
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Direct GPU-FPGA Communication

Alexander Gillert

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Direct GPU-FPGA Communication

Direkte GPU-FPGA Kommunikation

Author: Alexander Gillert
Supervisor: Prof. Dr.-Ing. habil. Alois Knoll
Advisors: Dr. Kai Huang

Biao Hu, M.Sc.
Date: April 15, 2015

I confirm that this master’s thesis is my own work and I have documented all sources and
material used.

München, 12. April 2015 Alexander Gillert

Abstract

Heterogeneous computing systems consisting of CPUs, GPUs and FPGAs currently suf-
fer from a comparatively low bandwidth and high latency for data transfers between the
GPU and the FPGA. So far, no standard or vendor-provided method exists for direct com-
munication between these two devices. Indirect communication with a round-trip via the
CPU is required.

This thesis describes an example effort to enable this missing link for use with the popular
computing platform OpenCL. As expected, a significant increase in bandwidth has been
achieved. However, only the direction from the FPGA to the GPU could be realized. More
investigation or a different approach is still required to enable the opposite direction as
well.

vii

viii

Contents

Abstract vii

List of Abbreviations xi

1. Introduction 1
1.1. Background . 1
1.2. Problem Statement . 1

2. Technology Overview 3
2.1. Accelerator Architectures . 3

2.1.1. Graphics Processors . 3
2.1.2. Field Programmable Gate Arrays . 5

2.2. OpenCL . 8
2.3. Linux Device Drivers . 9
2.4. PCIe . 10
2.5. Direct Memory Access . 12

3. Previous Work 15
3.1. Ray Bittner & Erik Ruf . 15
3.2. Yann Thoma, Alberto Dassatti & Daniel Molla 16
3.3. David Susanto . 17

4. Implementation of an Installable Client Driver for Altera OpenCL 19

5. Implementation of Direct GPU-FPGA Communication 23
5.1. Altera PCIe Driver and IP Overview . 23
5.2. GPUDirect RDMA Overview . 25
5.3. Extension of the Altera PCIe Driver . 26

5.3.1. Basic Version . 26
5.3.2. Optimizations . 28

5.4. GPUDirect RDMA for OpenCL . 31
5.4.1. Reverse Engineering the NVIDIA Driver Communication 31
5.4.2. Extension of the NVIDIA Kernel Module 33

5.5. User Space Invocation . 34

6. Implementation of Concurrent Indirect GPU-FPGA Communication 39

7. Evaluation 43
7.1. Hardware Configuration . 43

ix

Contents

7.2. Effects of RDMA Optimizations . 43
7.3. Parameter Choice for Concurrent Indirect Transfer 45
7.4. Method Comparison . 45
7.5. Comparison with Previous Work . 46

8. Conclusions and Future Work 49

Appendix 53

A. Example RDMA application 53

B. Setup Instructions 55

Bibliography 57

x

Contents

List of Abbreviations

ATT Address Translation Table in the Altera PCIe core
BAR PCI Base Address Register
BSP Board Support Package, IP stack for Altera OpenCL
CPU Central Processing Unit
DDR Double Data Rate, a type of memory
DMA Direct Memory Access
DPU Double-precision Floating Point Unit
FIFO First-In First-Out Queue
FPGA Field Programmable Gate Array
GPGPU General Purpose Computing on Graphics Processing Units
GPU Graphics Processing Unit
HDL Hardware Description Language
HPC High Performance Computing
ICD Installable Client Driver, library that acts as a proxy between different

OpenCL implementations
IOMMU Input/Output Memory Management Unit
IP Intellectual Property, usually refers to HDL code
IPC Inter-Process Communication
LUT Look-Up Table, refers to the basic FPGA building block
MMIO Memory Mapped Input/Output
MMU Memory Management Unit
OpenCL Open Computing Language, a popular HPC platform
OS Operating System
PCIe Peripheral Component Interconnect Express Bus
RAM Random Access Memory
RDMA Remote Direct Memory Access
SDK Software Development Kit
SMX NVIDIA Streaming Multiprocessor

xi

1. Introduction

1.1. Background

Steadily rising processor clock frequencies were the driving force behind computational
performance gains throughout the previous century. However, this frequency scaling
came to an end around the year 2005 due to its side effect of very high power consump-
tion, known as the power wall. This has forced computer science to develop new tech-
niques to maintain the increase of computational speed. The focus of research has shifted
towards parallelism, which enables computations to be performed simultaneously in-
stead of sequentially. Previously employed mainly in supercomputers, parallel comput-
ing has become mainstream with the development of parallel processor architectures like
multi-core CPUs, GPUs and FPGAs.

GPUs and FPGAs are typically used as accelerators or co-processors in addition to a CPU.
Such a heterogeneous computing system can combine the advantages of its individual com-
ponents. The CPU is best suited for sequential and control tasks, whereas data-parallel
computations are best to be performed on the GPU or FPGA accelerators. Exploiting the
differences among the different accelerator architectures can result in even higher perfor-
mance gains. FPGAs are hard to beat in bit shifting operations, integer arithmetic and
interfacing peripheral devices (such as cameras) but are deficient on floating point opera-
tions for which GPUs can accommodate [19].

Typical applications for heterogeneous computing systems include computer vision, phys-
ical simulations or scientific visualization. Specifically a CPU-GPU-FPGA system has
been used at the TU Munich for lane detection in the context of automated driving [25].

1.2. Problem Statement

High bandwidth and low latency data transfer between individual components are vital
for the performance of a heterogeneous computing system. Methods for the communica-
tion between the CPU and the accelerator devices are usually provided by the correspond-
ing vendors. Communication between accelerators from different vendors however, has
to take the cumbersome and slow approach of a round trip via the CPU.

