
+ setOffset()
+ setPeriodicity()
+ setWorker()
+ setOffset_hi()
+ getCurrentCriticality()

ResourceAllocator

Algorithm
criticality_level_

+ ResourceAllocator()
+ ~ResourceAllocator()
+ wrapper()
+ activate()
+ deactivate()
+ finishedJob()
+ overrunJob()
+ newJob()
+ updateRunnable()

Runnable

state_
criteria_
parent_
current_task_
worker_criticality_level_

+ Runnable()
+ ~Runnable()
+ join()
+ wrapper()
+ activate()
+ deactivate()
+ cancel()
+ cancelBlocking()
+ dropCurrent()
+ overrunJob()
+ getCriteria()
+ setParent()

Worker

sem_wait_dependency_
scheduler_type_
IsEventScheduler
IsTTS_MC
IsOffsetZero
DependentTasks_

+ Worker()
+ ~Worker()
+ wrapper()
+ activate()
+ deactivate()
+ finishedJob()
+ newJob()
+ updateRunnable()
+ cancel()
+ getTaskLoad()
+ setWorkerSchedulerType()
+ setCurrentCiriticality()
+ setWorkerCriticalityLevel()
+ getWorkerCriticalityLevel()
+ setDependentTasks()
+ WaitEvent()
+ WaitAllEvents()
+ PostAllEvents()
+ PostEvent()
+ setArrivalTime()

Figure 5.3.: Thread hierarchy

31

5. Implementation

• Thread is the parent class of all of other components. This class is an object oriented
wrapper around a POSIX thread (pthread) with some additional management func-
tions. It creates a pthread object in a specific core by using pthread create() function.

• Idle is refered as the idle state of a core. But in implementation it is running with
busy waiting with the lowest priority. Therefore it could be preempted easily by the
scheduler, worker or dispatcher.

• Dispatcher is in charge of triggering a new job of a task. In the original version of
HSF there are three kinds of dispatchers: Periodic is used to dispatch a task period-
ically. Aperiodic is used to trigger a task only once, while the PeriodicJitter is used
to trigger a task randomly.

• OverrunChecker is used to monitor a task execution. It has two different types.
The AbsoluteOverrunChecker checks if a task has executed longer than a global
timestamp, while the RuntimeOverrunChecker checks if a task has executed beyond
a defined duration.

• Runnable is the parent class of worker and scheduler, which means the sorker and
scheduler have some part of common interfaces. The reason why common interface
is needed is that in the hierarchical framework a scheduler could also be scheduled
by another scheduler[16].

• Worker is used to manage the execution of tasks. It received task release notification
from dispatcher and interact with scheduler to execute the task properly.

• Scheduler implements different scheduling algorithms and interact with workers
to manage proper execution of tasks.

Red marked components “EventschedulerPeriodic” and “TTS MCPeriodic” are dispatch-
ers designed only for TTS-MC and Event scheduler-MC. “TimeTriggeredScheduler” is a
time triggered scheduler for uni-processor platform, while “Eventscheduler” is a event
scheduler for uni-processor platform. TTS MC is a scheduler consists of several TimeTrig-
geredSchedulers to achieve multi-core functionalities. Same with TTS MC the Eventscheduler MC
consists of several Eventschedulers. The component worker has been added with a lot of
new member functions and variables to achieve new functionalities.

5.1.2. Scheduling Mechanism

In order to implement scheduling from the user space, the framework uses priority-based
scheduler with different priorities the operating system provides. Threads with higher
priorities could preempt threads with lower priority. In practice the activation of a com-
ponent is achieved by dynamically improving its priority. The Figure 5.4 and table 5.1
shows the priorities assignments of different components. An idle thread is used to rep-
resent the idle state of a core as mentioned in section 5.1. It simply does busy waiting and
could be preempted by any thread with higher priority. The worker in active state has
one level higher than the idle thread. The dispatcher has a higher level of priority than an
active worker. Active scheduler has the highest priority in thread hierarchy. The priority

32

5.1. Hierarchical Scheduling Framework

of the framework which organizes the whole system has the highest priority than all the
mentioned components, which is not showed in the figure 5.4.

0 10 20 30 40 50

0 10 20 30 40 50

0 10 20 30 40 50

0 10 20 30 40 50

Scheduler

Dispatcher

Worker

Idle Thread

Lowest priority

Highest priority

Figure 5.4.: Priority assignment of different components[25]

Priority Threads
Highest Framework, to manage the whole system
Highest in hierarchy level Scheduler
5 Dispatcher, overrun checkers
4 Scheduling servers
3 Worker (active state)
2 Idle
1 Worker and Scheduler in inactive state

Table 5.1.: Priority assignment of different components[25]

During scheduling, the dispatcher is running independently with a predefined trigger
time, while the worker and scheduler both has several states and interact with each other.
The figure 5.5 shows the state flow of scheduler and worker. Figure 5.6 and 5.7 shows
an example of how the framework works. The worker starts with the state idle. When
the dispatcher releases a new job on this worker, the state of worker turns to ready. Then
the worker notifies the scheduler the arrival of new job and keep ready state until the
scheduler notifies the worker that it could start execution. Then the state turns to active
and worker start execution of a job. When the executed job is preempted, the state turns
back to ready. After the job is finished, the worker notifies the scheduler a finish event
and then turns back to idle.

33

5. Implementation

readyidle

active

idle

active

New Job arrived

Activated by scheduler

Preem
pt by other w

orker

The job finished or is canceled

N
o ready and active w

orkers

N
ew

 job notify from
 w

orker

Worker Scheduler

The job is canceled by
scheduler

Figure 5.5.: State flow of Worker and Scheduler

Dispatcher2

Worker2

Worker1

Dispatcher1

Priority

Hi
gh

 p
ri.

Lo
w

 p
ri.

Figure 5.6.: An example of scheduler

34

5.2. Implementation of TTS-MC

0 time

Dispatcher2

Worker2

Dispatcher1

Worker1

Scheduler

Occupying CPU: Evaluate criteria Scheduling decision execute

Not occupying CPU: active ready

Preemption

Figure 5.7.: Sample execution of a scheduler in Figure 5.6

The scheduler also starts with state idle, turns to active once get a job arrival notify. It
turns back to idle when there is no more ready and active workers. It is necessary to
mention that in [16] the scheduler also has three states exactly as worker. Because in SF3P
a scheduler could also be scheduled by another scheduler. Since in our case we did not
consider the situation where a scheduler is scheduled by another one. Therefore it is not
showed in the figure 5.5.

5.2. Implementation of TTS-MC

When we talk about design of a scheduler, it means we need both design the dispatcher,
worker and scheduler components in HSF. The structure of the TTS-MC shows in Figure
5.8. The TTS-MC consists of four normal time triggered schedulers(TTS). Each core has
its own TTS, which is only in charge of scheduling tasks assigned on this core. Every TTS
has a pointer ∗master, which points to the TTS-MC, so that scheduler in different cores
could communicate with each other.

The TTS is changed from the “Eventbased” scheduler in [25]. Therefore in the TTS schedul-
ing is controlled by a semaphore event event sem , it represents different events during
scheduling, e.g. finish of a job, overrun of a job, new arrival of a job. Every TTS has
a worker queue active queue which is used to store all the workers with new job ar-
rival. The variable current criticality level indicates the criticality mode of the sched-
uler. When an overrun occurs, the TTS calls setMasterCurrentCritiLevel() of TTS-MC to
set current criticality level in all TTS to HI. The algorithm of a single TTS is shows as
algorithm 2. The worker of TTS-MC shows in algorithm 3.

Since high critical tasks have two release times. The release time switch should handled
properly. According to figure 5.9 the algorithm of dispatcher for high critical task could
be represented as algorithm 4. Where offset is the time before the first release of a task.

35

5. Implementation

Dispatcher

Worker

Task6

Dispatcher

Worker

Task3

Dispatcher

Worker

Task4

Dispatcher

Worker

Task5

Dispatcher

Worker

Task2

Dispatcher

Worker

Task1

TTS
Core0

TTS
Core1

TTS
Core2

TTS
Core3

TTS_MC

Figure 5.8.: Structure of Time Triggered Scheduler with Mode Change

Algorithm 2: Time Triggered Scheduler

Initialize event sem , active queue ;
while scheduling not finish do

sem wait(event sem), wait here until the scheduler is activated;
if event sem is overrun of a Worker i then

if The task in Worker i is low critical then
cancel execution of task in Worker i;
notify master to cancel all executing low critical tasks in other cores;

end
get current criticality level from TTS-MC;
if current criticality level is LO then

Notify the master to set the current criticality level to HI;
end

end
if event sem is finish of a job in Worker i then

delete the Worker i from active queue ;
end
if event sem is arrival of a new job then

insert the Worker i into active queue ;
if new Cycle begins && current criticality level is HI then

notify the master to set the current criticality level to LO;
end

end
if active queue is not empty then

pop a Worker from active queue ;
activate the Worker;

end
end

36

5.2. Implementation of TTS-MC

Algorithm 3: Worker of TTS-MC

while scheduling not finish do
wait here until a job release from dispatcher;
if a job has released then

Notify the scheduler with new job arrival;
active the scheduler;
wait here until the scheduler activate this worker;
if if the worker is activated by scheduler then

start execution of task;
Set a overrun checker, if overruns, active scheduler and notify an
overrun event;

end
end

end

pos indicates the position of dispatcher time in a cycle, it could be Front or Back. worker
is the worker related to this dispatcher. The meaning of other variables could be found in
figure 5.9.

