U

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Bachelor’s Thesis in Informatics

Implementation of adaptive
Mode-Switch-Algorithms in mixed critical
Systems

Christoph Griesbeck

0

I

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Bachelor’s Thesis in Informatics
Implementation of adaptive Mode-Switch-Algorithms

in mixed critical Systems

Implementierung von adaptiven
Mode-Switch-Algorithmen in gemischt kritischen

Systemen
Author: Christoph Griesbeck
Supervisor: Prof. Dr.-Ing. habil. Alois Knoll
Advisors: Biao Hu, M.Sc.

Submission date: July 15,2016

I confirm that this bachelor’s thesis is my own work and [have documented all sources
and material used.

Miinchen, July 12, 2016 Christoph Griesbeck

Abstract

Modern systems nowadays often integrate functionalities of different safety-criticality
on the same hardware. Therefore several specialized schedulers have been proposed for
these so called mixed-criticality systems, to guarantee all deadlines of high critical jobs,
while keeping the quality of service as high as possible.

A framework called SF3P was published to effectively simulate and analyze various
scheduler set ups suitable for single core processors. However this framework didn’t
support mixed-criticality systems.

This paper covers the concepts and the implementation of several schedulers, which
were designed for mixed-criticality systems and how SE3P has been updated to be able
to simulate systems with tasks of multiple criticalities. Additionally the performance
of these schedulers will be analyzed in respect to scheduling-overhead and quality of
service.

vii

Contents

Abstract

List of Abbreviations

1. Introduction
1.1. Motivation
1.2. Related Work
1.3. Problem Statement

2. Principles of implemented Schedulers
Principles of AMC
Principles of EDF-VD
Principles of FFOB

2.1
2.2.
2.3.

23.1.
2.3.2.

Principles of EDF-FFOB
Principles of RTI-FP .

3. Implementation details
3.1. General Additions and ImprovementstoSF3P
3.2. Implementation of AMCmax

Runtime measurement for tasks

3.3.
34.

4. Evaluation

3.2.1.
3.2.2.
3.2.3.

3.4.1.
3.4.2.
3.4.3.
3.44.

Dropping of Jobs . . .

Implementation of AMCmaxitself
EDF-VD
Implementation of FFOB . . .
Implementation of FFOB schemeitself
Computationof DBFand WBF
ImplementationwithEDF
Implementationwith FP

4.1. Quality of Service
411. Setup
412. Problems.
413. Results

4.2. Performance of Schedulers . .
4.2.1. Performance with EDF

vii

xi

15
15
16
16
18
18
18
19
19
20
20
23

25
25
25
25
26
28
28

X

Contents

4.22. PerformancewithFP

5. Conclusions and Future Work
5.1. Future Work e
52. Conclusion e e

Appendix
A. Demonstration of FFOB at an example

B. Results for the Quality of Service
B.1. Results of EDF-schedulers for each taskset grouped by OP
B.2. Results of FP-schedulers for each taskset grouped by OP

Bibliography

31
31
32

34
34

36
36
38

41

Contents

AMC

C

CPU

D

DBF
EDF
EDF-FFOB-A
EDF-FFOB-S
EDF-VD
FFOB
FIFO

FP

HI

L

LO

MCS

OB

or
PRNG
QoS
RAM
RTI-FP-F
RTI-FP-L
RTI-FP-S
SBF
SF3P
SMC

-

T

TDMA
VM
WBF
WCET

List of Abbreviations

Adaptive Mixed Criticality scheme

Worst-Case Execution Time of a task

Central Processing Unit

Deadline of a task

Demand Bound Function

Earliest Deadline First queue

EDEF-VD scheduler with the standard FFOB scheme
EDF-VD scheduler with the static FFOB scheme
Earliest Deadline First-Virtual Deadlines scheduler
on-the-Fly Fast Overrun Budgeting mode-switch scheme
First-In First-Out queue

Fixed Priority queue

High

Criticality Level of a task

Low

Mixed Cirticality System

Overrun Budget, budget used in FFOB scheme
Overrun Probability

Pseudo Random Number Generator

Quality of Service

Random Access Memory

FP scheduler with the standard FFOB scheme
FP scheduler with the lightweight FFOB scheme
FP scheduler with the static FFOB scheme
Supply Bound Function

Scheduling Framework For Fast Prototyping
Static Mixed Criticality scheme

Task set

Period of a task

Time Division Multiple Access scheduler
Virtual Machine

Workload Bound Function

Worst-Case Execution Time

xi

1. Introduction

1.1. Motivation

Over the last century, it has been a major trend in the field of embedded systems to in-
tegrate components of different criticality onto one common platform. In this context,
the criticality of a component is the level of assurance against failure[6]. These systems,
which incorporate tasks of more than one criticality, are generally called mixed-criticality
systems(MCSs)[6]. For example the current standard for software-safety in aviation(DO-
178C), published by the Radio Technical Commission for Aeronautics(RTCA), specifies five
levels of criticality from A to E[11]. While A refers to a task whose malfunction may
lead to catastrophic behavior, E refers to a task whose malfunction has no impacts on the
safety of the plane. For other industries similar standards have been published mostly
using also five categories of criticality.

As certification authorities tend to be very conservative with estimating the proper-
ties of a system, especially the worst-case execution times(WCET) of tasks, manufacturers
want these assumptions counting only for those high-critical tasks that shall be certified.
Hence schedulers have been proposed with as many modes as criticality levels incorpo-
rated into the system, where in each mode only tasks of the same or higher criticality are
executed. Additionally the allowed WCET of a task decreases with the current mode of
the scheduler. Therefore, for jobs of lower criticality, more optimistic assumptions can be
made, while not sacrificing the safety of the whole system. This is allowed, because as
soon as the execution of all tasks isn’t possible any more, all tasks of current criticality are
dropped and all other tasks effectively run as if they used the hardware alone. Therefore
higher WCETs, than originally estimated by the developer, are acceptable. However the
quality of service, especially for jobs of low criticality, may suffer if the system spends
to much time in higher mode. Nevertheless mixed-critical systems are highly effective,
while maintaining the safety of the system. This has until now led to a considerable de-
crease of size, weight and power consumption of embedded systems.

To reduce the number of dropped jobs and the time spent in higher modes, while main-
taining the schedulability of the whole system, is the goal of every scheduler. Furthermore
the computing time needed by the scheduler itself shall be at a minimum. Because of these
partly contrary requirements, tools for simulating, analyzing and comparing schedulers
are needed. Although MCSs may consist of upto five different criticalities according to
the standard, most work focuses on systems with only two, as every concept, developed
for two levels of criticality, can easily be adapted for more levels. Thus most simulation
tools also only support two levels of criticality.

1. Introduction

1.2. Related Work

General The first basic work about verification of MCSs was done by Vestal in 2007[15].
Since then numerous papers have been published proposing different methods to analyse
MCS, resulting in different approaches to schedule them. An complete overview over
these is regularly updated by A. Burns and R. Davis and was lastly updated in January
2016[6].

EDF-VD To improve EDF scheduling of mixed-criticality systems, a new scheduler
called Earliest Deadline First Virtual Deadlines(EDF-VD) was first proposed by Baruah et
al.[4] and then further improved[1]. It relies mainly on predefined arbitrary shortening
the deadlines of higher critical tasks to privilege them in LO-criticality modes and resum-
ing them in Hl-criticality mode. Therefore minimizing the risk of missed deadlines for
higher critical jobs. By taking the task demand into account, shortening of the deadlines
and therefore the schedulability can be fruther improved[7, 8].

AMC The first scheme, that used mode-switches with the realistic recurrent taskmodel
in FP scheduled systems, was proposed by Baruah et al. and is generally referred to
as adaptive mixed-criticality scheme(AMC)[2]. Two verions of this responsetime analysing
approach were published in this paper called AMCrtb and AMCmax. This scheme was
further improved by relaxing the strictness for scheduling by increasing task execution
time thresholds[13]. Another publication based on the AMCrtb scheme recently proposed
a so called bailout protocol, which uses the offline slack to efficiently switch the scheduler
back to lower criticality modes[5].

FFOB A scheme called on-the-fly fast overrun budgeting mode-switch scheme(FFOB) has
been presented by Hu et al. for systems scheduled by Earliest Deadline First(EDF)[11] and
systems scheduled by Fixed Priority(FP)[12]. It is the first scheme that uses the online
slack to improve the quality of service by delaying the switch to high modes, although
this online computation results in increased overhead.