The goal of this thesis is to enable the still missing direct link between the GPU and the
FPGA. A holistic framework for direct GPU-FPGA transfers based on the OpenCL com-
puting platform should be developed. Specifically, a NVIDIA graphics card and an Altera

1

1. Introduction

Figure 1.1.: Indirect GPU-FPGA
transfer

Figure 1.2.: Direct GPU-FPGA
transfer

FPGA board shall communicate directly over the PCIe bus with minimal coordination by
the CPU. A significant bandwidth improvement compared to the indirect method is to be
expected.

This thesis is structured as follows:

• Chapter 2 provides a brief overview over the technologies that are required to fully
understand the later parts of this thesis.

• In chapter 3 previous developments in this direction are presented.

• Chapters 4 and 5 document the efforts during the actual development of the frame-
work.

• Chapter 6 describes an alternative to the direct GPU-FPGA communication that may
be suitable in many cases.

• The evaluation of the developed methods and a comparison with the previous ap-
proaches are presented in chapter 7.

• Lastly, chapter 8 discusses the results and suggests further developments that could
not be finished during this thesis.

2

2. Technology Overview

This chapter provides a brief overview over the technologies that will be used in this
thesis.

2.1. Accelerator Architectures

Since the release of NVIDIA CUDA general purpose computing on graphics processors
has become mainstream. In recent years, FPGA vendors Altera and Xilinx are pushing
into the HPC field as well. This section describes the architectures of these two accelera-
tors.

2.1.1. Graphics Processors

Graphics processing units (GPUs) were originally developed for graphics and visualiza-
tion applications. As such, they are designed to handle mounds of data like vertices or
pixels in a short amount of time. These capabilities are also useful for other types of
data. For this reason, GPUs are today used also for high performance general purpose
computing, known as GPGPU.

GPUs differ from traditional general purpose processors (CPUs) primarily through a
much higher degree of parallelism. CPUs are built to be easy to use and versatile, being
able to handle many different tasks. Graphics processors in contrast, are meant to deal
with large amounts of data as fast as possible. Around 1998 the number of transistors on
GPUs overtook that of CPUs because most of the die area for CPUs is dedicated to cache
and control logic, whereas the die area of GPUs is mostly dedicated to computational
logic, thus providing more computing power [36]. Additionally this makes them more
energy efficient, offering more performance per Watt. As an example, a modern GPU like
the GK110 class from NVIDIA (released 2012) features 7.1 billion transistors [13].

The disadvantages of GPUs include a more demanding programming model because of
comparatively little die area dedicated to control logic. Optimally, the task should be
embarrassingly parallel and require little synchronization. NVIDIA graphics cards can be
programmed with the CUDA [15] or OpenCL [22] platforms.

For high performance computing, graphics processors are typically used as accelerators
in conjunction with a host CPU system where the main application is running. This adds
the drawback of communication delay between the host and the GPU which very often
constitutes a bottleneck for an application.

3

2. Technology Overview

In the following paragraphs, a brief overview of the GPU architecture using the example
of the NVIDIA Kepler (GK110) class is provided. Other GPU architectures, also from
other vendors, are organized in a similar fashion.

The GK110 employs a deep hierarchy of components. Up to 15 Streaming Multiprocessors
(SMX) constitute the centerpiece of the GK110. Each of the SMX units consists of 192
CUDA cores. Each CUDA core in turn is composed of a floating point unit and an integer
arithmetic logic unit. The cores are pipe-lined and can execute one operation per clock cy-
cle. In addition to CUDA cores, each SMX also contains 64 double-precision floating point
units (DPU), 32 load/store units for the computation of source and destination memory
addresses and 32 special function units (SFUs) for fast approximations of transcendental
operations such as sine, square root or interpolation. A SMX organizes the instruction ex-
ecution in groups of 32 threads (warps). 4 warp schedulers per SMX can issue 2 instructions
to a warp in each clock cycle, theoretically utilizing all cores to full capacity. [13]

A 256KB large register file per SMX provides 256 32-bit registers for each CUDA core
and DPU. Each SMX employs additional 16 texture filtering units, 48KB read-only data
cache and 64KB memory that can be split up in either L1 cache or shared memory for
communication between threads. The 1.5MB L2 cache can be accessed by all SMX units.
Finally 6 memory controllers for GDDR6 DRAM complement the memory hierarchy. [13]

For the communication with the host, typically the PCIe bus is used. Chapter 2.4 provides
a brief overview over this protocol.

Figure 2.1.: Simplified schematic diagram of the NVIDIA GK110 class GPU architecture.
(Image based on [13])

4

2.1. Accelerator Architectures

2.1.2. Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGAs) are fundamentally different from CPUs and GPUs.
In contrast to processors, FPGAs are not programmed by specifying a list of sequential
instructions to execute, but by constructing digital electronic circuits. These circuits can
execute in parallel and do not have the overhead of instruction fetching and decoding.
This can result in hundreds of times faster performance in addition to lower power con-
sumption compared to software-based designs [17].

Very generally speaking FPGAs consist of a large number of look-up tables (LUTs) that can
be connected together to implement any digital circuit. A LUT is a block of memory that
stores a small number of bits. It can be implemented with SRAM cells and multiplexers
that select which cell to route to the output. An arbitrary Boolean function can be imple-
mented by storing the truth table of the function in the SRAM cells [17]. Figure 2.2 shows
an example LUT that implements the 3-input XOR function or a 1-bit full adder.

Figure 2.2.: Left: A look-up table loaded with the values of the 3-input XOR function
which can also be seen as a 1-bit full adder without the carry output (Image
based on [16]). Center: A truth table describing the same function. Right: An
equivalent digital circuit consisting of logic gates.