Ri(HI) Ri(LO)

Front Back

Ri(LO) Ri(HI)

Front Back2

1 3

4

3 5

6

LO HI

LO HI

LO HI

Segment1 Segment2 Segment1 Segment2

Period

Ri(HI) Ri(LO) Ri(HI)

Ri(HI)Ri(LO) Ri(LO)

Case 1

Case 2

Offset

Figure 5.9.: Mode change illustration

37

5. Implementation

Algorithm 4: Dispatcher of high critical task in TTS-MC

if Ri(LO) > Ri(HI) then
offset← Ri(HI);
Segment1← Ri(LO)−Ri(HI);
Segment2← Period− Segment1;

else
offset← Ri(LO);
Segment1← Ri(HI)−Ri(LO);
Segment2← Period− Segment1;

end
release time← offset;
clock nanosleep(HSF CLOCK,TIMER ABSTIME,&release time, nullptr);
pos← Front;
flag ← false indicates if the task has been triggered in this period;
while scheduler active do

if Ri(LO) > Ri(HI) then
DispatchCase1();

end
if Ri(LO) < Ri(HI) then

DispatchCase2();
end
if Ri(LO) == Ri(HI) then

worker → newJob();
release time+ = Period;
clock nanosleep(HSF CLOCK,TIMER ABSTIME,&release time, nullptr);

end
end

38

5.2. Implementation of TTS-MC

Algorithm 5: DispatchCase1()

if pos == Front then
if current criticality level == HI then

worker → newJob();
else

flag ← true;
end
release time+ = segment1;
clock nanosleep(HSF CLOCK,TIMER ABSTIME,&release time, nullptr);

pos← Back;
end
if pos == Back then

if current criticality level == LO then
worker → newJob();

else
if flag is true then

worker → newJob();
end

end
release time+ = segment2;
pos← Front;
flag ← false;
clock nanosleep(HSF CLOCK,TIMER ABSTIME,&release time, nullptr);

end

39

5. Implementation

Algorithm 6: DispatchCase2()

if pos == Front then
if current criticality level == LO then

worker → newJob();
else

flag ← true;
end
release time+ = segment1;
clock nanosleep(HSF CLOCK,TIMER ABSTIME,&release time, nullptr);

pos← Back;
end
if pos == Back then

if current criticality level == HI then
if flag is false then

worker → newJob();
end

end
release time+ = segment2;
pos← Front;
flag ← false;
clock nanosleep(HSF CLOCK,TIMER ABSTIME,&release time, nullptr);

end

5.2.1. Parser Extension and XML sample

The parser extension of TTS-MC is a function TTS MC < T > ∗Parser :: parseTTS MC(
xml node TTS MC node, unsignedint ∗ id, int level). A Sample XML file for a TTS-MC
scheduler according to figure 4.5 shows in Listing 5.1.

Listing 5.1: XMLexamplettsmc
<simulation name="TTS_MC example">
<duration value="1" units="sec" />
<runnable type="scheduler" algorithm="TTS_MC" cores="2"
criticality_levels="2">

<runnable type="worker" periodicity="periodic"
task="busy_wait" monitoring="true">
<offset value="0" units="ms" />
<offset_hi value="0" units="ms" />
<name value="T1" />
<core value="1" />
<period value="80" units="ms" />
<criticality_level value="2" />

40

5.2. Implementation of TTS-MC

<wcet criticality_level="1" value="25" units="ms" />
<wcet criticality_level="2" value="40" units="ms" />
<distribution value="uniform"/>
<relative_deadline value="80" units="ms" />
</runnable>

<runnable type="worker" periodicity="periodic"
task="busy_wait" monitoring="true">
<offset value="30" units="ms" />
<name value="T2" />
<core value="1" />
<period value="80" units="ms" />
<criticality_level value="1" />
<wcet criticality_level="1" value="25" units="ms" />
<distribution value="uniform"/>
<relative_deadline value="80" units="ms" />
</runnable>

<runnable type="worker" periodicity="periodic"
task="busy_wait" monitoring="true">
<offset value="30" units="ms" />
<name value="T3" />
<core value="2" />
<period value="80" units="ms" />
<criticality_level value="1" />
<wcet criticality_level="1" value="25" units="ms" />
<distribution value="uniform"/>
<relative_deadline value="80" units="ms" />
</runnable>

<runnable type="worker" periodicity="periodic"
task="busy_wait" monitoring="true">
<offset value="65" units="ms" />
<offset_hi value="50" units="ms" />
<name value="T4" />
<core value="1" />
<period value="80" units="ms" />
<criticality_level value="2" />
<wcet criticality_level="1" value="15" units="ms" />
<wcet criticality_level="2" value="30" units="ms" />
<distribution value="uniform"/>
<relative_deadline value="80" units="ms" />
</runnable>

</runnable>
</simulation>

41

5. Implementation

Figure 5.10.: Output of a TTS-MC scheduling example

5.2.2. Simulation Output and Visualization

The figure 5.10 shows the output and visualization after scheduling of the XML in list 5.1.
An overrun of task T1 happened in the second cycle, where the red dotted line indicates
the overrun of a task, and green dotted line indicates the time point when criticality mode
turns back to LO.

5.3. Event scheduler-MC

The Figure 5.11 shows the structure of the event scheduler-MC. Different from the TTS-
MC, it has only one dispatcher for all workers and tasks. All tasks’ release are managed
by this dispatcher called EventschedulerPeriodic. Every core has its own event sched-
uler which is only in charge of scheduling the tasks assigned on this core. Every event
scheduler is actually a FIFO scheduler. But unlike the FIFO-like scheduler, in worker a
task needs to wait the event of its precedence tasks finished. Every task has a related task
event, which is used to represent the state of this task itself(finished or not). In the Event
scheduler-MC there is a semaphore map map < string, sem t > dep event that is used
to represent all the events, e.g. dep event [“LanesPro′′] implies that the event whether
the task “LanesProc” has finished. It needs to be mentioned that the sem wait(&event)
of every task could not be implemented in the scheduler, because the wait operation
will block the scheduler thread until the event is posted. Therefore the wait operation
should be implemented in the worker thread. Since every worker has its own respon-

42

5.3. Event scheduler-MC

sible task task , the worker could get task ’s dependencies dep task names[n], where n
indicates the total number of the precedence dependencies of task . An semaphore event
sem arrived jobs is used to represent if there is a new job comes to this worker. The main
process of worker thread could be represented in algorithm 7. The same with TTS-MC,
current criticality level is the current critical mode(HI or LO) of the event scheduler-
MC. Algorithm 8 shows the main process of the dispatcher EventschedulerPeriodic. The
EventschedulerPeriodic has all workers’ pointers ∗workers[N], where N indicates the to-
tal numbers of tasks also workers. Period is the period of whole task set, release time is
the release time that calculated by the period we set.

Worker

Task6

Worker

Task3

Worker

Task4

Worker

Task5

Worker

Task2

Dispatcher

Worker

Task1

EventScheduler
Core0

EventScheduler
Core1

EventScheduler
Core2

EventScheduler
Core3

EventScheduler_MC

Figure 5.11.: Structure of Event scheduler in Multi-Core

Algorithm 7: worker of Event scheduler-MC

Initialize dep event , dep task names, task ;
while scheduling not finish do

sem wait(&sem arrived jobs)wait here until a job release from dispatcher,
notify the scheduler with job arrival;

for i:n do
sem wait(&dep event [dep task names[i]]);
sem post(&dep event [dep task names[i]]), wait until this task’s depedence
tasks finish;

end
get current ciricality level from scheduler;
if task is LO critical && current ciricality level = HI then

cancel the execution of task ;
else

start execution of task ;
set timing monitor of task , if task overruns, notify the scheduler with
overrun event;

end
end

43

5. Implementation

Algorithm 8: Dispatcher of Event scheduler-MC: EventschedulerPeriodic

Initialized releas time;
while scheduling not finish do

WaitAllEvents(), wait until all tasks finished in the last cycle;
workers[1 : N] → post(&sem arrived jobs), activate new Jobs on all workers

as a predefined order;
releas time+ = Period;
clock nanosleep(HSF CLOCK,TIMER ABSTIME,&release time, nullptr),

wait Period(ms) until next release;
end

5.3.1. Parser Extension and XML sample

The Parser Extension of Event scheduler in Multi-Core is a functionEventScheduler MC <
T > ∗Parser :: parseEventScheduler MC(xml nodeEventScheduler MC node, unsignedint∗
id, intlevel). A Sample XML file for the task set according to figure 4.6 shows in Listing
5.3.