SF3P A framework called Scheduling Framework For Fast Prototyping(SF3P) was pre-
sented to the public by Gomez et al.[9] in 2014. This framework incorporated the safety
and portability of a program run in user mode, while nevertheless being very efficient.
However only basic schedulers like EDF or Time Division Multiple AccestTDMA) were
implemented. This framework was already two times extended to allow to simulate
schedulers for multi-core processors and to test schedulers for MCSs[14, 16].

1.3. Problem Statement

1.3. Problem Statement

Based on the original framework the goal of this thesis was to implement the new FFOB
scheme for analyzing its performance. To be able to compare FFOB with schedulers it is
based on, AMCmax was first implemented. After that, one version of EDF-VD was im-
plemented on top of AMCmax. Lastly FFOB was implemented on top of both schedulers.

This thesis will first explain the theoretical principles of the different implemented
schedulers in chapter 2.

Subsequently the implemented features will be elucidated in chapter 3. Foremost gen-
eral enhancements to SF3P are explained in section 3.1. Afterwards further improve-
ments, grouped by the schedulers, which are first requiring it, are examined in section 3.2,
3.3 and 3.4.

In chapter 4 the results of extensive simulations of the different schedulers in the ex-
tended version of SF3P are examined. They are split up into section 4.1, where the quality
of service of the different schedulers will be analyzed, and section 4.2, where the perfor-
mance of updating the overrun budget will be analyzed.

At last the achievements of this thesis will be summarized in chapter 5. Furthermore
possibilities for future work will be outlined in this chapter.

In Appendix A several graphics showcase mechanisms of the FFOB scheme on the basis
of a small example taskset. These might help understanding the concepts of FFOB and of
the implementation.

In Appendix B several graphs present the exact results of the simulations, which were
done for analyzing the quality of service of the different used schedulers.

2. Principles of implemented Schedulers

To understand what has been implemented, the following chapter will explain the prin-
ciples of the different schedulers. In all following explanations a dual-criticality task set
7 = {71,..., 7} is being scheduled and the sporadic task model is used. Each task 7; is a
four-tuple consisting of its period, relative deadline, WCETs and criticality (7}, D;, C_"i, L;).
Every task has two WCETs (CF, C1). While CH is a fixed boundary to the execution time
of Hl-critical tasks, C} is a more optimistic bound. By definition C/? is zero for tasks of
LO-criticality. Furthermore the equation CF < CH < D; (CF < D;) must always hold for
obvious reasons. As short notation we denote 7% = {r; € 7|L; = LO} as the subset of all
tasks with L = LO and accordingly 77 = {7; € 7|L; = HI}.
The demand bound function(dbf) for a normal sporadic task 7; is

. DL
dbf (7:, A) = {A”;DJ .cl 1)
and the corresponding workload bound function(wbf) for 7; is:
wbf(r, &) = |20 o (2.2)

The supply bound function(sbf) for a dedicated uniprocessor with unit-speed, which is used
in the following, and a given task set 7 is:

sbf(r,A)=A (2.3)

Furthermore the system is generally considered schedulable if the following two condi-
tions hold:
Condition LO: VA >0: dbfro(r,A) < sbf(1,A) = A (2.4)

Condition HE: VA > 0: dbfy (7%, A) < sbf(r,A) = A (2.5)

2.1. Principles of AMC

The Adaptive Mixed Criticality scheme was introduced by Baruah et al. in 2011 and re-
lies on fixed priority scheduling[2]. It is an advanced version of the previously published
static mixed-criticality scheme(SMC), which is dominated by AMC in terms of schedula-
bility. The authors additionally note, that scheduling a task set of more criticality-levels
doesn’t introduce any fundamental issues. The main idea of this scheme is monitoring

2. Principles of implemented Schedulers

the execution times of all jobs and take action, if one exceeds its predefined worst case
execution time.

In the AMC scheme the system initially is in LO-mode. As long as the system is in this
mode, all jobs are scheduled by their tasks priority, as a standard FP scheduler would
do. However while being executed, the execution time of each task is monitored. The
special idea of this paper was to switch the system into HI mode if any job exceeds its
respective C without signalling completion. Once the system is in HI-mode, only jobs
of L = HI are executed. Of all remaining jobs still the one with highest priority is exe-
cuted. Switching back to LO-mode was investigated in a previous paper about SMC[3]
and therefore isn’t investigated in the paper about AMC. However it is proposed to switch
back whenever no job of Hl-criticality is active. Furthermore this paper states that jobs
of LO-criticality are only descheduled when a mode-switch to HI-mode occurs. However
when the system switches back to LO-mode, this results in no guaranties that it is schedu-
lable. Henceforth all LO-critical jobs are dropped when a mode-switch occurs. This also
implies that jobs of LO-criticality, arriving while the system is in HI-mode, are instantly
dropped.

After presenting the AMC scheme, two methods called AMCrtb and AMCmax are pro-
posed to determine if a given task set is schedulable under the AMC scheme. While
AMCrtb (for response time bound) only considers the response time of tasks to deter-
mine the schedulability of the system, AMCmax uses stricter bounds by incorporating
that Hl-criticality tasks not always execute for their respective C.

2.2. Principles of EDF-VD

The Earliest Deadline First-Virtual Deadlines scheduling algorithm was first proposed by
Baruah et al. in 2011[4] and was further improved by the same team[1]. However it was
only applicable to implicit deadline task systems until A. Easwaran improved it[7]. As its
name suggests it is based on the standard EDF scheduler and additionally the concept of
AMC scheme. The main idea of this scheduler is to shorten the deadlines of Hl-criticality
tasks while the system is in LO-mode.

The dual-criticality system is initially in LO-mode(called level 1 in the original paper)
and switches into HI-mode(called level 2), whenever a job exceeds its WCET without sig-
naling completion. To improve scheduling, the authors came up with the idea of short-
ening the deadlines of Hl-critical tasks while the system is in LO-mode. However when
the system is switched to HI-mode, because a job has overrun, the normal deadlines are
restored, thus creating a buffer for HI-critical jobs to not miss their deadlines. Because
the system is scheduled by EDF, shortening the deadlines additionally privileges tasks
of HI-criticality. How much the deadlines are shortened is computed by considering the
overall utilization of LO-critical tasks and the one of Hl-critical tasks in the original two

papers.

2.3. Principles of FFOB

Figure 2.1.: Overview of FFOB in the MCS[11]

s

initial OB
I
= Jr staps
—>| LO mode| .-~ ninning
— 0B timer elapses
i
] time out
B Border -
mode Update OB | | Stop OB timer
HI
y
T I".
— HI mode [-.

Because, as before mentioned, the scheduler was only applicable to implicit deadline
task systems, a new method to compute the virtual deadlines was proposed by P. Ekberg
and W. Yi by expanding the concepts of dbfs[8]. Furthermore they use the famous Greedy
algorithm for computing the exact virtual deadlines, which is illustrated in listing 2.1.
This approach was further improved by A. Easwaran under the name Earliest Carry-over
Deadline First(ECDF). His published algorithm, demonstrated in listing 2.2, iterates over
the whole task set several times, decrementing or incrementing the virtual deadlines in
each round where possible by one.

2.3. Principles of FFOB

The on-the-fly fast overrun budgeting mode-switch scheme is currently developed by Hu
et al. and will be published this year[11]. It is based on the AMC scheme, respectively
the EDF-VD approach, and therefore applicable with only minor changes to FP scheduled
and EDF scheduled systems. The general idea is to determine the slack of the system and
thus delaying the mode-switch.