More complex functions can be achieved by combining multiple look-up tables. For ex-
ample the addition of two 8-bit unsigned integers can be implemented using 8 1-bit full
adders from figure 2.2 and 8 LUTs storing the carry logic. They are then connected as
shown in figure 2.3. Actually, this design can be optimized to use less LUTs.

Look-up tables can only act as logic functions, not able to store a state. Therefore LUTs
are connected to a D-type flip-flop which acts as an output buffer. Together they form a
logic block or cell. A multiplexer selects whether the logic block’s output comes from the
LUT directly or from the flip-flop. The multiplexer in turn is configured by an additional
SRAM cell [16]. In reality logic blocks often include additional components such as carry
logic or full adders because they are often used [1].

5

2. Technology Overview

Figure 2.3.: A ripple-carry adder implemented using only 3-input LUTs

A logic block on its own can only perform very simple logic functions. For more compli-
cated computations the cells have to be connected together. Usually, these interconnec-
tions constitute up to 90% of the whole FPGA’s area [16]. This is required for a high degree
of flexibility to be able to implement any digital circuit. The most common architecture is
the island style interconnect [17] which is outlined in figure 2.4. Instead of connecting the
logic blocks directly with each other, they are separated by horizontal and vertical multi-
lane signal channels. On intersections configurable switch boxes control which direction a
signal takes. The logic blocks are connected via connection blocks to the channels. Again,
connection blocks can also be configured to allow to connect any lane to the cell’s input
or output. To also improve the signal delay from one logic block to another, additional
long-distance lanes in the channels can be used. Most commercial FPGAs (e.g. Altera
Stratix and Xilinx Virtex families [1]) employ this concept as the basis for their routing
architectures.

Figure 2.4.: Example of an island style connectivity (Components are not to scale. Image
based on [17]

6

2.1. Accelerator Architectures

In theory a FPGA can consist only of configurable logic blocks, interconnections and I/O
pins. However, to achieve higher performance vendors usually employ dedicated non-
configurable (hardened) hardware for often used and expensive operations. For instance,
multipliers, DSP blocks and dedicated SRAM cells, distributed across the chip are very
common in modern FPGAs. Moreover some models may include complete hard CPUs for
computations that are inherently sequential or to run a whole operating system. Altera’s
Cyclone V SoC series for example includes an ARM Cortex-A9 core [1].

In contrast to compiling a software program, FPGA configuration is not a straight-forward
process, as outlined in figure 2.5. For one, yielding decent results almost always requires
optimization towards one of two often contradicting goals: minimal resource usage vs.
performance. Furthermore, after each step several constraints have to be met, most im-
portant one being that the design does not require more resources than are available on
the target chip. If one of those constraints cannot be maintained the procedure needs to
be restarted with a different optimization strategy. This contributes to rather long build
process.

Figure 2.5.: The major phases involved in the configuration procedure. Falling back to a
previous step may be required if a constraint cannot be met. (Image based on
[17])

The most commonly applied method to configure FPGAs is to use a hardware description
language (HDL) such as VHDL or Verilog. HDLs differ fundamentally from imperative
programming languages like C or Fortran because of their concurrent semantics [17]. A
logic synthesizer converts the HDL code into a set of primitives, called a netlist which
basically consists of logic gates, flipflops and the interconnections between them. These
netlist primitives are then mapped to the target device’s primitives (i.e. LUTs of certain
sizes, various DSP units). Next, every element of the new technology-mapped netlist is
assigned to a real physical building block of the corresponding type on the chip and a the
connections between them are established. In the end, if the timing simulation satisfies
the target clock rate, a bitstream containing the contents of the memory cells of the LUTs,
multiplexers and switches is produced.

HDLs provide a great flexibility and the ability to control the flow of every digital signal
in every clock cycle. However, this demands a high level of expertise and long develop-

7

2. Technology Overview

ment time. In 2013, Altera released an SDK for the configuration of their FPGAs with the
OpenCL standard [4]. This enables to program FPGAs in the same way as GPUs. This
standard is described in more detail in section 2.2.

It is difficult to compare the performance of FPGAs to GPUs because of the completely
different architectures. Very generally speaking, FPGAs are better suited for integer op-
erations, GPUs on the other hand achieve better results with floating point calculations.
Moreover, FPGAs are very flexible and can interface a variety of other devices [19].

2.2. OpenCL

OpenCL (Open Computing Language)[22] is a standard for heterogeneous high performance
computing managed by the Khronos consortium. It has been implemented on a wide
range of devices, most importantly multi-core CPUs, GPUs and FPGAs. It defines a high
level abstraction layer for low level hardware instructions. This enables to scale compu-
tations from general purpose processors to massively parallel devices without changing
the source code.

The OpenCL specification resembles in many aspects the NVIDIA CUDA platform and
can be roughly summarized as follows[22]:

An OpenCL application runs on a host system which is connected to one or more ac-
celerator devices. A device, divided into compute units and processing elements, is usually
able to execute compute kernels in a SIMD or sometimes SPMD fashion. The kernels are
mostly written in the OpenCL C programming language, a dialect of the C99 standard and
compiled with a vendor-specific compiler, but native kernels are optionally supported as
well. They describe the sequence of instructions within a single execution instance, called
a work-item. Work-items that are grouped in the same work-group are executed concur-
rently.