Listing 5.2: XML example of Event scheduler in Multi-Core
<simulation name="EventScheduler_MC">
<duration value="1" units="sec" />
<runnable type="scheduler" algorithm="EventScheduler_MC"
cores="2" >

<runnable type="worker" periodicity="eventschedulerperiodic"
task="busy_wait" monitoring="true">
<offset value="0" units="ms" />
<order value="0"/>
<name value="T1" />
<core value="0" />
<period value="80" units="ms" />
<relative_deadline value="80" units="ms" />
</runnable>

<runnable type="worker" periodicity="eventschedulerperiodic"
task="busy_wait" monitoring="true">
<dependency value="T1" />
<order value="1"/>
<name value="T2" />
<core value="0" />
<period value="80" units="ms" />
<relative_deadline value="80" units="ms" />
</runnable>

<runnable type="worker" periodicity="eventschedulerperiodic"
task="busy_wait" monitoring="true">
<dependency value="T1" />
<order value="0"/>

44

5.3. Event scheduler-MC

<name value="T3" />
<core value="1" />
<period value="80" units="ms" />
<relative_deadline value="80" units="ms" />
</runnable>

<runnable type="worker" periodicity="eventschedulerperiodic"
task="busy_wait" monitoring="true">
<dependency value="T2" />
<dependency value="T3" />
<order value="0"/>
<name value="T3" />
<core value="1" />
<period value="80" units="ms" />
<relative_deadline value="80" units="ms" />
</runnable>

</runnable>
</simulation>

5.3.2. Simulation Output and Visualization

Figure 5.12.: Output of a event scheduler scheduling example

The figure 5.12 shows the output and visualization of event scheduler-MC, where red
dotted line indicates the overrun of a task, and green dotted line indicates the time point
when criticality mode turns back to LO.

45

5. Implementation

5.4. Real task set support

In order to support a real task set, several modifications have been made on the Task class.
All the tasks related to path tracking(lane processing) functions have been integrated into
HSF. The derive relation shows in figure 5.13. Task should be written as a class derived
from the class Task. The most important methods of real task class is the initialize()
and fire() function. initialize() will be called after the class is created. fire() is the real
execution codes of the task. In order to achieve cancellation, the code in fire() should be
restructured as mentioned in section 5.2.1 if it could.

Task

cancel_
task_load_
wcets_
#task_type_
task_name_
#tasksmap_
DependentTasks_

+ Task()
+ ~Task()
+ initialize()
+ fire()
+ cancel()
+ getWcet()
+ gettasktype()
+ getTaskname()
+ setTaskname()
+ setTaskmap()
+ setDependentTasks()
+ Datatransfer()
+ ReceiveData()

BusyWait

random_engine_
distribution_
distribution_parameter_

+ BusyWait()
+ ~BusyWait()
+ getExecutionTimeUs()

Capture0

Mat frame
VideoCapture stream

+ Capture0()
+ ~Capture0()
+ initialize()
+ fire()
+ DatatransferMat()

SensorFusionSpeed

float speed

+ SensorFusionSpeed()
+ ~SensorFusionSpeed()
+ initialize()
+ fire()
+ DataReceivefloat()
+ setSpeed()

LanesProc

Mat frame
Mat spl[3]
Mat temp_part
Mat frame_part
float steering
float SENSITY

+ LanesProc()
+ ~LanesProc()
+ initialize()
+ fire()
+ Followline()
+ DataReceiveMat()
+ DataTransferfloat()

SensorFusionSteering

float steering

+
SensorFusionSteering()
+
~SensorFusionSteering()
+ initialize()
+ fire()
+ DataReceivefloat()
+ setSteering()

Figure 5.13.: Real task classes

Methods Datatransfer() and DataReceive() are used to achieve the function of data
transfer between tasks. Each task has a whole task map tasksmap , which stores all other
tasks’ pointers. WhenDatatransfer(target, data) is called, it actually calls tasksmap [target]
→ DateReceive(data).

5.5. Time Measurement

In the original HSF time is measured by using the x86-architecture-specific time stamp
counter (TSC). Another way to measure time is using the system call interface (clock gettime()
function). The advantage of using TSC is that it accesses the timer with only one single
CPU instruction and has an accuracy of one CPU cyle. Unfortunately it is not possible

46

5.5. Time Measurement

to use TSC in Raspberry Pi due to its ARM structure. Therefore in our case the time is
measured with the system call interface clock gettime().

47

5. Implementation

48

6. Integration of software modules

The integration of software modules is to integrate all tasks with the Hierarchical Schedul-
ing Framework. As far only the tasks related to functionality path tracking (lane process-
ing) are integrated. The functionality development of path tracking will be introduced
since it is also a contribute of this thesis.

6.1. Path tracking

The objective of path tracking (also called lane processing) is that the car should keep
its track in the middle of a road with clear board. A road shows in figure 6.1 and 6.2
is chosen as a test environment. The pictures are taken from one of the stereo cameras
of the model car. Therefore the size of picture is only 320*240, which is enough for lane
detection. Photos from this camera is the input of path tracking and steering angle of
servos will be sent to micro-controller Atmega328 as output. All of the following steps
are achieved with help of OpenCV libraries.

Figure 6.1.: Test road1 Figure 6.2.: Test road2

Since the road has high contrast between the road surface(grey) and lawns(green) on both
side. It is possible to extract road contour with thresholding. But it is also observed that,
shadows ,sunshine, fallen leaves as well as small rocks on the road will be big interfer-
ences for our algorithm. After anaylsis of the photos from camera, the following 5 steps
are made as the process of lane processing.

(1) Get the bottom part of a picture. Not the whole picture is useful for lane detection.
Since the camera is parallel to the ground, the road occupies only about 1/4 part of the

49

6. Integration of software modules

whole photo with about 15 meters’ distance. Small size also makes the image processing
much more faster.

Figure 6.3.: Get bottom part of a picture

(2) Split the RGB channels of a picture A RGB based picture consists of 3 channels, the
red, green and blue channel. Since in our case the back ground of the bottom part is
usually green while the road surface is grey, not every channel of the RGB photo has a
good contrast. The figure 6.4 to 6.7 show the greyscales of three channels and the result
after ostu(will be introduced in (4)) thresholding of a same picture. It is observed that the
blue channel has the best contrast and result after thresholding.

Figure 6.4.: Original greyscale Figure 6.5.: Blue channel

Figure 6.6.: Green channel Figure 6.7.: Red channel

(3) Gaussian blur to filter noise A Gaussian filter is used to smooth the greyscale of a
picture. It is effective to remove noises. The following pictures show the differences

50

6.1. Path tracking

between the results of thresholding with a GaussianBlur and without. The comparision
shows that thresholding after Gaussian blur could reduce noises significantly.

Figure 6.8.: Greyscale of blue channel Figure 6.9.: Greyscale after gaussian blur

Figure 6.10.: After ostu thresholding Figure 6.11.: After ostu thresholding

(4) Thresholding with Otsu’s binarization In global thresholding of a picture, an arbi-
trary value is used as a threshold value. But it is hard to know if the value we chosen is
good or not. Since in our case the bottom part is mostly made of two different colors, it
is a typical bimodal image, whose histogram has two peaks. e.g. the histogram of figure
6.9 shows as follows. The histogram is got by using the function calcHist() provided by
OpenCV. The Otsu’s binarization tries to find the minimal point between two peaks and
this value will be regarded as the optimal threshold value. We could say in figure 6.12 the
blue point is the best value for thresholding.

Figure 6.12.: Histogram of figure 6.9

(5) Steering control with pure pursuit method Figure 6.13 shows the camera view and
the top view of a road situation. The goal point, also the destination point is determined

51

6. Integration of software modules

by calculating the middle point of the red part of road contour, e.g. the green point is the
goal point.

ld

L

x

y

Camera

lx

ly

Figure 6.13.: Camera view and top view

From the figure 6.14 we could get the geometric relationship between the goal point po-
sition in photo from camera and the real goal point in top view.


lx = kx × x
ly = ky × y
ld =

»
l2x + (ly + L)2

sin (α) = lx/ld

(6.1)

where x, y is the number of pixels in camera view, lx, ly are the real distance in top view,
kx, ky are proportional ratios between the number of pixels and real distance. ld is the
distance from the current rear axle position to the real goal point. L is the length between
the front axle to rear axle fo the car.