The maximum slack is computed before the system is started and is called overrun bud-
get(OB). It is reset to its initial value whenever the system is idle. When a task takes longer
to finish than his WCET would allow him, it is allowed to be executed for the time of the
OB. During this time the system is in a so called border mode and further decisions are
made according to figure 2.1. If the task signals completion before the OB is fully used, the

2. Principles of implemented Schedulers

Listing 2.1: Greedy algorithm for tuning low-criticality relative deadlines[8]

candidates < {i|7; € HI(T)}
mod <L
lymaz < upper bound for [in Conditions A and B
loop
final + true
for 1=0,1,...,lpee do
if =A(l) then
if mod =1 then
return FATLURE
end if
Dmod(LO) — Dmod(LO) +1
candidates < candidates \ {mod}
mod <1
final < false
break
else if -B(l) then
if candidates = () then
return FAILURE
end if
mod < argmax (dbfyy(m;,1) — dbfrr(1i,l —1))
i€candidates
Dmod(LO) — Dmod(LO) —1
if Dmod(LO) = Cmod(LO) then
candidates <+ candidates \ {mod}
end if
final + false
break
end if
end for
if final then
return SUCCESS
end 1if
end loop

2.3. Principles of FFOB

Listing 2.2: Earliest Carry-over Deadline First algorithm[7]

i L1 and candidates < {7;|7; € H,}.
while True do
feasible ¢« true.
for t=0...tyax do
if Proposition 1 fails then
If i=1, return failure.
DF=DF+1 and remove 7; in candidates.
i1 +1 and break.
end if
end for

for to =0...tppax and t1 =0...ty — mi;{l {D; - Df} -1 do
Ti€EH -

if Theorem 2 fails then
If t; =0 or candidates = ®, return failure.
i = FINDCANDIDATE (candidates, ti, t3) .
DF =DF —1.
If DF-1<Cl, remove 7; in candidates.
feasible ¢« false and break.
end if
end for
If feasible is true, return success.
end while

function FINDCANDIDATE (candidates, t1, t2)
Let DEM denote the excess demand at time instant ¢ (LHS of Theorem 2
- t9) .
result <1, DIFF =0, DEC = .
for Each task 7; in candidates do
if 7; in case 2 and CH —CL > DEM then
if MOD(tQ —tl,Ti) — (Dz —DlL) < DEC then
result L i and DIFF + CH —CF.
else if MOD(ty —t1,T;) — (D; — DF¥) = DEC and CH —Cl' > DIFF then
result < i and DIFF + CH —CF.
end if
end if
end for
Return result.
end function

2. Principles of implemented Schedulers

Figure 2.2.: Computation of the system’s overrun budget

sbf

dbf

OB is decreased by the time used. If it hasn’t signaled completion when the OB elapses,
a new OB is computed. If this updated OB is equal to zero, it is determined if the task’s
criticality is LO or HI. If it is LO, the task only gets dropped and the system switches to
LO-mode. If the task’s criticality is HI, the system is switched to HI-mode and hence all
jobs of criticality LO are dropped.

Because computing a new OB online, after it has elapsed to be zero, is computational
expensive, it is also proposed to not do this. This approach is called static approach, as
the OB is only initialized at startup and isn’t updated if it elapses to be zero. However it is
reset to its initial value, if an idle tick occurs and reduced when a task exceeds its WCET.

2.3.1. Principles of EDF-FFOB

The FFOB scheme is, as above mentioned, applicable to the EDF scheduler. Like the EDF-
VD scheduler, all Hl-critical tasks have a precomputed virtual deadline, which is used as
long as the system is in LO-mode. The initial OB is computed on startup by comparing
the sum of all tasks” dbfs, which effectively is the system’s dbf, and the system’s sbf. The
system slack is the value by which the system can be delayed, while equations 2.4 and
2.5 hold. Practically it is the value by which the sbf, which is effectively a line through
origin with gradient one, may be shifted to the right while the dbf is always smaller than
it. An example with one task, whose dbf is drawn in red, and the system’s sbf shifted to
the right by 1, is demonstrated in figure 2.2.

If EDF-FFOB-S is used, which is the before mentioned static version, the updating of the
overrun budget when it elapses to be zero is skipped. This results as shown in section 4.1
in lower QoS and lower scheduling overhead.

10

2.3. Principles of FFOB

Figure 2.3.: The dbfs of two non-active tasks illustrated in black and green and additions
if active in red

» I

However if EDF-FFOB-A is used, the OB has to be updated when it elapses to be zero.
In order to do so, the same principle, as in the initialization, is applied. However the dbf
of active tasks is more complex as shown in equation 2.6,

dbf(1;, A) = max(dbf(r;, A), Dmd* (15, A, t)) (2.6)
where Dmd® (7;, A, t) is that

Mt)fDiL_tJ’ 1) -min(CF = e;(t),0)

: 4 _ DL
+min ({A—me(ﬂéj rit) = Dy J, O) .ok

Dmd" (r;, A, t) = max ({
2.7)

where r;(t) and e;(t) are the release time and the actual execution time of the latest re-
leased job of 7; at t.

How the dbf may look like can be seen in figure 2.3. In black the dbf of a non-active
task with C' = 1.5, T; = 5 and DF = 4 is illustrated. In green is drawn how the dbf of
another non-active task(C} = 2,T; = 4, DF = 3) could look like and in red the possible
additions of Dmd®*, if it were active.

11

2. Principles of implemented Schedulers

Listing 2.3: Find minimal p*[12]

=0, pp =min(D; — CF), YV, €T
while p, —p; > € do

p* = (pr+p1)/2
if Egs.2.4 fails then

pr:p*
else

pL=p"
end if

end while

2.3.2. Principles of RTI-FP

The FFOB scheme is also applicable to FP scheduled MCSs. However it is a bit more
complicated. Generally the OB is computed by the algorithm demonstrated in listing 2.3,
where the resulting p* is used as OB. The algorithm uses classical binary search to find the
maximum overrun budget for which equation 2.4 holds, which therefore is the maximum
OB usable with the given deadlines. However it is not possible to just sum up all tasks’
dbfs to get the system’s dbf and compare it with the system’s sbf. Hence all tasks are
sorted by their priority and then are each individually regarded. For every task its sbf is
computed using equation 2.8, which is named forward analysis.

sbf(fi1, &) = RT(sbf (16", A), wbf(75, A)), Vi€ {l.n—1}

. i 2.8
wbf(rg, A) :Zwa(rj,A) 28)
7=0

where

RT (B,) = nglgA{B(A) —a(A)} (2.9)

To check if the system is scheduable, still equation 2.4 is decisive, but now has to be
checked individually for every task.

Like the dbf, the wbf is more complex for tasks that are currently active, but is similar
as seen in equation 2.10,

wbf (i, A) = max(wbf (i, A), Wrd®* (13, A, 1)) (2.10)

where Wrd®(r;, A, t) is that

Wrd* (7, A, t) = max ({ﬁJ , 1) -min(CL — ¢;(t),0)

-+ min ({A + mm(Ti’;_ ri(t) = TiJ) 0) . CiL

(2.11)

12

2.3. Principles of FFOB

Figure 2.4.: Approximation of wbf with a straight line

However this computation may be simplified by using straight lines to approximate the
wbfs as illustrated in Figure 2.4. This results in all sbfs being straight lines too. Therefore
comparing the sbfs with the corresponding dbfs gets by far easier, as only the gradients
and y-intercepts are needed for computing the sbfs. This approach is called lightweight
approach(RTI-FP-L), as it reduces the scheduling overhead by reducing the schedulability
and the QoS.

13

3. Implementation details

3.1. General Additions and Improvements to SF3P

The scheduling framework for fast prototyping is a well designed framework, which was
used as a base for implementing the in chapter 2 mentioned schedulers. A manual was
published by Andres Gomez, which well explains the usage of the framework[10]. Un-
fortunately there wasn’t any documentation for the source code available. It is written
in C++, highly object orientated and well commented. However some improvements not
directly related to the schedulers were made.

Memory related While tracking down a segmentation fault in the added code, a minor
bug, which could have led to a segmentation fault, was found in the implemented oper-
ators for a struct named timespec. Timespec consists of two long long ints, one holding
the amount of nanoseconds and one holding the amount of seconds. Every time the +, -
or * operator was called, a new struct, which was allocated inside the function, was re-
turned. Additionally to removing this bug, further operators like != were implemented.
Another mistake that was corrected, was that many with new allocated variables were
freed with free() instead of delete(), which is depreciated. Furthermore no destructors
were implemented for any class, therefore leading to a minor memory leak, while being
executed and have hence been added. However there was also some redundant code in
the main scheduling functions, which was removed in the different already implemented
schedulers. A problem, which was harder to track down, regarded the joining of threads.
Although initially no errors happened, threads were multiply joined, which later led to
memory corruption, because of duplicate freeing of before allocated variables. By only
calling join from a central loop, this was also taken care of.

Randomization of Executiontime A major improvement to SF3P was made regarding
its tasks. Initially only busy waiting and decoding a video were implemented as possible
tasks. However it is fixed what video is decoded and busy-wait-tasks always executed
for exactly their WCETs. Only because of inaccuracies in the time measurement, the ex-
ecution times differed slightly by about 100us per 10ms. Therefore the execution time of
busy-wait-tasks was randomized by using a mersenne twister as pseudo random number
generator(PRNG). First it is used for deciding if the task shall overrun and afterwards for
determining its concrete execution time. If the task shall overrun, its execution time is
at minimum its C} and at maximum two times its C7. If it shall not overrun, its execu-

15

3. Implementation details

tion time lies between 0.6 times its C and its C. For seeding the mersenne twister, the
current system time in microseconds is used.