The memory hierarchy consists of four distinct regions for the kernels:

• Global memory that can be written and read by all work-items in all work-groups

• Constant memory, a region of global memory that is initialized by the host and does
not change during the execution

• Local memory that is only accessible to work-items within the same work-group

• Private memory owned by a single work-item and not visible by others

The functions clEnqueueWriteBuffer and clEnqueueReadBuffer provide a conve-
nient way to transfer data between host and device memory. Methods for data transfers
between multiple devices are not specified by the standard. This is only possible with
vendor-specific extensions. Specifically for GPU-FPGA transfers, no extensions are avail-
able. The only portable workaround is to read a memory region from the first device into
CPU memory and then write it to the second device. Obviously, this approach is rather
slow, due to the overhead of the two transfers.

8

2.3. Linux Device Drivers

The cl khr icd extension[20] allows multiple OpenCL implementations from different
vendors to co-exist on the same system. It defines an installable client driver (ICD) loader,
a unifying library that acts as a mediator between the different platforms. This enables
the use of multiple heterogeneous devices in a single process without the different imple-
mentations interfering with each other. Without this mechanism, the overhead of multi-
ple processes and inter-process communication (IPC) inbetween them is required. As of
the time of this writing, Altera’s latest SDK version 14.1 does not support this extension
yet. Section 4 describes an implementation of an incomplete yet usable ICD for Altera
OpenCL.

2.3. Linux Device Drivers

Hardly any two hardware devices provide the same control interface to the host system.
As a consequence either an application program has to know how to interface every single
device (which is impossible for those that are not yet available) or an abstraction layer
between the application software and the actual device is needed. The role of a device
driver is to provide this abstraction layer [29]. A driver is built for a specific piece of
hardware and knows its internal logic. The user program may use a set of standardized
calls that are independent of the hardware and the device driver will map these calls to
the hardware specific commands.

A device driver communicates with the peripheral device through its I/O registers. Us-
ing hardware registers is very similar to main memory: Every register has an address
which can be accessed with the read and write system calls. The CPU is then asserting
electrical signals on the address bus and control bus and reading from or writing to the
data bus [29]. The most important difference is that I/O regions can and do have side
effects whereas memory usually does not.

Direct I/O access to a hardware device may cause physical damage if operated incor-
rectly. Therefore in Linux, this is only allowed for the privileged code running in kernel
space. Though the Linux kernel is largely monolithic, it allows modules to be built sep-
arately from the rest of the kernel and inserted or removed at runtime when needed,
without having to reboot the whole system. Device drivers are usually constructed as
kernel modules [29].

A kernel module does not have a main function and is completely event-driven [29]. It
has to provide an initialization function which may initialize the hardware and register
callbacks for hardware interrupts or user space communication calls. A minimal kernel
module written in C looks like this:

Listing 2.1: Minimal kernel module

#include <linux/init.h>
#include <linux/module.h>

static int hello_init(void)
{ printk(KERN_ALERT "Hello, world\n"); return 0; }

9

2. Technology Overview

static void hello_exit(void)
{ printk(KERN_ALERT "Goodbye\n"); }

module_init(hello_init);
module_exit(hello_exit);

To insert a module into the kernel at runtime, the following command can be used:

insmod path/to/example_module.ko

The following command will remove the module from the kernel again:

rmmod example_module

In Linux, the main method for a user space program to communicate with a kernel mod-
ule is through file operations on a file exposed by the module. Such a device file is usually
located in the /dev/ directory of the file system. The module can register callback func-
tions that are executed when system calls like open, read or ioctl are performed on
this file.

Both, Altera and NVIDIA provide Linux drivers for their chips. Altera released its PCIe
driver under an open source license, available for modification, whereas the NVIDIA
driver is split into two parts: the kernel module which is also open source and the ac-
tual closed source driver. The kernel module acts only as an mediator between the user
programs and the actual driver.

2.4. PCIe

Peripheral Component Interconnect Express (PCIe) is a very commonly used bus for the con-
nection of peripheral devices to a host system. It is an extension of the PCI bus and is
completely compatible with its predecessor up to the point that PCI-only devices can
communicate over PCIe without modifications [11].

A PCIe interconnect that connects two devices together is referred to as a link. A link
consists of either x1, x2, x4, x8, x12, x16 or x32 signal pairs in each direction, called lanes.
Data can be transmitted in both directions simultaneously on a transmit and receive lane.
The signal pairs are differential, that means that 2 electrical signals with opposing voltages
(D+ and D-) are used for each logical signal. A positive voltage difference between D+ and
D- implies a logical 1 and logical 0 for a negative difference. Differential signals have the
advantage that they are more robust towards electrical noise. Each PCIe lane thus totals
to overall 4 electrical signals. [11]

The PCI Express 2.0 specification supports 5.0 Gbits/second/lane/direction transfer rate.
For an additional degree of robustness during data transfer, each byte of data transmitted
is converted into a 10-bit code (8b/10b encoding) i.e. for every byte of data, 10-bits are actu-
ally transmitted, resulting in 25% overhead. The 8b/10b encoding moreover guarantees
one-zero transitions in every symbol, which eliminates the need of a clock signal. The
receiving device can recover the sender’s clock through a PLL from the rising and falling

10

2.4. PCIe

edges of the signal [11]. The following table shows the maximum possible transfer speeds
with PCIe:

PCIe link width Theoretical bandwidth in one direction
x1 500 MBytes/second
x8 4 GBytes/second
x32 16 GBytes/second

The PCI Express hierarchy centers around a root complex. It connects the CPU and the
memory subsystem to the PCIe fabric consisting of endpoints and switches which may
extend the hierarchy. Its functionality includes the generation of transactions on the be-
half of the CPU and routing of packets from one of its ports to another. [11] An example
topology is illustrated in figure 2.6.

Figure 2.6.: Example topology of a system employing PCIe (Image based on [11])

In PCI Express data is transferred from one device to another via transactions. A transac-
tion is a series of one or more packets required to complete an information transfer between
a sender and a receiver. [11] Transactions can be divided into 4 address spaces:

• Memory: Data transfer to or from a location to the system memory or a device.