The model car could be simplified as a bicycle model with two wheels: the front steering
wheel and the rear fixed wheel. We assume that the car could only move on a plane. From
the figure 6.14 we could get the geometric relationship shows in equation 6.2 between the
wheel steering and the curvature the rear axle will follow.

52

6.1. Path tracking

Figure 6.14.: Geometric movement model[33]

tan (δ) = L/R (6.2)

where δ is the steering angle of the front wheel, R is the radius of the circle that the rear
axle will travel along at the given steering angle.

The pure pursuit [33] method is one of the most common approaches to the path tracking
problem for mobile robots. The key part of the pure pursuit method is the calculation of
the curvature of a circular, which connects the rear axle location to a goal point. Figure
6.15 shows the pure pursuit geometry.

ld
sin(2α)

=
R

sin
(π
2 − α

) ⇒ ld
2sin (α) cos (α)

=
R

cos (α)
(6.3)

R =
ld

2sin (α)
(6.4)

From the equation 6.1, 6.2, 6.4 we could get the steering angle:

δ = arctan

Ç
2kx · L · x

k2x · x2 + (kyy + L)2

å
(6.5)

According to our test the value kx ≈ 0.025 m/pixel, ky ≈ 0.2 m/pixel, y = 50 pixels, L =
0.8m. we could get:

δ = arctan

Å
0.04 · x

0.000625 · x2 + 116.64

ã
(6.6)

53

6. Integration of software modules

Figure 6.15.: Pure Pursuit geometry[33]

6.2. integration of tasks

For TTS-MC two task allocations in HI-critical mode and LO-critical mode are needed. In
section 3 we have presented two solutions to solve the task allocation problem to mini-
mize the makespan. And the task allocation for LO-critical mode has already been deter-
mined. In order to get the task allocation in high critical mode, the first thing needs to do
is the classification of criticality of tasks.

Classification of tasks’ criticality level According to the standard ISO 26262, the criti-
cality levels in automotive industry are defined as the name Automotive Safety Integrity
Level(ASIL). There are four ASILs identified by the standard: ASIL A, ASIL B, ASIL C,
ASIL D. ASIL D dictates the highest integrity requirements on the product and ASIL A
the lowest. QM is an additional level which has no safety requirements. In ASIL the clas-
sification of a taskis defined by three scales:
Severity scale (S)

• S0 No Injuries

• S1 Light to moderate injuries

• S2 Severe to life-threatening (survival probable) injuries

• S3 Life-threatening (survival uncertain) to fatal injuries

Exposure scale (E)

• E0 Incredibly unlikely

54

6.2. integration of tasks

• E1 Very low probability (injury could happen only in rare operating conditions)
injuries

• E2 Low probability

• E3 Medium probability

• E4 High probability (injury could happen under most operating conditions)

Controllability scale (C):

• C0 Controllable in general

• C1 Simply controllable

• C2 Normally controllable (most drivers could act to prevent injury)

• C3 Difficult to control or uncontrollable

The table 6.1 shows the ASIL classification of tasks according to its severity, exposure and
controllability scales.

C1 C2 C3

S1

E1 QM QM QM
E2 QM QM QM
E3 QM QM A
E4 QM A B

S2

E1 QM QM QM
E2 QM QM A
E3 QM A B
E4 A B C

S3

E1 QM QM A
E2 QM A B
E3 A B C
E4 B C D

Table 6.1.: ASIL Assignment Matrix

According to the table 6.1 we could get the following task criticality classification in table
6.2 of our system. the controllability scale of all functionalities are C3 since the car is
autonomous driving, no driver is involved. Because ASIL QM has no safety requirement,
the functionalities traffic signs processing, traffic lights processing and navigation are set
as LO-critical, while path tracking, collision avoidance, and steering as well as speed
control are set as HI-critical.

From the classification in table 6.2 we could get the HI-critical task set τχi∈HI =
{T4, T5, T6, T7, T9, T10}. And its task graph in figure 6.16.

Task allocation in high critical mode According to the figure 3.2 the period of the task
set is 116 milliseconds. In order to keep the period after mode change same with in low
critical mode, the high critical tasks could be assigned with larger budget execution time

55

6. Integration of software modules

Functionality S E C ASIL Critical level
Collision avoidance S3 E4 C3 D HI
Signs processing S1 E1 C3 QM LO
Path tracking S3 E3 C3 C HI
Navigation S1 E1 C3 QM LO
Steering and speed control S3 E4 C3 D HI

Table 6.2.: Criticality classification

T9
SensorFu
sionSpee

d

T4
Capture0

T5
Capture1

T6
LanesPro

c

T10
SensorFu
sionSteeri

ng

T7
DepthMa

pProc

Figure 6.16.: task graph in high critical mode

56

6.2. integration of tasks

as its Ci(HI). The WCET assignment for high critical mode is flexible. The principle is
to give the important tasks more budget time for execution. On this purpose we could
first delete all low critical tasks in the task allocation. Then adjust the length of the high
critical tasks. The adjusted length could be regarded as their Ci(HI). The figure 6.17 and
table 6.3 show the task allocation of the whole system.

T10

T4

T2T5

T1 T3

T8

T6

Core 1

Core 2 T9

T7Core 3

Core 4

T10

T4

T5 T6

T9

T7

Core 1

Core 2

Core 3

Core 4

Low critical mode

High critical mode

Figure 6.17.: task allocation of autonomous car

Task name Core Index
−→
C (LO,HI))

−→
R (LO,HI))

T1 Capture2 2 9 0
T2 SignsProc 4 70 10
T3 LightsProc 2 76 10
T4 Capture0 3 (9,13) (0,0)
T5 Capture1 4 (9,13) (0,0)
T6 LanesProc 4 (10,80) (81,14)
T7 DepthMapProc 3 (72,80) (10,14)
T8 GPSProc 1 106 0
T9 SensorFusionSpeed 2 (10,20) (96,96)
T10 SensorFusionSteering 1 (10,20) (106,96)

Table 6.3.: task allocation of autonomous car

57

6. Integration of software modules

58

7. Experiments

In experiments the whole task graph is scheduled with both TTS-MC and event scheduler-
MC in Raspberry Pi 3 model B with a 1.2GHz 64-bit quad-core ARMv8CPU. The test
time is one hour. The Linux version is raspbian 4.4.13. Scheduling overhead, number of
missed deadlines, number of overruns as well as number of canceled tasks will be saved
for statistical analysis. Tasks related to path tracking are applied with real tasks. Others
are using busy-wait for simulation. The reason is that functionalities such as navigation,
traffic signs processing need specific libraries, which are hard to integrate with HSF so
far because the HSF is not using a CmakeLists file for compilation. The period of task set
is set as all tasks’ relative deadline, Di = T . The execution time of busy waiting tasks
are set as uniform distribution. The upper bound of uniform distribution is greater than
Ci(LO), so that tasks might overrun and the behaviour of scheduler after overrun could
be studied. ®

χi ∈ LO, pi = (Ci(LO)/2, Ci(LO) + (Ci(HI)− Ci(LO)) /5)
χi ∈ HI, pi = (Ci(LO)/2, Ci(LO)× 1.1)

(7.1)

Scheduling overhead is usually used to evaluate the performance of a scheduler. The
scheduling overhead of both TTS-MC and event scheduler-MC consist of the following
components: (1) job handling including the handle of job arrival and finishing. (2) over-
run handling, including overrun trigger and overrun handle. (3) scheduler state updat-
ing. (4) The switch of critical mode. (5) Other processing in wrapper()(main process of
scheduler). (6) The cancellation of overrun tasks. (7) Overrun checking since it is running
independent as thread. The measurement of overhead is implemented by the Stopwatch
Class with end-to-end measurement of code.

7.1. Evaluation of TTS-MC

According to the statistics, there is no deadline misses during scheduling. Table 7.1 shows
the details of different parts of the scheduling overhead. The relative overhead in indi-
vidual core is defined as relative overhead = absolute overhead

duration . The absolute overhead of all
cores is 9683.58ms. We could get relative overhead = absolute overhead

running duration×m = 0.067%, where
m is the number of cores.