Parser Inaddition the parser was heavily extended. Not only it now supports the added
schedulers, but also multiple WCETs for tasks, which is essential for MCSs. Furthermore
storing of the period of tasks was corrected, as initially the designated variable wasn’t
set. Additionally the parser isn’t case sensitive at the detection of the scheduler anymore.
Moreover the possibility to directly specify the OB in the input file was added to the
parser.

3.2. Implementation of AMCmax

The most basic and therefore first implemented scheduler was AMCmax. Because this
was the first implemented scheduler for MCSs for SF3P, most features were implemented
while implementing it.

3.2.1. Runtime measurement for tasks

The first feature implemented was measuring the execution time of each job. Therefore
a new class called overrunChecker was added. As every task has its own wrapper class
called Worker, which does all management work around the task itself, this class is also
responsible for calling the methods in the class overrunChecker. For each task an own
overrun checker exists, whose id is 1000 times the id of the corresponding task and which
measures the execution time of all jobs of this task.

Every time a job starts its execution, its worker fires the overrun checker. This results
in entering the function measurelask, shown in listing 3.1, which measures the execution
time of the job by using clock_nanosleep. The function first waits until the task is active
and after that checks if joining was signaled. If not, nanosleep is invoked, which normally
sleeps until the tasks WCET has elapsed. However it is possible to interrupt this sleeping
by sending a signal to this thread, which is done if for example the task gets suspended.
When sleeping is finished or interrupted the remaining time is stored in remain, and in
ret it is signaled if sleeping was interrupted or not. Next the function checks if it shall
reset, because for example the task has finished. If this isn’t the case, the return value
of nanosleep, stored in ret, is checked, if the sleeping was finished. If so the while-loop
is exited and after resetting some values, an overrun gets signaled to the worker, which
relays the signal to the scheduler.

The class overrunChecker can also be used for triggering the overrun event, when a
deadline is missed instead of when a task overruns its WCET. Furthermore it supports
returning the left over execution time for the current job.

16

3.2. Implementation of AMCmax

Listing 3.1: Measurement of the execution time of one job

void OverrunChecker: :measureTask () {
int ret = -1;

do{
// wailt for activation
sem_wait (&sem_run) ;

if (sem_trywait (&sem_join) == 0) {
return;

}

// wait for overrun or interrupt, remaining time in timeout
sem_wait (&sem_timeout) ;
ret = clock_nanosleep (HSF_CLOCK, 0, &timeout, &timeout);
remain = timeout;
sem_post (&sem_timeout) ;

if (sem_trywait (&sem_reset) == 0) {
return;
}
}while (ret != 0);

fired = false;

// signal finished
sem_post (&sem_end) ;

//handle occurred overrun
handleOverrun () ;

17

3. Implementation details

3.2.2. Dropping of Jobs

Another major feature that was integrated into the framework to support MCSs, is the
dropping of jobs. Whenever a mode-switch occurs all LO-critical jobs have to be dropped.
Therefore every worker, responsible for a task of LO-criticality, has to be signaled to drop
its job. This is done by an extra function inside the scheduler-class, which loops over all
active jobs. However the workers won't get the activate priority and therefore calculating
time, before the next job of it starts its execution. Therefore the worker is left in a state
where the previous job has only been suspend and canceling has only been signaled. This
gets especially problematic, if the job was lastly suspended while the worker was do-
ing some management and before the task actually got started. As it is unpredictable
when the task and therefore the worker gets suspended and later canceled, it requires
several work to ensure that everything is kept in a valid state. Especially the before men-
tioned overrun checker has to be managed right, so that no false overruns are reported.
Additionally there had to be an interface for the task itself implemented, which allows
canceling the task.

3.2.3. Implementation of AMCmax itself

Furthermore the AMC scheme itself still had to be implemented. The general scheduling
for all event-based schedulers(e.g. FP, EDF, FIFO) was happening in a central method
called schedule, which took action whenever an event, for example the arrival or the
finish of a job, had happened. This function was the same for all event-based schedulers,
as the order of execution was determined by a queue, which was sorted by e.g. the jobs
deadlines if it was an EDF scheduler or by the priority if it was a FP scheduler. This design
was kept and the first major addition was a second queue of the same type, which only
held all HI-critical tasks.

Moreover as mentioned in subsection 3.2.1, a handler had to be implemented, which
notices the signaled overrun and registers it as an event, which then can be handled by
the main schedule function. This event then is handled by calling the function, which
drops all LO-critical jobs and setting the queue containing only HI-critical jobs as the
active queue, which represents the switch of the system into HI-mode. Furthermore the
event is registered. Naturally, when a new job arrives and the system is in HI-mode, the
jobs criticality-level is checked and the job is dropped if L = LO.

Additionally whenever a job finishes, it is checked if it was the last active job and if the
system is in HI-mode. If both is the case, the system is switch to LO-mode by setting the
queue, containing all jobs, as active and registering this event too.

3.3. EDF-VD

Another implemented scheduler is the in section 2.2 explicated EDF-VD scheduler. Be-
cause it introduces the context of virtual deadlines, the queues, holding all active jobs

18

3.4. Implementation of FFOB

sorted by their deadlines, had to be modified. Thus the EDF-queue is now able to be op-
erated in two modes. However the used mode has to be set at initialization and can’t be
switched at runtime. If it is operated in LO-mode, it considers the virtual relative dead-
lines instead of the normal relative deadline, which are considered in HI-mode. Therefore
enabling the jobs being scheduled in one queue by their virtual relative deadlines, while
the system is in LO-mode, and by their normal relative deadlines by the other queue,
while the system is in HI-mode.

Furthermore to create the possibility to calculate the virtual deadlines for all jobs, an
initialization function was added, which is called by the parser after parsing all tasks.
This function gets a list of all tasks that will be scheduled, which is stored in a variable
named jobList.

3.4. Implementation of FFOB

The last and most complex implemented scheme consisting of multiple schedulers is the
FFOB scheme. It is implemented as an abstract class, which then is implemented by the
several schedulers, based on EDF or FP, using it. The new feature introduced by it is the so
called overrun budget. For computing it, the sbf of the system and the dbf and wbf of each
task have to be computed, as explained in section 2.3. A Key decision for implementing
the FFOB scheme was how to store each function. It was decided to store all functions as
a vector of pairs of timespecs. Each pair denotes the coordinates of either one step of the
dbf respectively wbf, or one delay in the sbf. The first field always is the x-coordinate of
the step/delay, while the second field represents its size. Because the dbf/wbf/sbf might
consist of up to three non periodic steps for each task, as demonstrated in figure 2.3, its
size is three times the number of tasks.

3.4.1. Implementation of FFOB scheme itself

Because of the introduced overrun budget, whenever a new task arrives, its timeout is set
to the sum of its WCET and the current OB. That is why every-time the OB changes, the
timeouts of all tasks have to be updated. Anytime a task exceeds its WCET, but finishes
before the OB is exhausted, the OB has to be decreased by the amount used. Furthermore
whenever an idle tick occurs the OB has to be reset. Hence the maximum OB is stored in
a second variable on initialization.

When the OB elapses to be zero decisions according to figure 2.1 of section 2.3, have to
be made. This first includes updating the OB, which is explained in detail in the following
sections. After that it is checked if the OB is smaller than one microsecond; not zero
because of inaccuracies in the algorithm of listing 2.3. If it is true and the criticality of
the overran job is HI, all LO-critical jobs are dropped and the system mode is switched to
HI by setting the queue containing only Hl-critical jobs as active. Else only the currently
active job is dropped and the system stays in LO-mode.

19

3. Implementation details

3.4.2. Computation of DBF and WBF

Key for computing the overrun budget is computing the dbf and wbf for all tasks. There-
fore two extra methods were implemented. The one for computing the dbf is illustrated in
listing 3.2, while the one for computing the wbf is similar as the wbf itself is very similar
to the dbf.

Obviously, for computing the dbf for all tasks, the function loops over all tasks, which
were stored on initialization in jobList, as described in section 3.3. After that C} and DF
are stored for further usage. Then if the currently processed job is an active job, both
summands of Dmd®*, from equation 2.6 and illustrated in red in figure 2.3, are computed
and stored, else those two fields are left empty. However not the exact values are used for
the second field, but the relative step size. This later makes computing the y value of the
dbf at this point and therefore comparing the dbf with the system’s sbf easier. It shouldn’t
stay unnoticed, that it must always be checked, that no underflow happens, as unsigned
data types are used. Afterwards the aspect of the offline dbf is also stored. After the dbf
has been computed for all tasks, all steps whose height is zero are erased by setting their
x-coordinate(first field) to zero. This later helps, especially when computing the sbf out
of the wbf.