• IO: Data transfer to or from a location to the system IO map. PCIe devices do not
initiate IO transactions. They are intended for legacy support.

• Configuration: Read from or write into the configuration space of a PCIe device.
Only initiated by the host.

• Message: General messaging and event reporting

11

2. Technology Overview

The configuration space of a device contains a set of standardized registers used by the host
to discover the existence of a device function and to configure it for normal operation.
A device may implement multiple functions. Each function’s configuration space is 4KB
large of which the first 256 Bytes are occupied by the legacy PCI header. This header
includes the Vendor ID and Device ID registers to identify a device, Status and Command
registers used to report and control certain features of the device as well as up to 6 32-bit
Base Address Registers (BARs). [11] Two BARs can be merged into one 64-bit BAR. A device
may expose a linear window of its memory into one of the BARs. The host or another PCIe
device may then use the value programmed into the BAR as a physical address to write
from or read into the device’s memory in the same way as to system memory, i.e. via
Memory Read or Write Transactions. [14]

A PCI Express device may deliver interrupts to its device driver on the host via Message
Signaled Interrupts (MSI) [11]. A MSI is a Memory Write transaction to a specific address of
the system memory which is reserved for interrupt delivery. Moreover legacy interrupts
employing dedicated physical pins are supported. Interrupts are useful for a high degree
of performance. Instead of the host polling the state of a device, the device can notify the
host when an event, such as a completed data transfer, occurs.

2.5. Direct Memory Access

Direct Memory Access (DMA) is a hardware mechanism that allows peripheral compo-
nents to transfer data directly to and from main memory without involving the system
processor [29]. DMA is useful when the CPU is not able to keep up with the transfer rate
or has to perform other operations inbetween. This can increase not only the throughput
to and from a device but also the overall system performance.

DMA is carried out by a DMA controller built into the device. DMA transfers can be clas-
sified as synchronous or asynchronous. In the asynchronous case the device initiates the
accesses to the system memory. This is mostly done by acquisition devices or network
cards. A synchronous transfer is initiated by the software and contains roughly the fol-
lowing steps [29]:

1. The driver sends a command to the device’s DMA controller containing the memory
address to read from or to write into. The associated process is put to sleep so that
the CPU can process other tasks.

2. The DMA controller performs the transfer and sends an interrupt to the driver when
it is completed.

3. The interrupt handler acknowledges the interrupt and wakes up the process.

It is important to note that a DMA controller requires an address from the bus address
space whereas whereas software operates on the virtual address space. The virtual address
space is managed by the operating system and the memory management unit (MMU), a
hardware component usually built into the processor chip [32]. The virtual address space

12

2.5. Direct Memory Access

is segmented into pages of equal size1. A page table on the MMU maps from pages to
the real physical memory. Every process gets a set of pages assigned by the OS. When
a process needs to access the main memory, the CPU sends the virtual address to the
MMU, which translates it through the page table to the actual physical address of the system
memory. In case there is no page table entry for the specified virtual address a page fault
exception is signaled to the OS. This can happen due to the software accessing a memory
area it is not allowed to or if the memory is full and the requested page has been moved
from the RAM to the swap partition on the hard drive. In the latter case the OS loads it
from the swap and puts it back to the RAM, replacing another page.

This mechanism frees programs from the need to manage shared memory, allows pro-
cesses to use more memory than might be physically available and increases the security
by disallowing a process to access memory outside of its address space [32].

Bus addresses are used between a peripheral bus and the system memory. An I/O memory
management unit (IOMMU) may play the same role as the MMU and translate from the bus
address space to the physical address space. However, often the IOMMU is not present
in the system or deactivated, in which case the bus addresses are equivalent to physical
addresses [29]. This scenario is assumed throughout the rest of this thesis as it represents
a majority of today’s systems and for the sake of convenience. Figure 2.7 illustrates the
relations between the address spaces.

Figure 2.7.: Relationship between the different address spaces with example mappings.
In this case the IOMMU performs a 1:1 mapping. (Image based on [32, 29])

Physical addresses are usually not visible neither to the user application nor to the driver.
To get the physical address of a buffer that was allocated in user space, an operation called
pinning is required [29]. Pinning marks pages as not swappable to ensure that they are
not moved out to the swap partition. This ensures that the virtual address of the page
always maps to the same physical address. The get user pages(...) function can be
used within the driver to perform this operation. It also provides the physical addresses
to each page it pins.

1in Linux by default 4KB

13

2. Technology Overview

Unfortunately, especially for large buffers, the acquired physical addresses do not form a
contiguous block, but are distributed across the memory. A DMA controller that supports
scatter-gather operations can accept a scatter-list, an array of addresses and lengths, and
transfer them in one DMA operation [29]. For controllers that to not support this feature,
either a contiguous buffer has to be allocated (for the write direction) or multiple transfers
are required.

DMA is indispensable in the HPC field and most accelerator cards have a built-in DMA
controller. For example in Altera OpenCL a modular Scatter-Gather-DMA (SGDMA) IP
core [2] is used for transfers of at least 1KB size.

Starting with the Kepler class architecture, all NVIDIA Quadro and Tesla cards addition-
ally employ a technology called GPUDirect RDMA [14]. With RDMA, the GPU is able to
pin a buffer in its internal memory and expose it into one of the PCIe BARs. This BAR
can be used as a bus address for other devices within the bus to directly write into or read
from the GPU memory without the overhead of transferring the data to system memory
first.

14

3. Previous Work

Parts of the issues addressed in this thesis have already been tackled in the past. This
chapter gives a brief overview of the previous research. A detailed comparison of this
thesis and these other approaches is presented in section 7.5.