Figure 7.1 shows the overrun and cancellation rate of each core. The overrun rates are
around 1% to 2%. There is no big difference between different cores since every task has
the possibility to overrun. Different from the overrun rate, the cancellation rate varies

59

7. Experiments

Components Core 1 Core 2 Core 3 Core 4 total
Job handling 338.328 510.768 356.076 498.6 1703.772
overrun handling 24.552 21.828 32.94 35.808 115.128
scheduler state updating 3.312 0.192 0.228 0.144 3.876
mode switch 84.324 125.028 164.4 152.292 526.044
task cancellation 115.752 107.076 3.504 117.72 344.052
overrunchecker 887.424 1200.036 970.188 1303.296 4360.944
wrapper 534.816 783.672 530.304 780.972 2629.764
absolute overhead 1988.508 2748.6 2057.64 2888.832 9683.58
relative overhead 0.055% 0.076% 0.057% 0.080% 0.067%

Table 7.1.: Overhead measurement of TTS-MC(ms)

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

core1 core2 core3 core4

cancel(%)

overrun(%)

Figure 7.1.: Overrun and cancellation
rate of TTS-MC

0

500

1000

1500

2000

2500

3000

3500

Core 1 Core 2 Core 3 Core 4

wrapper

task cancellation

mode switch

scheduler state updating

overrun handling

job handling

overrunchecker

Figure 7.2.: Overhead distribution of
TTS-MC

from different cores significantly. In core 1 there are more than 5% tasks are canceled
while in core 3 no tasks are canceled. The task cancellation rate is related to the task
allocation. Since in core 3, all of tasks are high critical, no task will be canceled. But in
core 1, the task ”GPSProc” with LO-criticality level has the longest WCET. Overrun of any
task might lead to the cancellation of task ”GPSProc”.

The figure 7.2 and figure 7.3 to 7.6 show the scheduling overhead distribution of different
components. The absolute overhead varies from cores. Core 2 and core 4 have greater
overhead than core 1 and core 3. It could be concluded that cores with more assigned
tasks have greater absolute overhead since core 2 and core 4 have three assigned tasks
while core 1 and core 3 have only two. It could be observed that the overheads of over-
run checker, Job handling and wrapper are related to the number of assigned tasks. They
occupy more than 60% of the scheduling overhead. The scheduling overhead of mode
switch, task cancellation and overrun handling are related to the overrun and cancel-
lation rate of tasks. Although these parts of overheads are unpredictable, they occupy
only a small part of overhead. But with increase of cancellation and overrun rates, this
part of overhead could also increase. In conclusion we could say that the mode change
mechanism of TTS-MC has small impact on the performance of scheduler. The relative
overhead is totally acceptable. With no deadline miss the TTS-MC scheduler could be
used for real-time scheduling.

60

7.2. Evaluation of Event scheduler-MC

17.01%
1.23%

0.17%

4.24%

5.82%

26.90%

44.63%

job handling

overrun handling

scheduler state updating

mode switch

task cancellation

wrapper

overrunchecker

Figure 7.3.: Scheduling overhead distribu-
tion statistics in core 1

12.31%
0.89%

0.12%

3.07%

4.21%

19.46%

32.29%

job handling

overrun handling

scheduler state updating

mode switch

task cancellation

wrapper

overrunchecker

Figure 7.4.: Scheduling overhead distribu-
tion statistics in core 2

17.31% 1.60%

0.01%

7.99%

0.17%

25.77%

47.15%

job handling

overrun handling

scheduler state updating

mode switch

task cancellation

wrapper

overrunchecker

Figure 7.5.: Scheduling overhead distribu-
tion statistics in core 3

17.26% 1.24%

0.00%

5.27%

4.08%

27.03%

45.11%

job handling

overrun handling

scheduler state updating

mode switch

task cancellation

wrapper

overrunchecker

Figure 7.6.: Scheduling overhead distribu-
tion statistics in core 4

7.2. Evaluation of Event scheduler-MC

According to the statistics, there is also no deadline miss during scheduling. Table 7.2
shows the details of different parts of the scheduling overhead. The absolute overhead
in all of cores is 8292.758ms, and the relative overhead is 0.058%. The overhead of event
scheduler-MC is smaller than the TTS-MC. A main reason is that there is only one dis-
patcher in event scheduler while in TTS-MC every task has a related dispatcher.

Figure 7.7 shows the overrun and cancellation rate of each core. The overrun rates are
around 1% to 2%. Same with TTS-MC, the core 1 has the highest cancellation rate. The fig-
ure 7.8 and figure 7.9 to 7.12 show the scheduling overhead distribution of different com-
ponents. Overheads of overrun checker, job handling and wrapper occupy the biggest
part, while the scheduling overhead of mode switch, task cancellation and overrun han-
dling occupy only a small part. In conclusion the event scheduler has relative lower task
overrun and cancellation rate also less scheduling overhead than the TTS-MC.

61

7. Experiments

Components Core 1 Core 2 Core 3 Core 4 total
Job handling 208.216 289.183 211.644 424.350 1133.394
overrun handling 9.338401 23.122 34.889 13.134 80.486
scheduler state updating 1.202 2.757 0.720 0.964 5.645
mode switch 85.850 103.873 87.394 125.860 402.979
task cancellation 175.4237 187.535 13.562 93.299 469.821
overrunchecker 790.167 1320.409 690.171 1139.203 3939.951
wrapper 485.725 642.123 369.142 763.488 2260.48
absolute overhead 1755.924 2569.005 1407.527 2560.302 8292.758
relative overhead 0.049% 0.071% 0.039% 0.071% 0.058%

Table 7.2.: Overhead measurement of Event scheduler-MC(ms)

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

Core1 Core2 Core3 Core4

cancel(%)

overrun(%)

Figure 7.7.: Overrun and cancellation
rate of Event scheduler-MC

0

500

1000

1500

2000

2500

3000

Core 1 Core 2 Core 3 Core 4

wrapper

task cancellation

mode switch

scheduler state updating

overrun handling

job handling

overrun checker

Figure 7.8.: Overhead distribution of
Event scheduler-MC

62

7.2. Evaluation of Event scheduler-MC

11.86%

0.53%

0.07%
4.89%

9.99%

27.66%

45.00%

job handling

overrun handling

scheduler state updating

mode switch

task cancellation

wrapper

overrun checker

Figure 7.9.: Scheduling overhead distribu-
tion statistics in core 1

11.26%

0.90%

0.11%

4.04%

7.30%

25.00%

51.40%

job handling

overrun handling

scheduler state updating

mode switch

task cancellation

wrapper

overrun checker

Figure 7.10.: Scheduling overhead distribu-
tion statistics in core 2

15.04% 2.48%
0.05%

6.21%
0.96%

26.23%

49.03%

job handling

overrun handling

scheduler state updating

mode switch

task cancellation

wrapper

overrun checker

Figure 7.11.: Scheduling overhead distribu-
tion statistics in core 3

16.57%
0.51%

0.04%

4.92%

3.64%

29.82%

44.49%

job handling

overrun handling

scheduler state updating

mode switch

task cancellation

wrapper

overrun checker

Figure 7.12.: Scheduling overhead distribu-
tion statistics in core 4

63

7. Experiments

64

8. Conclusion and problems

8.1. Conclusion

In this thesis two real-time multi-core schedulers for mixed-criticality task graph with
precedence constrained are designed and implemented. The implementation was done
by extending the Hierarchical Scheduling Framework(HSF)[25][16]. Both software and
hardware of an autonomous driving model car were designed and implemented. The two
designed schedulers named ”TTS-MC” and ”Event scheduler-MC” were tested by inte-
grating the task graph of this car with its path tracking functionality. The result showed
that both of the two schedulers have good performance with less than 0.1% scheduling
overhead. And the real-time requirement of safety-critical tasks could be guaranteed.
Compared to ”TTS-MC”, the ”Event scheduler-MC” has lower scheduling overhead and
usually shorter response time.

After all, the procedure of applying a real-life task graph with HSF could be made:

• (1) Draw a task graph of the real-life system.

• (2) Classification of the Automotive Safety Integrity Level(ASIL) and get criticality
level of tasks(HI or LO).

• (3) Measure the Worst Case Execution Time(WCET) of each task, where the LO-
critical tasks, which could not be canceled, should be assigned with more pes-
simistic WCET.

• (4) Using the TORSCHE scheduling toolbox to get optimal task allocation with min-
imized makespan.

• (5) Create task class in HSF for each real-life task.

• (6) Write XML file according to task allocation.

• (7) Test the scheduler, adjust the task allocation or task set period if the scheduler
works not well.

8.2. Problems

Although the designed schedulers work as wished in my case, there are still problems. I
list some tips that may help the people who want to extend this framework with other
functionalities.

65

8. Conclusion and problems

• (1) Time measurement mechanism of HSF is different in x86 platform from in ARM
based platform such as raspberry pi. In x86 platform the time stamp counter is ac-
cessed to get a global timing with an accuracy of one CPU cycle, while in ARM
based platform we could only access the operating system timer with an accuracy
of several microseconds. The disadvantage of this way is that there are some block-
ing delays when one core tries to access the timer, while another is already inside
the system call[25]. Therefore the time measurement of scheduling overhead might
have errors, which should be considered in future work.