3.4.3. Implementation with EDF

Because the FFOB scheme has been implemented as an abstract class, only initializing
and updating the OB has to be handled in the subclasses. In case of EDF-FFOB-S, this
updating of the OB is rather simple, as the OB just has to be set to zero.

However initializing the OB is in both versions the same. First the previously men-
tioned jobList is sorted by the relative virtual deadlines of the tasks. After that the dbf
for each task can easily be computed using a similar approach to that seen in listing 3.2,
although without the part for currently active tasks and without checking for entries that
are zero. Subsequently the interval is chosen in which the sbf and the dbf shall be com-
pared. To be sure that all cases are considered, the length of the regarded interval is two
times the size of the highest relative virtual deadline. Then the final dbf inside this in-
terval is computed, as shown in listing 3.3 by adding all occurrences of each step of the
dbf and afterwards sorting the whole dbf by the first element of each entry. Finally it
is iterated over each dbf-entry as shown in listing 3.4, thereby accumulating the second
values and computing the difference of this sum and the corresponding first entry. The
minimum of all these differences is the maximum OB of this MCS.

For updating the OB first the vector for holding the dbf is created and filled with zeros.
Afterwards, the in section 3.4.2 explained function for computing the dbf is used. Then
again the interval length is determined and the dbf extended, similar to listing 3.3. After
deleting all entries with zero and sorting the whole dbf by the first field of each pair in
ascending order, the current OB can be computed as shown before in listing 3.4.

20

3.4. Implementation of FFOB

Listing 3.2: Computation of the dbf for all jobs

void FFOB::computeDBF (vector<pair<timespec, timespec>> &dbf) {
uint 1 = 0;
timespec c, d ,t;
for (Worker®™ w : jobList) {
c = w—>getWCET (0) ;
d = w->getCriteria()->getRelativeVirtualDeadline();

if (activeQueue->deleteRunnable (w—>getId())) {
activeQueue—->insertRunnable (w); //reinsert the runnable

t = w->getCriteria()->getPeriod();

//first summand

timespec tmp = TimeUtil::getTime () - w->getReleaseTime () ;

dbf[i].first = d>tmp ? d - tmp : TimeUtil::Millis(0);

dbf[i].second = w->getRemainingTime () > overrunBudget ? w->
getRemainingTime () — overrunBudget : TimeUtil::Millis(0);//min/(
remain , 0)

i++;

//second summand

dbf[i].first = (t>tmp ? t - tmp : TimeUtil::Millis(0)) + d;
dbf[i] .second = dbf[i-1].second;
i++;
}
else({
i+=2;

}

dbf[i].first = d;
dbf[i] .second = ¢ - dbf[i-2].second;
i++;

for(i = 0; i < dbf.size(); i++){
if (dbf[i] .second == TimeUtil::Millis (0))
dbf[i].first = TimeUtil::Millis(0);

21

3. Implementation details

Listing 3.3: Extension of dbf

timespec max = (*max_element (dbf.begin(), dbf.end())).first;
max = 2*max;

for (uint i = 0; i < jobList.size()-1; i++){
t = jobList[i]->getCriteria()->getPeriod();
vector<pair<timespec, timespec>> tmp (TimeUtil::convert_ms (max - dbf[i
].first) /TimeUtil: :convert_ms(t));

for (uint k = 1; k*t+dbf[i].first <= max; k++) {
tmp[k-1].first = k*t + dbf[i].first;
tmp[k-1].second = dbf[i].second;

}

dbf.insert (dbf.end (), std::make_move_iterator (tmp.begin()), std::
make_move_iterator (tmp.end()));

Listing 3.4: Comparison of dbf and sbf in EDF scheduled systems

timespec ¢ = TimeUtil::Millis(0), d, ob = TimeUtil::Millis(1000);
for(uint i = 0; 1 < dbf.size(); i++){
c = c + dbf[i].second;

d = dbf[i].first;

ob = d-c < ob ? d-c : ob;

22

3.4. Implementation of FFOB

3.4.4. Implementation with FP

Additionally to the subclasses using the FFOB scheme with EDF schedulers, there are
subclasses for using the FFOB scheme with FP schedulers. When the schedulers are ini-
tialized, the jobList, which holds all tasks, is sorted by the priority of the tasks, which is
a prerequisite for computing the sbf. Because of the lack of time, only updating the OB,
when it has elapsed to be zero, has been implemented and not initializing it. For the
RTI-FP-S scheduler, updating is rather simple, as the OB only has to be set to zero.

However for both, RTI-FP-F and RTI-FP-L, first the in section 3.4.2 explained functions
for computing the dbf and wbf are used and afterwards the algorithm demonstrated in
listing 2.3 is used for computing the OB. However checking if equation 2.4 holds and the
therefore needed preparation of the wbf, is done differently.

RTI-FP-F In case of RTI-FP-F, the wbf is prepared, as demonstrated in listing 3.3 for the
dbf, as again an interval of double the length of the highest virtual deadline is considered.
For checking if equation 2.4 holds, it is generally looped over all tasks. For every task all
steps in its dbf are checked, as this is sufficient to guarantee that the sbf is smaller than
the dbf. Therefore first the sbf of the current task has to be computed. For accomplishing
this, the entries of the previous task’s wbf are appended to an array holding the sbf of the
previous task. However the first value of all entries has to be at minimum the value of
the OB, as not until then the system starts computing. Sorting the whole obtained array
results in the sbf of the current task. However, because no two jobs can be executed in
parallel, all colliding sbf entries have to be delayed until the other job has finished.

Afterwards it has to be checked, that the dbf is always smaller than the sbf. This is done
by the principle shown in listing 3.5, which is similar to listing 3.4. However, all entries
of the sbf until the current examined position have to be added onto the temporary value
too, as they are effectively the delays of the sbf. This is done inside the while-loop of
listing 3.5, where ptr points to the actual sbf element and sbfPtr points to the last sbf
element plus one. Because only the delay until the current position has to be included, it
is checked inside the loop if the current position is in the interval of a delay. If this is true,
instead of adding the full delay, only the delay that happened until the current position
is added. At last it is checked if the obtained value is greater than the current position
minus the OB, as this would mean that the dbf would be greater than the sbf at this point.
This has to be done for all three parts of the dbf. Because the second and third entry have
to be considered several times, as they are periodic, they have to be checked inside a loop,
which loops over all occurrences inside the before specified interval.

RTI-FP-L As RTI-FP-L relies mainly on approximating the wbf and therefore the sbf,
tirst the wbf has to be approximated by straight lines as shown in figure 2.4. The approx-
imated whbf is stored as a vector of pairs of double and unsigned int. Each pair denotes
one straight line, where the double represents the grade and the y-intercept is stored as
an unsigned int, because the y-intercept of the wbf has to be greater or equal zero. The

23

3. Implementation details

Listing 3.5: Comparison of dbf and sbf in FP scheduled systems

c = c + dbf[i].second;

while (sbf[ptr].first < dbf[i].first && ptr < sbfPtr) {
if (sbf[ptr].first + sbf[ptr].second > dbf[i].first) {
c =c + (dof[i].first - sbflptr].first);

lelse(
c = c + sbf[ptr].second;
}
ptr++;
}
if(dbf[i].first - _overrunBudget < c)

return false;

slope is computed by dividing the size of the step through the period of the task. If the
wbf of a non active task is computed, the y-intercept is equal to the WCET of the task.
Else it has to be checked if the y-intercept is dictated by the steps added by Wrd’* from
equation 2.10 or not. If not it is set to zero, else it is computed by using the previously
computed gradient and the higher point of the first step of the wbf.

To check if an overrun budget is valid and consequently equation 2.4 holds, equation 2.4
once again has to be checked individually for every task. First the sbf for the current
task has to be computed. This is done by simply subtracting the slope of the wbf of the
previous task from its sbf and by adding the corresponding y-intercepts. Afterwards it
is checked that all three dbf entries are lower than the sbf and that the slope of the dbf is
smaller than the slope of the sbf. As the sbf is approximated as straight lines, its sufficient
to check the steps of the dbf once.

24

4. Evaluation

All simulations were done inside a Virtual Machine(VM) with Debian Jessie as operating
system. The host is a Laptop with an Intel i7-3630QM(up to 3.4GHz) as CPU and 8GB
RAM. 4 out of 8 logical kernels are available to the VM, although, as later mentioned, the
simulation is limited to one. Furthermore 3GB are available to the VM. For all time mea-
surement it shall be noted that everything is computed with an accuracy of 1 nanosecond,
although the call to clock_gettime is accurate to about 250ns. However all included values
for the quality of service are rounded to milliseconds and for performance measurements
to microseconds for better readability.