3.1. Ray Bittner & Erik Ruf

Ray Bittner and Erik Ruf from Microsoft Research implement direct GPU-FPGA commu-
nication with a custom IP core, named Speedy PCIe [9, 8]. The IP is written for Xilinx
FPGAs and designed to exploit the full bandwidth potential of the PCIe bus. A Microsoft
Windows driver is also supplied for the core.

Figure 3.1.: Speedy PCIe IP core design (Image from [8])

Bittner and Ruf discovered that several CUDA operations that are intended for GPU-
CPU data transfers can be used for GPU-FPGA transfers as well. Specifically, the function

15

3. Previous Work

cudaHostRegister pins a contiguous block of memory in the virtual address space of
the CPU and maps it for the CUDA device. Afterwards the cudaMemcpy function can be
used to transfer data to and from this buffer by the DMA controller on the GPU. These
functions do not differentiate whether the buffer is mapping to CPU memory or to FPGA
memory. Therefore, by mapping FPGA memory with the Speedy PCIe driver to the CPU
virtual address space, direct GPU-FPGA communication can be achieved.

In the GPU to FPGA case, the performance improved by 34.5% for large transfers com-
pared to the GPU to CPU to FPGA data path. The other direction on the other hand
suffered a penalty of 52.6% compared to the indirect path. According to the authors this
was mainly due to the testing procedure Verilog code. [9]

In contrast to this thesis, Bittner and Ruf do not use OpenCL, neither on the GPU side nor
on the FPGA. The Speedy PCIe core cannot be used in this thesis as it is not compatible
with Altera’s OpenCL which uses an own IP.

3.2. Yann Thoma, Alberto Dassatti & Daniel Molla

Yann Thoma, Alberto Dassatti and Daniel Molla from the University of Applied Sciences
Western Switzerland developed an open source framework for direct GPU-FPGA PCIe
communication, called FPGA2 [33]. Similarly to the approach used by Bittner and Ruf,
they use a custom IP stack, designed for Xilinx FPGAs. The largest difference is, that the
transfer is driven by the custom DMA controller on the FPGA and not by the GPU.

Figure 3.2.: FPGA2 IP stack design (Image from [33])

16

3.3. David Susanto

Instead of the official NVIDIA software, FPGA2 uses the open source GPU driver nouveau
[34] and gdev [30], an open source CUDA implementation, to retrieve the physical address
of a buffer allocated on the GPU. To do this, the buffer has to be copied within the GPU
memory into a window exposed by the PCIe BAR. According to the authors, the overhead
of this copy operation is negligible due to very fast copy bandwidth of more than 5GB/s.
After that, the physical address is passed to the DMA controller on the FPGA, which
initiates the actual direct transfer, with minimal interaction from the CPU.

For the evaluation, the team uses only a single PCIe lane for the direct transfer and com-
pares it with an indirect approach using the official CUDA implementation. In the latter
case, 8 PCIe lanes are used and the data is scaled with a constant factor to make it compa-
rable with the single-lane direct transfer data. Moreover, only transfer sizes of up to 8MB
have been evaluated. Because of these issues the results should be interpreted carefully.
Overall, the direct communication method outperformed the indirect solution for small
transfer sizes. For larger transfers, the data fluctuates too much for a clear interpretation.

The limiting factors of this approach are mainly nouveau and gdev. As the authors them-
self state, the performance of those open source projects is often worse than that of the
official vendor-provided software, and lack several features and support for some de-
vices [33]. The development of the OpenCL port for example, has been stalled by the
nouveau team [35].

The difference to this thesis is that OpenCL is not used by FPGA2, the FPGA has to be
programmed with a HDL instead. This also means that the IP stack cannot be used as it
is not compatible with Altera OpenCL. Nouveau and gdev will not be used, in favor of
the official NVIDIA driver, though some modifications will be required.

3.3. David Susanto

In his master’s thesis, David Susanto implements and evaluates three methods for GPU-
FPGA communication for use in heterogeneous HPC [31]. Initially, he uses OpenCL for
both GPU and FPGA, however due to the lack of an ICD in Altera’s OpenCL imple-
mentation, he is forced to split his application into two processes and use inter-process
communication inbetween. His first two methods employ indirect device communication
and shared memory or a message queue for IPC.

The third method uses direct device communication. The physical address of a GPU
buffer is retrieved via the GPUDirect RDMA technology and passed to the DMA con-
troller on the FPGA. Extension of Altera’s PCIe device driver is required. CUDA has to
be used in the GPU process because this technology is not directly supported in OpenCL.
He reports a performance improvement of ca 38% for direct FPGA to GPU case and ca
34% for the opposite direction.

This thesis continues Susanto’s work. The need for two processes and IPC will be re-
moved by implementing an ICD for Altera OpenCL as well as the requirement of CUDA.
Unfortunately his device driver code is not available and has to be re-implemented.

17

3. Previous Work

18

4. Implementation of an Installable Client
Driver for Altera OpenCL

As of SDK version 13.1 (which is used in this thesis) all Altera OpenCL functions are im-
plemented in the dynamic library libalteracl.so. Using this library directly inhibits
the use of a second OpenCL implementation from a different vendor in the same applica-
tion. Trying to link both libraries during compilation will fail due to conflicting multiple
symbol definitions.

The cl khr icd OpenCL extension [20] defines the Installable Client Driver (ICD) and
the ICD Loader libraries that act as a proxy between the user program and the actual im-
plementations. With this extension, the vendor implementations are loaded at run time,
avoiding the issue of symbol conflicts. The application is then linked to the ICD Loader
instead of the individual vendor libraries. Figure 4.1 illustrates the relationships between
the libraries. Currently, Altera does not provide an ICD for its SDK. A minimal ICD was
implemented during this thesis and it is documented in this section.