• (2) The periodic dispatcher of both TTS-MC and Event scheduler-MC is some times
delayed in about 10 ms, the reason caused this phenomena remains unknown.

• (3) Real-tasks are usually not be able to be canceled. Pessimistic WCET assignment
will increase the makespan significantly. Therefore the cancellation of tasks needs
more works.

• (4) In event scheduler-MC, every miss of task finish will block the whole system. In
experiment this situation also happened sometime. So far the reason still remains
unknown. Therefore using event scheduler-MC to scheduling real-life task set still
needs a lot of tests.

• (5) The task allocation get from Torsche toolbox did not consider the criticality of
tasks. In practice high critical tasks usually should be allocated earlier than low
critical tasks. Also the high critical task load balance should be considered since
after the mode change only high critical tasks will be scheduled.

66

Appendix

67

A. Installation of Hierarchical Scheduling
Framework

The whole project locates in gitlab address: git@gitlab.lrz.de:autonomous-car-ss16/Collision-
Avoidance.git, you could find both the original version of HSF and the modified version.
For installation please check the README file.

Listing A.1: Installation of Hierarchical Scheduling Framework
Hierarchical Scheduling Framework {#mainpage}
=================================

Requirements

HSF requires a *NIX kernel with standard libraries. To compile all
sources,

these packages are needed:

* g++ (>= 4.7)

* make

* octave

* php

* (Lu Cheng)OpenCV (>=3.1.0) (only needed when you are applying with
the autonomous car task set)

If you want to use the initial support for the hwloc library for
setting the

processor affinities of the threads, the hwloc tools and library are
also needed:

* hwloc

You can also directly link the sources without compiling and installing
them. For

more details see: <http://www.open-mpi.org/projects/hwloc/>\n
To compile hsf without hwloc support, check that ‘USE_LINUX_AFFINITY‘

is set to
‘1‘ in ‘src/pthread/Thread.cpp‘ and uncomment ‘HSFLIBS += -lhwloc‘ in

the Makefile.

69

A. Installation of Hierarchical Scheduling Framework

For generating the output figures with the ‘simfig‘ tool you need the
following

additional libraries:

* libmgl-dev (>= 2.0)

* libX11-dev

Mathgl library should be compiled, and libmgl.so.7.0.0 should be placed
in

‘/usr/local/lib‘ (otherwise the MATHGL variable in the makefile
should be changed to the appropriate location). If you follow the

compile
instructions of Mathgl this should happen automatically. For more

information
on Mathgl, please visit: <http://mathgl.sourceforge.net/>

For building the documentation of the Hierarchical Scheduling Framework
you will

also need a recent version of doxygen:

* doxygen (>= 1.8)

To build the documentation simply run ‘make doc‘ in the HSF directory.
The

documentation will then be generated in the ‘doc‘ directory.

Installation and Configuration

1. If your HSF folder is not located in ‘˜/git‘, then please change
line 3 of

‘hsf_paths.sh‘ to the path of your HSF folder.
2. In the terminal, type:

source hsf_paths.sh

This will set a new ‘$HSF‘ variable, and add it to your ‘$PATH‘
variable. You can

also add it to your ‘˜/.bashrc‘ file, to have it load automatically
3. Privileges for executing with real-time priorities
To execute hsf the user needs to have the privileges to switch the

applications
scheduling policy to real-time priority based scheduling and execute it

a with
real-time priority. You can do this in two different ways:

1. (RECOMMENDED) Allow the user to execute applications with real-time
priority

using the limits.conf configuration file. To allow the user with name ’
user’

70

to execute its applications with real-time priority, simply add the
file

‘/etc/security/limits.d/50-rtprio.conf‘ with the following two lines (
replace

’user’ with your username):

user - rtprio unlimited
user - nice -20

To apply these changes a reboot of your machine is required.
Please note that this user can execute any application with real-time

priority.
More details about this can be found in the manpage of limits.conf
2. (_NOT_ RECOMMENDED) To execute hsf with real-time priority the

command could
simply executed with root privileges for example be using ‘sudo‘.

However we
do not recommend executing the framework as root.
If you still want to use the sudo approach please note the following:

On some
older systems, you might have to add the following line to your bash

profile
in order to inherit you PATH variable when using ’sudo’:

alias sudo=’sudo env PATH=$PATH $@’
3. (Lu Cheng)If you are compiling the HSF in Raspberry pi, the

following three
files should be replaced to disable the use of TSC: src/util/TimeUtil.h

, src/util/TimeUtil.cpp, src/util/RDTSC.h.
4. (Lu Cheng)The makefile is already added with OpenCV library, if

there is any problem, please use the original one.

4. Then type:

./install.sh
5. Run HSF!
You can now type in you terminal the following commands:

hsf [filename(.xml)]
simulate [filename(.xml)]
calculate [metric] [filename]
show [metric] [filename]
simfig [filename]
publish [filename]

[metric] can be one (or more) of the following:

* exe|exec -> Execution Times

* resp -> Response Times

* throughput -> Throughput

* util -> Utilization

* alloc -> Resource allocation costs

71

A. Installation of Hierarchical Scheduling Framework

* sys -> System allocation costs

* worker -> Worker costs

* missed -> Missed deadlines

Simulations on Xeon Phi (and Other Systems With Network File Systems)

When simulating on Xeon Phi, please notice that the underlaying network
file system

is likely to be blocked by the HSF framework, because the framework
runs at higher

priority than the file system daemon. This will cause undefined
behavior and blocking

of the framework, when it reads and/or writes to files.

To avoid these blocking, you need to copy all files needed for
simulations to a

local subdirectory in ‘/tmp/‘ and start simulation in that directory.

This setup is required if one of the following criteria is met (know
cases):

- Simalations using the partitioned EDF-VD scheduler (PartitionedEDF_VD
)

- Simulations with flight management system tasks (FlyanceTask)

72

B. XML file for experiments

B.1. XML file for TTS-MC experiment

Listing B.1: XML file for TTS-MC
<simulation name="car_experiment">
<duration value="1" units="sec" />
<runnable type="scheduler" algorithm="TTS_MC" cores="4"

criticality_levels="2">

<runnable type="worker" periodicity="periodic" task="busy_wait"
monitoring="true">

<offset value="0" units="ms" />
<name value="Capture2" />
<core value="1" />
<period value="118" units="ms" />
<criticality_level value="1" />
<wcet criticality_level="1" value="9" units="ms" />
<wcet criticality_level="2" value="9" units="ms" />
<distribution value="test"/>
<relative_deadline value="118" units="ms" />
</runnable>

<runnable type="worker" periodicity="periodic" task="busy_wait"
monitoring="true">

<offset value="10" units="ms" />
<name value="SignsProc" />
<core value="3" />
<period value="118" units="ms" />
<criticality_level value="1" />
<wcet criticality_level="1" value="70" units="ms" />
<wcet criticality_level="2" value="70" units="ms" />
<distribution value="test"/>
<relative_deadline value="118" units="ms" />
</runnable>

<runnable type="worker" periodicity="periodic" task="
car_SensorFusionSpeed" monitoring="true">

<offset value="105" units="ms" />
<offset_hi value="96" units="ms" />
<name value="SensorFusionSpeed" />
<core value="1" />
<period value="118" units="ms" />

73

B. XML file for experiments

<criticality_level value="2" />
<wcet criticality_level="1" value="10" units="ms" />
<wcet criticality_level="2" value="20" units="ms" />
<distribution value="test" />
<relative_deadline value="118" units="ms" />
</runnable>

<runnable type="worker" periodicity="periodic" task="busy_wait"
monitoring="true">

<offset value="10" units="ms" />
<name value="LightsProc" />
<core value="1" />
<period value="118" units="ms" />
<criticality_level value="1" />
<wcet criticality_level="1" value="76" units="ms" />
<wcet criticality_level="2" value="76" units="ms" />
<distribution value="test" />
<relative_deadline value="118" units="ms" />
</runnable>

<runnable type="worker" periodicity="periodic" task="busy_wait"
monitoring="true">

<offset value="10" units="ms" />
<offset_hi value="14" units="ms" />
<name value="DepthMap" />
<core value="2" />
<period value="118" units="ms" />
<criticality_level value="2" />
<wcet criticality_level="1" value="72" units="ms" />
<wcet criticality_level="2" value="80" units="ms" />
<distribution value="test" />
<relative_deadline value="118" units="ms" />
</runnable>

<runnable type="worker" periodicity="periodic" task="
car_SensorFusionSteering" monitoring="true">

<offset value="106" units="ms" />
<offset_hi value="96" units="ms" />
<name value="SensorFusionSteering" />
<core value="0" />
<period value="118" units="ms" />
<criticality_level value="2" />
<wcet criticality_level="1" value="10" units="ms" />
<wcet criticality_level="2" value="20" units="ms" />
<distribution value="test" />
<relative_deadline value="118" units="ms" />
</runnable>