4.1. Quality of Service

4.1.1. Setup

EDF For analyzing the performance of the FFOB scheme on top of an EDF scheduler, a
total of 40 tasksets were simulated with EDF-FFOB-A, EDF-FFOB-S and EDF-VD with an
overrun probability(OP) of 0.1, 0.01 and 0.001. Each taskset was simulated for 15 minutes
for each setting. Furthermore each randomly generated taskset consisted of 8 tasks, half
of them LO-critical, with a period between 20 and 1000 milliseconds and WCETs ranging
from 1 to 500 milliseconds. Measured for the QoS was the number of dropped jobs, the
number of mode-switches and the time the system had spent in HI-mode.

FP Furthermore the FFOB scheme on top of a FP scheduler was also simulated for being
analyzed. A similar setup was used, however the tasksets consisted of 20 tasks and the
number of LO-critical tasks wasn’t strict 10. Simulated were RTI-FP-F, RTI-FP-L, RTI-FP-S
and AMCmax.

4.1.2. Problems

When accumulating the numbers, simulating all EDF-schedulers takes 90 hours and all
FP-schedulers 120 hours, which in total is 210 hours or nearly 9 days. Therefore at first al-
ways two simulations were done in parallel. However while lastly doing the simulations
with an OP of 0.001, it was found out, that running them in parallel heavily increased the
number of overrunning jobs and consequently falsified the results. This is due to inaccu-
racies in the execution time of Busy-Wait tasks, which heavily increases with the lack of
processing power and nevertheless a relatively exact overrun checker. Though because

25

4. Evaluation

Table 4.1.: Results of the simulations of EDF

OP=0.1 EDF-FFOB-A EDF-FFOB-S EDF-VD
Dropped Jobs 11,408 180,195 769,699
Mode-switches 3223 47,870 179,180
Time in HI-mode(ms) 144,840 1,746,703 9,048,702
OP =0.01 EDF-FFOB-A EDF-FFOB-S EDEF-VD
Dropped Jobs 2453 28,674 155,161
Mode-switches 697 15,561 58,989
Time in HI-mode(ms) 55,073 445,484 2,056,001
OP =0.001 ‘ EDF-FFOB-A EDF-FFOB-S EDF-VD
Dropped Jobs 421 6616 32,193
Mode-switches 7 1783 9920
Time in HI-mode(ms) 3549 47,757 301,828

of the lack of time and the increased impact on simulations with lower OP, it was only
possible to rerun the simulations with an OP of 0.001 and not all. Therefore the results of
simulations with an OP of 0.1 and 0.01 are not fully reliable. Especially as the influence
on the results increases with decreasing numbers and consequently falsifies the ratios.

4.1.3. Results

The exact results of the simulations are attached as several graphs in appendix B. More
significant are the accumulated numbers for each scheduler and for each OP, which can
be seen in table 4.1 for EDF schedulers and table 4.2 for FP schedulers. Each one line
inside a table thereby summarize the information of one diagram in the appendix. These
summarized values will be used in the following, because single results are varying to
much, despite the fact that every simulation lasted 15 minutes.

Earliest Deadline First When looking at the plain accumulated numbers of table 4.1,
it is indisputable that the FFOB scheme increases the quality of service for LO-critical
tasks. Furthermore it is clear that the static approach is by far less effective than the
advanced, but however is still considerably more effective than plain EDF-VD. To put it
in numbers, the number of dropped jobs for the static approach is 14 times higher than
for the advanced approach, while being about one fifth of plain EDF-VD. Nearly the same
results can be gathered for the time spent in HI-mode, while the number are even slightly
higher when looking at the number of mode-switches. The later might be explained,

26

4.1. Quality of Service

as in the FFOB scheme an overrunning job of LO-criticality only gets dropped, while in
contrast a mode-switch happens in EDF-VD.

When using relative numbers the improvements are even more obvious. The results
mean, using for example the time spent in HI-mode with a system’s OP of 0.1, that under
EDV-VD on average one fourth of the simulation time was spent in HI-mode, while its
only 0.4 percent that were spent in HI-mode on average under EDF-FFOB-A. Regarding
the number of dropped jobs, approximately 3.1 million LO-critical jobs were scheduled.
This means that under EDF-VD nearly one fourth of all LO-critical jobs were dropped,
while under EDF-FFOB-S its only one twentieth and with EDF-FFOB-A its even 0.3 per-
cent or about one three hundredth.

Another point to mention is, that the numbers compared between the different overrun
probabilities are decreasing by about the factor 0.2, whereas the OP decreases by the factor
0.1. One minor cause could be, that the expected count of not overrunning jobs before
one overruns is computed as the number of all jobs plus one divided by the number of
overrunning jobs plus one. Furthermore it can be assumed that if less jobs overrun, the
count of resets of the overrun budget, because an idle tick occurred, is larger and therefore
the QoS increases.

Table 4.2.: Results of the simulations of FP

OP =0.1 RTI-FP-F RTI-FP-L. RTI-FP-S AMC
Dropped Jobs 24,311 45,450 172,327 378,230
Mode-switches 5314 7948 33,167 86,082

Time in HI-mode(ms) | 442,293 566,642 1,680,102 5,683,333

OP =0.01 RTI-FP-F RTI-FP-L. RTI-FP-S AMC
Dropped Jobs 2780 5443 27,733 87,370
Mode-switches 624 1297 5535 24,998

Time in Hl-mode(ms) | 33,957 66,891 258,004 1,365,426

OP =0.001 | RTI-FP-F RTI-FP-L RTI-FP-S AMC
Dropped Jobs 553 1640 6253 18,040
Mode-switches 158 379 1244 4688
Time in HI-mode(ms) 5589 15,954 55,451 246,303

Fixed Priority When looking at the FP-scheduled tasksets, the FFOB scheme also has a
positive effect on the QoS. However the numbers are distributed differently. The static
approach is generally a bit more than 3 times better than plain AMCmax, while the light
weight approach is again 4 times better than the static approach. However the exact ap-
proach is only 2 times better than the lightweight approach, especially regarding the num-

27

4. Evaluation

Figure 4.1.: Duration of updating the OB depending on the taskset’s size

(a) EDF-FFOB-A (b) RTI-FP-F (c) RTI-FP-L

0 0 0
2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 33 40 42 44 46 43 50 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 33 40 42 44 46 43 50
1735 7 9 11131517 19 21 23 25 27 20 31 33 35 37 39 41 43 45 47 49 1735 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 135 7 9 11131517 10 21 23 25 27 20 31 33 35 37 30 41 43 45 47 49

ber of mode-switches, where the improvements are even lower. On the contrary the static
approach ones again especially decreases the number of mode-switches, for the same rea-
son as mentioned before for edf-scheduled systems. This leads to the assumption, that
the exact approach can very well be replaced by the lightweight approach.

Compared to EDF schedulers, where the exact approach is 14 times better than the static
one, for FP schedulers its only 9 times better. Furthermore in EDF the exact approach is
about 66 times better, while in FP its only 15 times better. Therefore it can be concluded,
that although the improvements of the FFOB scheme are large for MCSs scheduled by
fixed priority schedulers, they are even larger for systems scheduled by earliest deadline
first schedulers.

The same effect, that the results don’t scale with the same factor as the OP, can be
observed for the FP schedulers, although the effect is a little bit smaller than for EDF
schedulers. The presumed reasons for this phenomenon are the same as mentioned in the
previous paragraph for EDF scheduled systems.

4.2. Performance of Schedulers

For analyzing the performance of the different schedulers when updating the overrun
budget, initially a taskset consisting of 50 tasks was used. After each one minute during
simulation, the taskset’s size was decreased by one and a new simulation was started. For
better results the overrun probability was set to 0.3333 and at minimum 200 updates were
used for each taskset. For tasksets consisting of less than 5 tasks an OP of 1 was used to
generate the needed updates.

4.2.1. Performance with EDF

When looking at the performance of EDF-FFOB-A, the amount of time needed for up-
dating the OB increases nearly linear with the number of tasks being scheduled, as seen
in Figure 4.2a. It starts by only 10 microseconds and increases to a maximum of 305
microseconds on average for 50 tasks. This is very reasonable, as computing the dbf as

28

4.2. Performance of Schedulers

Figure 4.3.: Duration of updating the OB in EDF-FFOB-A with 49/50 tasks

| |

0 1000 2000 3000 4000 5000 6000 7000 0 500 1000 1500 2000 2500

Duration in ps Duration in ps

explained in section 3.4.2 and computing the OB, as described in section 3.4.3, are both
linear in time complexity. Only extending the dbf is element of O(nxm), where m denotes
the number of jobs that arrive in the considered interval. Because the interval presumably
rises with the number of tasks being scheduled, this computation is not exactly linear in
time complexity. Furthermore, as shown in the Whisker-Box-Plots of figure 4.3 for the
tasksets consisting of 49 and 50 tasks, the variance in general is relatively small, although
some rare extreme values happen.