Figure 4.1.: Relationship between the dynamic libraries

To enumerate vendor ICDs on Linux, the ICD Loader scans the files located in the path
/etc/OpenCL/vendors [20]. These files have to contain a single line with the absolute
or relative path to the actual vendor ICD dynamic library. The loader will then attempt to
load this library using dlopen.

The extension re-defines all OpenCL functions and objects. When the user application
calls an OpenCL function it actually calls one of those re-defined functions from the ICD
Loader. The first function, of an OpenCL application is usually clGetPlatformIDs.

19

4. Implementation of an Installable Client Driver for Altera OpenCL

When it is called, the ICD Loader iterates over all known vendor ICDs and in turn calls
their clGetPlatformIDs. The vendor ICD then returns a pointer to a struct which has
to contain the new KHRicdVendorDispatch struct, as in listing 4.1.

Listing 4.1: Definition of struct cl platform id in the Altera ICD

struct _cl_platform_id
{

KHRicdVendorDispatch *dispatch;
cl_platform_id actual_altera_platform_id;

};

All other OpenCL objects have to contain the KHRicdVendorDispatch struct too. The
KHRicdVendorDispatch contains a list of pointers to all remaining vendor ICD wrap-
per functions. The vendor ICD has to fill in this struct. When the user application calls
another OpenCL function, the ICD Loader calls the appropriate function pointer from the
dispatch struct. This way the correct vendor is automatically inferred. For clarification,
the implementation of the clFinish function inside the ICD Loader is shown in listing
4.2.

Listing 4.2: Implementation of clFinish in the ICD Loader [21]

clFinish(cl_command_queue command_queue)
{

return command_queue->dispatch->clFinish(command_queue);
}

The wrapper function in the vendor ICD has then to call the actual OpenCL function and
pass it the real object, i.e. without the dispatch struct. Unfortunately this cannot be au-
tomated because of functions which accept more than one OpenCL object or those that
create new objects. Every OpenCL function has to be re-implemented again manually.
The listing 4.3 shows how this can be realized, using again the example of clFinish.
Here, private dispatch is another internally used dispatch which stores the real Al-
tera function pointers. The diagram in figure 4.2 illustrates the complete procedure.

Listing 4.3: Implementation of the wrapper function icd clFinish in the Altera ICD

cl_int CL_API_CALL
_icd_clFinish(cl_command_queue command_queue)
{

cl_command_queue
real_queue = ((struct _cl_command_queue*)command_queue)->queue;
return(private_dispatch.clFinish(real_queue));

}

The Altera ICD cannot be linked to the main library libalteracl.so which defines
the actual OpenCL functions during compile time. This would again result in symbol
conflicts, this time with the ICD Loader. Instead, it must be loaded with dlopen during
the run time. libalteracl.so depends on libelf.so, libalterammdpcie.so and
libalterahalmmd.so, which means these libraries have to be loaded beforehand with

20

Figure 4.2.: Call graph for the function clFinish. The application calls the ICD loader
function, which forwards the call to the wrapper function in the vendor ICD
stored in the dispatch struct. The wrapper function then calls the real OpenCL
function. The dashed boxes illustrate the contents of the arguments.

the RTLD GLOBAL flag. This flag allows subsequently loaded libraries to use the symbols
defined in the library to be loaded [23]. While the libelf.so can be loaded without
problems, the other two libraries in turn depend on libalteracl.so itself, creating a
circular dependency. A solution to this problem is to open libalteracl.so first with
the RTLD LAZY flag and afterwards the other libraries with the opposite flag RTLD NOW.
With RTLD LAZY, a lazy binding is performed, that means the symbols are only resolved
when needed, whereas RTLD NOW resolves all symbols before dlopen returns [23].

Moreover to avoid conflicts with already loaded OpenCL symbols (defined by the ICD
loader itself), the flag RTLD DEEPBIND is required. This flag specifies that the library to
be loaded should use its own symbols in preference to already loaded global symbols
with the same name [23]. The correct sequence of dlopen operations and flags is shown
in listing 4.4.

Listing 4.4: Dynamically loading Altera OpenCL libraries

dlopen("libelf.so", RTLD_NOW | RTLD_GLOBAL | RTLD_DEEPBIND);
dlopen("libalteracl.so", RTLD_LAZY | RTLD_GLOBAL | RTLD_DEEPBIND);
dlopen("libalterammdpcie.so", RTLD_NOW | RTLD_GLOBAL | RTLD_DEEPBIND);
dlopen("libalterahalmmd.so", RTLD_NOW | RTLD_GLOBAL | RTLD_DEEPBIND);

Loading the actual functions is accomplished with the dlsym function as in listing 4.5.
They will be stored in a second dispatch struct, only for use within the ICD.

Listing 4.5: Dynamically loading the original clFinish and filling in the dispatch

private_dispatch.clFinish
= (KHRpfn_clFinish)dlsym(libalteracl_handle, "clFinish");

errmsg=dlerror();
if(errmsg!=NULL){return(-1);}
public_dispatch.clFinish=&_icd_clFinish;

21

4. Implementation of an Installable Client Driver for Altera OpenCL

The OpenCL specification defines more than 100 functions, most of them are very rarely
used. Therefore only the following most common OpenCL functions have been wrapped
for this thesis:

clGetPlatformIDs clGetPlatformInfo clGetDeviceIDs
clGetDeviceInfo clCreateCommandQueue clCreateContext
clCreateBuffer clCreateProgramWithBinary clBuildProgram
clCreateKernel clEnqueueNDRangeKernel clSetKernelArg
clEnqueueReadBuffer clEnqueueWriteBuffer clFinish

Trying to call a function not in this list will result in a segmentation fault. Moreover, none
of the clEnqueue* functions listed above support OpenCL events. Events can be some-
times useful for asynchronous operations, i.e. those that do not block. To support events,
a complex memory management system that tracks the lifetime of the event objects is
required.