<runnable type="worker" periodicity="periodic" task="busy_wait"
monitoring="true">

<offset value="0" units="ms" />
<name value="Capture1" />

74

B.1. XML file for TTS-MC experiment

<core value="3" />
<period value="118" units="ms" />
<criticality_level value="2" />
<wcet criticality_level="1" value="9" units="ms" />
<wcet criticality_level="2" value="13" units="ms" />
<distribution value="test" />
<relative_deadline value="118" units="ms" />
</runnable>

<runnable type="worker" periodicity="periodic" task="car_Capture0"
monitoring="true">

<offset value="0" units="ms" />
<name value="Capture0" />
<core value="2" />
<period value="118" units="ms" />
<criticality_level value="2" />
<wcet criticality_level="1" value="9" units="ms" />
<wcet criticality_level="2" value="13" units="ms" />
<distribution value="test" />
<relative_deadline value="118" units="ms" />
</runnable>

<runnable type="worker" periodicity="periodic" task="car_LanesProc"
monitoring="true">

<offset value="81" units="ms" />
<offset_hi value="14" units="ms" />
<name value="LanesProc" />
<core value="3" />
<period value="118" units="ms" />
<criticality_level value="2" />
<wcet criticality_level="1" value="10" units="ms" />
<wcet criticality_level="2" value="80" units="ms" />
<distribution value="test" />
<relative_deadline value="118" units="ms" />
</runnable>

<runnable type="worker" periodicity="periodic" task="busy_wait"
monitoring="true">

<offset value="0" units="ms" />
<name value="GPSProc" />
<core value="0" />
<period value="118" units="ms" />
<criticality_level value="1" />
<wcet criticality_level="1" value="105" units="ms" />
<wcet criticality_level="2" value="105" units="ms" />
<distribution value="test" />
<relative_deadline value="118" units="ms" />
</runnable>

</runnable>
</simulation>

75

B. XML file for experiments

B.2. XML file for Event scheduler-MC experiment

Listing B.2: XML file for TTS-MC
<simulation name="car_experiment_event">
<duration value="2000" units="ms" />
<runnable type="scheduler" algorithm="EventScheduler_MC" cores="4"

criticality_levels="2">

<runnable type="worker" periodicity="eventschedulerperiodic" task="
busy_wait" monitoring="true">

<offset value="0" units="ms" />
<name value="GPSProc"/>
<order value="0"/>
<core value="0" />
<period value="118" units="ms" />
<criticality_level value="1" />
<wcet criticality_level="1" value="105" units="ms" />
<wcet criticality_level="2" value="105" units="ms" />
<distribution value="test" />
<relative_deadline value="118" units="ms" />
</runnable>

<runnable type="worker" periodicity="eventschedulerperiodic" task="
car_SensorFusionSteering" monitoring="true">

<dependency value="DepthMapProc" />
<dependency value="LanesProc" />
<dependency value="GPSProc" />
<name value="SensorFusionSteering"/>
<order value="1"/>
<core value="0" />
<criticality_level value="2" />
<wcet criticality_level="1" value="10" units="ms" />
<wcet criticality_level="2" value="20" units="ms" />
<distribution value="test" />
<relative_deadline value="118" units="ms" />
</runnable>

<runnable type="worker" periodicity="eventschedulerperiodic" task="
busy_wait" monitoring="true">

<offset value="0" units="ms" />
<order value="0"/>
<name value="Capture2" />
<core value="1" />
<criticality_level value="1" />
<wcet criticality_level="1" value="9" units="ms" />
<wcet criticality_level="2" value="9" units="ms" />
<distribution value="test"/>
<relative_deadline value="118" units="ms" />
</runnable>

76

B.2. XML file for Event scheduler-MC experiment

<runnable type="worker" periodicity="eventschedulerperiodic" task="
busy_wait" monitoring="true">

<dependency value="Capture2" />
<name value="LightsProc" />
<order value="1"/>
<core value="1" />
<criticality_level value="1" />
<wcet criticality_level="1" value="76" units="ms" />
<wcet criticality_level="2" value="76" units="ms" />
<distribution value="test" />
<relative_deadline value="118" units="ms" />
</runnable>

<runnable type="worker" periodicity="eventschedulerperiodic" task="
car_SensorFusionSpeed" monitoring="true">

<dependency value="SignsProc" />
<dependency value="LightsProc" />
<dependency value="DepthMapProc" />
<order value="2"/>
<name value="SensorFusionSpeed"/>
<core value="1" />
<criticality_level value="2" />
<wcet criticality_level="1" value="10" units="ms" />
<wcet criticality_level="2" value="20" units="ms" />
<distribution value="test" />
<relative_deadline value="118" units="ms" />
</runnable>

<runnable type="worker" periodicity="eventschedulerperiodic" task="
car_Capture0" monitoring="true">

<name value="Capture0" />
<order value="0"/>
<core value="2" />

<criticality_level value="2" />
<wcet criticality_level="1" value="20" units="ms" />
<wcet criticality_level="2" value="30" units="ms" />
<distribution value="test" />
<relative_deadline value="118" units="ms" />
</runnable>

<runnable type="worker" periodicity="eventschedulerperiodic" task="
busy_wait" monitoring="true">

<dependency value="Capture1" />
<dependency value="Capture0" />
<name value="DepthMapProc" />
<order value="1"/>
<core value="2" />
<criticality_level value="2" />
<wcet criticality_level="1" value="72" units="ms" />
<wcet criticality_level="2" value="80" units="ms" />
<distribution value="test" />

77

B. XML file for experiments

<relative_deadline value="118" units="ms" />
</runnable>

<runnable type="worker" periodicity="eventschedulerperiodic" task="
busy_wait" monitoring="true">

<name value="Capture1" />
<order value="0"/>
<core value="3" />
<criticality_level value="2" />
<wcet criticality_level="1" value="9" units="ms" />
<wcet criticality_level="2" value="13" units="ms" />
<distribution value="test" />
<relative_deadline value="118" units="ms" />
</runnable>

<runnable type="worker" periodicity="eventschedulerperiodic" task="
busy_wait" monitoring="true">

<dependency value="Capture2" />
<name value="SignsProc" />
<order value="1"/>
<core value="3" />
<criticality_level value="1" />
<wcet criticality_level="1" value="70" units="ms" />
<wcet criticality_level="2" value="70" units="ms" />
<distribution value="test"/>
<relative_deadline value="118" units="ms" />
</runnable>

<runnable type="worker" periodicity="eventschedulerperiodic" task="
car_LanesProc" monitoring="true">

<dependency value="Capture0" />
<name value="LanesProc" />
<order value="2"/>
<core value="3" />
<criticality_level value="2" />
<wcet criticality_level="1" value="10" units="ms" />
<wcet criticality_level="2" value="15" units="ms" />
<distribution value="test" />
<relative_deadline value="118" units="ms" />
</runnable>

</runnable>
</simulation>

78

Bibliography

[1] Makespan scheduling. https://www2.informatik.hu-berlin.de/alcox/
lehre/lvws1011/coalg/makespan_scheduling.pdf.

[2] J.H. Anderson, S.K. Baruah, and B.B. Brandenburg. Multicore operating-system sup-
port for mixed criticality. Workshop on Mixed Criticality: Roadmap to Evolving UAV
Certification, San Francisco, 2009.

[3] M. Asberg, T. Nolte, S. Kato, and R. Rajkumar. ExSched: An External CPU Scheduler
Framework for Real-Time Systems. Proc. RTCSA, pages 240–249, 2012.

[4] S. Baruah, V. Bonifaci, G. DAngelo, H. Li, A. Marchetti-Spaccamela, S. van der
Ster, and L. Stougie. The Preemptive Uniprocessor Scheduling of Mixed-Criticality
Implicit-Deadline Sporadic Task Systems. 24th Euromicro Conference on Real-Time Sys-
tems, pages 145–154, July 2012.

[5] G. Bernat, A. Colin, and S. M. Petters. WCET analysis of probabilistic hard real-time
systems. Real-Time Systems Symposium, 2002. RTSS 2002. 23rd IEEE, pages 279–288,
2002.

[6] Enis Bilgin and Stefan Robila. Road sign recognition system on Raspberry Pi. 2016
IEEE Long Island Systems, Applications and Technology Conference (LISAT), pages 1–5,
2016.

[7] M. Bommert. Schedule-aware distributed of parallel load in a mixed criticality envi-
ronment. JRWRTC, RTNS, page 21–24, 2013.

[8] Catalin-Virgil Briciu, Ioan Filip, and Franz Heininger. A new trend in automo-
tive software: AUTOSAR concept. Applied Computational Intelligence and Informatics
(SACI), 2013 IEEE 8th International Symposium, pages 251–256, 2013.