4.2.2. Performance with FP

For FP scheduled MCSs, two schedulers were proposed, which update the overrun bud-
get at runtime. Their results are demonstrated in figure 4.2b and 4.2c and obviously differ
by a large extend. While both start by about 10 microseconds for updating the OB for one
task, like EDF-FFOB-A also does, RTI-FP-F takes on average 342655 for updating with
50 tasks, while RTI-FP-L only takes 605 and therefore is by a factor of over 500 faster.
When looking at the graph of RTI-FP-F, the graph looks at least of quadratic time com-
plexity. Because the same methods are used for computing the dbf and wbf as RTI-FP-L
does and the same scheme for extending the dbf is used as in EDF-FFOB-A, but how-
ever the consumed time is by far larger, checking that equation 2.4 inside algorithm 2.3
holds is the dominating factor. This has also been verified by measuring the individual
sections of the updating method. For being able to check if this equation holds in general,
it has to be checked for every task individually. Computing the sbf of a single job is in
O(m + nm - log(nm)), because first the extended wbf has to be appended, which con-
sists of m elements depending on the size of the interval, and after that the whole sbf has
to be sorted. The actual checking if equation 2.4 holds furthermore is of time complex-
ity O(m) as again it is looped over the whole interval. Therefore the total complexity is
O(n - (nm - log(nm) + 2m)) or summarized as O(n*m - log(nm))). This now clearly indi-
cates a time complexity worse than O(n) and therefore must be considered not practical
for larger tasksets. Particularly as 34 milliseconds is in now way acceptable for a sched-
uler to make its decision. Furthermore when looking at figure 4.5, updating the OB in

29

4. Evaluation

Figure 4.5.: Duration of updating the OB in RTI-FP-F with 49/50 tasks

0 20000 40000 60000 80000 100000 120000 140000 0 20000 40000 60000 80000 100000 120000 140000
Duration in ps Duration in ps

Figure 4.7.: Duration of updating the OB in RTI-FP-L with 49/50 tasks

I |

0 20 40 60 80 100 120 140 160 180 200 0 500 1000 1500 2000 2500 3000 3500

Duration in ps Duration in ps

RTI-FP-F underlies a high variance and ranges up to 120 milliseconds, which is also not
desirable.

When looking at the graph of RTI-FP-L, the graph seems to indicate a time complexity
smaller than linear, e.g. logarithmic. However computing the dbf and whbf is of linear
time complexity, as previously mentioned. Moreover checking if a given overrun budget
is valid and approximating the wbf, as described in section 3.4.4, are both of linear time
complexity too. Therefore the whole updating process is also of linear time complexity. It
shouldn’t stay unnoticed that although this lightweight approach and EDF-FFOB-A are
both of linear time complexity, RTI-FP-L is about 5 times faster on average than EDF-
FFOB-A for large tasksets. Moreover the variance is also even lower compared to EDF-
FFOB-A, as the Whisker-Box-Plots in figure 4.7 for RTI-FP-L and in figure 4.3 for EDF-
FFOB-A indicate.

Furthermore it should be noted, that algorithm 2.3 is of logarithmic time complexity re-
garding the maximum possible overrun budget. Especially for RTI-FP-F, where checking
if an overrun budget is possible is costly, this is also a factor determining the time needed
for updating the OB.

30

5. Conclusions and Future Work

5.1. Future Work

Simulation As always there are numerous ideas, what could be done in the future. The
most obvious one is to do more elaborate simulations, because the results used in this the-
sis are, as already mentioned in section 4.1.2, not 100% reliable. First of all an otherwise
idle sever should be used, to minimize interference of other processes, for simulating the
tasksets in the future, as the job’s execution time is highly sensitive to interferences, while
measuring its execution time isn’t. Moreover more tasksets and an increased duration of
the simulation would significantly reduce variations inside the results. Furthermore sim-
ulations figuring out the influence of the size of the maximum overrun budget and the
influence of the largest period, which determines the considered interval, on the perfor-
mance of updating the overrun budget could be done and be helpful for improving the
scheduler by decreasing its overhead.

SF3P However SE3P can also be further improved. For example the pseudo random
number generator used for generating the execution time of each job, as described in sec-
tion 3.1, can be better seeded. Although it is highly unlikely that two jobs” execution time
is computed at the same time, the system time isn’t changing enough to be considered
a good seed. This could be improved by using the thread id and/or the WCET to xor
with the first seldom changing bits of the system time. Additionally more realistic types
of tasks, like encoding/decoding a video, could be implemented.

Furthermore fixing the often occurring segmentation faults inside the simfig tool would
highly improve the users experience. Particularly as already for a bit longer simula-
tions(1sec) with more than 10 tasks, its nearly unusable. Adding markings for overran
jobs would further improve the tool. Moreover the number of dropped jobs, the count
of mode-switches and the time spent in HI-mode could be added to the central statistics
instead of being stored inside the scheduler and just printed to the console.

Further minor improvements could address the parser currently used for parsing the
input xml-file. One improvement could be to implement a possibility to specify the over-
run probability of all tasks inside the input file, replacing the currently hardcoded one.
Moreover the input data could be checked in more detail for valid values, leading to
more meaningful errors instead of just segmentation faults.

31

5. Conclusions and Future Work

FFOB Naturally the implementation of the FFOB scheme can be further improved too.
The most obvious improvement would be, to also be able to calculate the overrun budget
for FP scheduled MCSs. Furthermore, being able to compute the virtual-deadlines of HI-
critical tasks would be a great enhancement. As the results have shown, updating the
OB is relatively costly. By being able to directly compute the maximal OB for a job, the
whole binary search of algorithm 2.3 would get obsolete and a significant performance
boost, especially for RTI-FP-F, would be achieved. Moreover while implementing the
approximation of the wbf for RTI-FP-L, it was found out that the wbf of an active task can
be approximated by two different straight lines. The one of them that isn’t used right now
would increase the OB, yet endangering the schedulability of the whole system. However
this could be used purposefully for increasing the OB and therefore the QoS, while fully
maintaining the schedulability of the system. This is particularly interesting, as RTI-FP-F
in its current state has a to big overhead for being practically useful.

5.2. Conclusion

The goal of this thesis, integrating state-of-the-art schedulers into the scheduling frame-
work for fast prototyping, was achieved. In order to do so, new features were imple-
mented, therefore reducing the work needed for integration of further schedulers in the
future. Additionally this thesis presents the principles of these state-of-the-art schedulers,
which are based on earliest deadline first and on fixed priority. Moreover the schedulers
were evaluated separately in terms of performance and quality of service. For EDF sched-
ulers, the new schedulers significantly improve the QoS for LO-critical jobs, as demon-
strated in section 4.1.3, while introducing only a small overhead, as shown in section 4.2.1.
Hence the new schedulers are a great improvement in the fields of embedded systems.
Meanwhile for FP schedulers, also significant improvements are made by the new sched-
ulers, which is shown in section 4.1.3. However the exact approach has proven not practi-
cally useful in section 4.2.2, because of a huge overhead, which additionally lead to large
delays of jobs. Nevertheless the lightweight approach reduced this overhead to nearly
zero, while achieving almost the same results for the QoS as the exact approach and by a
large extend better results than the static approach.

32

Appendix

33

A. Demonstration of FFOB at an example

Table A.1.: An example taskset with two tasks used for the following figures

| Ci D T,
| 2 3 4
|1 4 5

Figure A.1.: The dbf, wbf and sbf of 7;

wbf

sbf

| dbf

-]

34

Figure A.2.: The dbf, wbf and after 7| leftover sbf of 7

-6
-5
sbf
-4
-3
-2
L wbf J dbf
1 3/3 5 6 7 8 a A
1 1 1 1 1 1 1

Figure A.3.: The sbf and dbf used by the program for 7,

4 sbf*

dbf*

B. Results for the Quality of Service

B.1. Results of EDF-schedulers for each taskset grouped by OP

45000
40000
35000
30000
25000
20000
15000

10000

Ml A
0 o N

2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40
135 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39

Taskset
(a) Number of dropped jobs

Figure B.1.:

36

—— EDF-FFOB-A
~——— EDF-FFOB-S
EDF-VD

18000 550000
16000 500000
450000
14000
400000
12000
350000
10000 300000
8000 250000
200000
6000
p 150000
4000
A 100000)
2000] L 50000 u
0 0
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40
135 7 9 1113151719 2123 2527 29 31 33 3537 39 135 7 9 11131517 1921 23 2527 29 31 33 35 37 39
Taskset Taskset
(b) Number of mode-switches (c) Time in HI-mode in ms

Results for an overrun probability of 0.1

B.1. Results of EDF-schedulers for each taskset grouped by OP

18000
16000
14000
12000
10000

8000

6000

4000

o MW
0 AN\

12000
10000
8000
6000
4000

2000

U VWAL

2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40
13 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39

Taskset

(a) Number of dropped jobs

2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40
3

1 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39

Taskset

(b) Number of mode-switches

160000
140000
120000
100000
80000
60000
40000 \

20000 l
0

2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40
135 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39

Taskset

(c) Time in HI-mode in ms

Figure B.2.: Results for an overrun probability of 0.01

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
35 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39

Taskset

(a) Number of dropped jobs

3000
2500
2000
1500
1000

500

\

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
13 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39

Taskset

(b) Number of mode-switches

60000
50000
40000
30000
20000

10000

BSUVAPAZ, VAR

2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40
13 5 7 911131517 19 21 23 25 27 29 31 33 35 37 39

Taskset

(c) Time in HI-mode in ms

Figure B.3.: Results for an overrun probability of 0.001

37

B. Results for the Quality of Service

B.2. Results of FP-schedulers for each taskset grouped by OP

35000
30000
25000
20000
15000
10000

5000

A ’, ”
o D A L
2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40
13 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39

Taskset

(a) Number of dropped jobs

Figure B.4.:

me RTI-FP-F

s RTI-FP-L
RTI-FP-5

e ANV Cax

4500

4000

3500

3000

2500

2000

1500

1000
500 N !!

2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40
1 35 7 9111315171921 232527 29 3133 353739

0

Taskset

(b) Number of mode-switches

350000

300000

250000

200000

150000

100000

50000

A N A
0 B
2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40
1 3 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39

Taskset

(c) Time in HI-mode in ms

Results for an overrun probability of 0.1

38

B.2. Results of FP-schedulers for each taskset grouped by OP

6000
5000
4000
3000
2000

1000

OMA-QMM

2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40
13 5 7 9 1113151719 21 23 25 27 29 31 33 35 37 39

Taskset

(a) Number of dropped jobs

3500
3000
2500
2000
1500
1000

500

0 LAAA - 4
2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40
1 35 7 9 111315171921 232527 29 31 33 3537 39

Taskset

(b) Number of mode-switches

110000
100000
90000
80000
70000
60000
50000
40000
30000
20000
10000

0 4z§‘\!‘\-<=;,._—O&._.-c._-.£:>_4>.4=-l

2 46 391012 14 16 18 20 22 24 26 28 30 32 34 36 38 40

13 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39

Taskset

(c) Time in HI-mode in ms

Figure B.5.: Results for an overrun probability of 0.01

1800
1600
1400
1200
1000
800
600
400
200 \
0 M AA
2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40
13 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39

Taskset

(a) Number of dropped jobs

450
400
350
300
250
200
150
100

50

0 M\K

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
135 7 9111315171921 232527 29 31 33 3537 39

Taskset

(b) Number of mode-switches

25000
20000
15000

10000

AL

2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40
13 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39

Taskset

(c) Time in HI-mode in ms

Figure B.6.: Results for an overrun probability of 0.001

39

Bibliography

[1] S. Baruah, V. Bonifaci, G. DAngelo, H. Li, A. Marchetti-Spaccamela, S. van der
Ster, and L. Stougie. The preemptive uniprocessor scheduling of mixed-criticality
implicit-deadline sporadic task systems. In 2012 24th Euromicro Conference on Real-
Time Systems, pages 145-154, July 2012.

[2] S. K. Baruah, A. Burns, and R. I. Davis. Response-time analysis for mixed criticality
systems. In Real-Time Systems Symposium (RTSS), 2011 IEEE 32nd, pages 34-43, Nov
2011.

[3] Sanjoy Baruah and Alan Burns. Implementing Mixed Criticality Systems in Ada, pages
174-188. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[4] Sanjoy K. Baruah, Vincenzo Bonifaci, Gianlorenzo D’Angelo, Alberto Marchetti-
Spaccamela, Suzanne van der Ster, and Leen Stougie. Mixed-Criticality Scheduling of
Sporadic Task Systems, pages 555-566. Springer Berlin Heidelberg, Berlin, Heidelberg,
2011.

[5] I Bate, A. Burns, and R. I. Davis. A bailout protocol for mixed criticality systems. In
2015 27th Euromicro Conference on Real-Time Systems, pages 259-268, July 2015.

[6] Alan Burns and Rob Davis. Mixed criticality systems-a review. Department of Com-
puter Science, University of York, Tech. Rep, 2013. Sixth edition, 1/8/2015.

[7] A. Easwaran. Demand-based scheduling of mixed-criticality sporadic tasks on one
processor. In Real-Time Systems Symposium (RTSS), 2013 IEEE 34th, pages 78-87, Dec
2013.

[8] P. Ekberg and W. Yi. Bounding and shaping the demand of mixed-criticality sporadic
tasks. In 2012 24th Euromicro Conference on Real-Time Systems, pages 135-144, July
2012.

[9] A. Gomez, L. Schor, P. Kumar, and L. Thiele. SF3P: a framework to explore and
prototype hierarchical compositions of real-time schedulers. In 2014 25nd IEEE In-
ternational Symposium on Rapid System Prototyping, pages 2-8, Oct 2014.

[10] Andres Gomez. SF3P: A Scheduling Framework For Fast Prototyping.

41

Bibliography

[11]

[12]

[13]

[14]

[15]

[16]

Biao Hu, Kai Huang, Pengcheng Huang, Lothar Thiele, and Alois Knoll. On-the-fly
fast overrun budgeting for mixed-criticality systems. In International Conference on
Embedded Software (EMSOFT), October, to appear 2016.

Biao Hu, Lothar Thiele, Pengcheng Huang, Kai Huang, and Alois Knoll. Online
mode-switch procrastination in fp-scheduled mixed-criticality systems. Soon to be
published, 2016.

E. Santy, L. George, P. Thierry, and J. Goossens. Relaxing mixed-criticality scheduling
strictness for task sets scheduled with fp. In 2012 24th Euromicro Conference on Real-
Time Systems, pages 155-165, July 2012.

Lukas Sigrist. Implementation and evaluation of mixed-criticality scheduling algo-
rithms for multi-core systems. Semesterthesis, Swiss Federal Institute of Technology
Zurich, jan 2014.

S. Vestal. Preemptive scheduling of multi-criticality systems with varying degrees
of execution time assurance. In Real-Time Systems Symposium, 2007. RTSS 2007. 28th
IEEE International, pages 239243, Dec 2007.

Felix Wermelinger. Implementation and evaluation of mixed criticality scheduling
approaches. Semesterthesis, Swiss Federal Institute of Technology Zurich, jun 2013.

42

	Abstract
	List of Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Problem Statement

	2 Principles of implemented Schedulers
	2.1 Principles of AMC
	2.2 Principles of EDF-VD
	2.3 Principles of FFOB
	2.3.1 Principles of EDF-FFOB
	2.3.2 Principles of RTI-FP

	3 Implementation details
	3.1 General Additions and Improvements to SF3P
	3.2 Implementation of AMCmax
	3.2.1 Runtime measurement for tasks
	3.2.2 Dropping of Jobs
	3.2.3 Implementation of AMCmax itself

	3.3 EDF-VD
	3.4 Implementation of FFOB
	3.4.1 Implementation of FFOB scheme itself
	3.4.2 Computation of DBF and WBF
	3.4.3 Implementation with EDF
	3.4.4 Implementation with FP

	4 Evaluation
	4.1 Quality of Service
	4.1.1 Setup
	4.1.2 Problems
	4.1.3 Results

	4.2 Performance of Schedulers
	4.2.1 Performance with EDF
	4.2.2 Performance with FP

	5 Conclusions and Future Work
	5.1 Future Work
	5.2 Conclusion

	Appendix
	A Demonstration of FFOB at an example
	B Results for the Quality of Service
	B.1 Results of EDF-schedulers for each taskset grouped by OP
	B.2 Results of FP-schedulers for each taskset grouped by OP

	Bibliography