[9] A. Burns and R.I.Davis. Mixed criticality systems: A review. Technical Report SA-
2013-57, Department of Computer Science, University of York, 2014.

[10] J.M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H. Anderson. LITMUS :
A Testbed for Empirically Comparing RealTime Multiprocessor Schedulers. in Proc.
RTSS, pages 111–126, 2006.

[11] F. Checconi, T. Cucinotta, D. Faggioli, and G. Lipari. Hierarchical multiprocessor
cpu reservations for the linux kernel. 5th International Workshop on Operating Systems
Platforms for Embedded Real-Time Applications (OSPERT 2009), 2009.

[12] R.I. Davis and A. Burns. Hierarchical fixed priority preemptive scheduling. IEEE
Real-Time Systems Symposium (RTSS), pages 389–398, 2005.

79

https://www2.informatik.hu-berlin.de/alcox/lehre/lvws1011/coalg/makespan_scheduling.pdf
https://www2.informatik.hu-berlin.de/alcox/lehre/lvws1011/coalg/makespan_scheduling.pdf

Bibliography

[13] D. Faggioli, M. Trimarchi, and F. Checconi. An Implementation of the Earliest Dead-
line First Algorithm in Linux. in Proc. SAC, pages 1984–1989, 2009.

[14] G. Farmer and R. West. Hijack: Taking Control of COTS Systems for Real-Time User-
Level Services. Proc. RTAS, pages 133–146, 2007.

[15] Paolo Gai and Massimo Violante. Automotive embedded software architecture in
the multi-core age. 2016 21th IEEE European Test Symposium (ETS), pages 1–8, 2016.

[16] Andres Gomez, Lars Schor, Pratyush Kumar, and Lothar Thiele. SF3P: a framework
to explore and prototype hierarchical compositions of real-time schedulers. 2014
25nd IEEE International Symposium on Rapid System Prototyping, pages 2–8, Oct 2014.

[17] Giovani Gracioli. Implementation and evaluation of global and partitioned schedul-
ing in a real-time OS. Real-Time Systems, pages 669–714, November 2013.

[18] Nan Guan, Pontus Ekberg, Martin Stigge, and Wang Yi. Improving the schedul-
ing of certifiable mixed-criticality sporadic task systems. Technical Report 2013-008,
Department of Information Technology, Uppsala University, April 2013.

[19] Reinhold Heckmann and Christian Ferdinand. Worst-case execution time prediction
by static program analysis. Technical report, AbsInt Angewandte Informatik GmbH.

[20] K.Lakshmanan, D.de Niz, and G.Moreno. Resource allocation in distributed mixed-
criticality cyber-physical systems. In ICDCS, pages 167–178, 2010.

[21] A. Kritikakou, C. Pagetti, C. Rochange, M. Roy, M. Faugre, S. Girbal, and D.G. Prez.
Distributed run-time WCET controller for concurrent critical tasks in mixedcritical
systems. RTNS, 2014.

[22] Graham. R. L. Bounds for certain multiprocessing anomalies. Bell Syst. Techn. J.,
45:1563–1581, 1966.

[23] A. Lackorzynski, A. Warg, and M. Voelp. Flattening hierarchical scheduling. ACM
EMSOFT, pages 93–102, 2012.

[24] Haohan Li and Sanjoy Baruah. Improving the Scheduling of Certifiable Mixed-
Criticality Sporadic Task Systems. pages 166 – 175, July 2012.

[25] Lukas Sigrist. Implementation and evaluation of mixed-criticality scheduling algo-
rithms for multi-core systems. Technical Report SA-2013-57, Swiss Federal Institute
of Technology Zurich, 2014.

[26] Alessandra Melani. Global scheduling in multiprocessor real-time systems. http:
//retis.sssup.it/˜giorgio/slides/cbsd/mc3-global-2p.pdf. Re-
trieved on 2015.04.15.

[27] M. Mollison, J. Erickson, J. Anderson, S.K. Baruah, and J. Scoredos. Mixed criticality
real-time scheduling for multicore systems. the 7th IEEE International Conference on
Embedded Software and Systems, page 1864–1871, 2010.

80

http://retis.sssup.it/~giorgio/slides/cbsd/mc3-global-2p.pdf
http://retis.sssup.it/~giorgio/slides/cbsd/mc3-global-2p.pdf

Bibliography

[28] L. Palopoli, T. Cucinotta, L. Marzario, and G. Lipari. An Implementation of the
Earliest Deadline First Algorithm in Linux. Software: Practice and Experience, 39(1):1–
31, 2009.

[29] Roger S Rivett. Hazard identification and classification: ISO26262- the application
of IEC61505 to the automotive sector. SIL Determination, 2009 5th IET Seminar, pages
1–24, 2009.

[30] Roger Rösch. Development and Construction of an Autonomous Car with Low Cost
Components. Master’s thesis, Technische Universität München, 2016.

[31] N. R. Satish, K. Ravindran, and K. Keutzer. Scheduling task dependence graphs
with variable task execution times onto heterogeneous multiprocessors. Technical
Report UCB/EECS-2008-42, EECS Department, University of California, Berkeley,
April 2008.

[32] Adam Sherer, John Rose, and Riccardo Oddone. Ensuring functional safety compli-
ance for ISO 26262. 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC),
pages 1–3, 2015.

[33] J.M. Snider. Automatic Steering Methods for Autonomous Automobile Path Track-
ing. Carnegie Mellon University, Feb 2009.

[34] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga. Multiprocessor scheduling of
precedence-constrained mixed-critical jobs. Technical Report TR-2014-11, Verimag -
Universit´e Joseph Fourier - Grenoble, 2014.

[35] S. Sören, G. Kim, S. Rosinger, and A. Rettberg. utonomous Flight Control Meets
Custom Payload Processing: A Mixed-Critical Avionics Architecture Approach for
Civilian UAVs. 2014 IEEE 17th International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing, pages 348–357, 2014.

[36] Premysl Sucha and Michal Kutil. TORSCHE Scheduling toolbox for Matlab. Com-
puter Aided Control System Design, 2006 IEEE International Conference on Control Appli-
cations, 2006 IEEE International Symposium on Intelligent Control, Oct 2006.

[37] D. Tamas-Selicean and P. Pop. Optimization of time-partitions for mixed criticality
real-time distributed embedded systems. In 14th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing Workshops, pages
2–10, March 2011.

[38] D. D. Ward and S. E. Crozier. The uses and abuses of ASIL decomposition in ISO
26262. System Safety, incorporating the Cyber Security Conference 2012, 7th IET Interna-
tional Conference, pages 1–6, 2012.

[39] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, and Niklas Holsti. The
worst-case execution-time problem—overview of methods and survey of tools. ACM
Transactions on Embedded Computing Systems (TECS), April 2008.

[40] Tianyu Zhang, Nan Guan, Qingxu Deng, and Wang Yi. On the analysis of EDF-VD
scheduled mixed-criticality real-time systems. Proceedings of the 9th IEEE International
Symposium on Industrial Embedded Systems (SIES 2014), pages 179–188, 2014.

81

Bibliography

[41] X. Zhang, J. Zhan, W. Jiang, Y. Ma, and K. Jiang. Design optimization of security-
sensitive mixed-criticality real-time embedded systems. In L. George and G. Lipari,
editors, Proc. ReTiMiCS, RTCSA, pages 12–17, 2013.

82

	Acknowledgements
	Abstract
	List of Abbreviations
	Introduction
	Background
	Motivation
	Related Work
	Contributions
	Organization

	Hardware and software Design for the autonomous car
	Project Overview
	Hardware Design
	Software Design

	Task allocation
	Comparison of the global and partitioned scheduling
	Notation Declaration
	Worst Case Execution Time measurement
	Makespan Optimization
	Graham’s List Scheduling
	Polynomial Time Approximation Scheme

	Torsche scheduling toolbox

	Mixed-Criticality scheduling of precedence-constrained task set
	Problem description
	Time Triggered Scheduler with Mode Change
	Event Scheduler in Multi-Core
	Scheduling examples

	Implementation
	Hierarchical Scheduling Framework
	The Thread Hierarchy
	Scheduling Mechanism

	Implementation of TTS-MC
	Parser Extension and XML sample
	Simulation Output and Visualization

	Event scheduler-MC
	Parser Extension and XML sample
	Simulation Output and Visualization

	Real task set support
	Time Measurement

	Integration of software modules
	Path tracking
	integration of tasks

	Experiments
	Evaluation of TTS-MC
	Evaluation of Event scheduler-MC

	Conclusion and problems
	Conclusion
	Problems

	Appendix
	Installation of Hierarchical Scheduling Framework
	XML file for experiments
	XML file for TTS-MC experiment
	XML file for Event scheduler-MC experiment

	Bibliography