Though incomplete, this set of functions allows a fully functional OpenCL application
to be built and used together with implementations from other vendors within the same
process. Additional functions can be added, as described above.

22

5. Implementation of Direct GPU-FPGA
Communication

In this thesis, a similar approach as described by Susanto [31] will be used for the direct
GPU-FPGA communication. The transfer will be handled mainly by the DMA controller
on the FPGA. The CPU will only coordinate the transfer. On the GPU side the NVIDIA
GPUDirect RDMA mechanism is required.

5.1. Altera PCIe Driver and IP Overview

Altera’s OpenCL implementation consists mainly of a dynamic Linux library, a PCIe
driver and a Board Support Package (BSP) containing the Intellectual Property (IP) cores
to be deployed on the FPGA [3]. The dynamic library is proprietary but the BSP and the
driver are open source and can be analyzed and modified.

The components of the Altera OpenCL IP stack are interconnected by the Avalon Memory-
Mapped (Avalon-MM) interconnect [3, 7]. Avalon-MM is a multi-master/multi-slave bus.
An address range is assigned to each slave connected to the bus. The master can then
initiate transactions to specific slaves by writing to or reading from the corresponding
slave addresses, similarly to memory-mapped I/O on the Linux operating system.

The most important cores for this thesis are the PCIe core, the DMA controller core and
the DDR memory interface. Figure 5.1 provides an overview of the connections between
them. When the driver writes to the FPGA’s PCIe BAR with some additional offset, the
PCIe core forwards the data from its RX port to the Avalon interconnect. Depending on
the offset the message is routed to one of the slaves. In this specific example, to commu-
nicate with the DMA controller, the driver has to write to the address 0xc800 within the
FPGA BAR.

The DMA controller is a Modular Scatter-Gather DMA (mSGDMA) IP core [5]. It is sub-
divided into a read master, write master and a dispatcher which coordinates the other
two components. A transfer is initiated by writing a 32-byte descriptor to the dispatcher.
The descriptor contains all the required information about the desired transfer, including
the source and destination memory addresses and the number of bytes to be transmitted.
Then, the dispatcher pushes the descriptors into a FIFO and processes them sequentially.

The PCIe core contains an Address Translation Table (ATT) which stores physical PCIe ad-
dresses [6]. With an ATT, the DMA controller does not need to differentiate between
physical addresses or addresses pointing to on-board DDR memory. Instead, it can sim-
ply write the address it received in the descriptor from the device driver to the Avalon

23

5. Implementation of Direct GPU-FPGA Communication

Figure 5.1.: Simplified configuration of the Altera OpenCL IP stack on the FPGA. Note
that the solid arrows represent master/slave relationships and not necessarily
the data flow direction.

master port. The Avalon interconnect will then route the signals to either the PCIe core
or the FPGA memory. The PCIe core would then select the required physical address
from the ATT. The differentiation has to made by the device driver. To specify a physical
address it has first to store it in the ATT by writing to offset 0x1000 (plus the ATT row
number). Then it writes to the offset 0xc800 (the DMA Controller) the address of the
PCIe TX port as seen from the DMA. i.e. an offset of 0x200000000 plus the ATT row
number. Listing 5.1 shows this calculation in a more portable manner with the macros
already defined in the Altera PCIe driver code.

Listing 5.1: Calculation of the PCIe address as seen from the DMA controller

unsigned long
pcietxs_addr = (size_t) ACL_PCIE_TX_PORT

| (att_row * ACL_PCIE_DMA_MAX_ATT_PAGE_SIZE)
| (physical_addr & (ACL_PCIE_DMA_MAX_ATT_PAGE_SIZE - 1));

The direction of the transfer, i.e. whether data is to be read from or written into the FPGA
memory, is specified implicitly by the read address and write address fields of the
descriptor similar to listing 5.2.

Listing 5.2: Selection of the transfer direction

if(direction == READING)
{

//reading from FPGA memory to PCIe bus
dmadescriptor.read_address = fpga_address;
dmadescriptor.write_address = pcietxs_address;

24

5.2. GPUDirect RDMA Overview

}
else
{

//writing to FPGA memory from PCIe bus
dmadescriptor.read_address = pcietxs_address;
dmadescriptor.write_address = fpga_address;

}

5.2. GPUDirect RDMA Overview

NVIDIA GPUDirect [12] is a family of technologies for fast data transfers in high per-
formance computing systems with multiple devices. Its key features include an acceler-
ated pipeline for video capture devices, storage devices, peer to peer memory access be-
tween GPUs and RDMA (Remote Direct Memory Access). RDMA, as the name implies,
is mainly intended to transfer data over network to or from other nodes in a compute
cluster. However it can also be used to transfer data to other third party PCIe devices
within the same root complex. One limitation is that it can only be used for NVIDIA
Quadro and Tesla graphics cards. Furthermore, systems which employ an IOMMU are
not compatible.

The main idea behind GPUDirect RDMA is that the GPU can expose a region of its global
memory into a PCIe BAR [14]. This can then be used by third party devices to access the
memory region directly without the round-trip via the CPU.

Since version 4.0, the CUDA platform, on which NVIDIA’s OpenCL implementation
is based, uses a memory address management system called Unified Virtual Addressing
(UVA) [15, 14]. With UVA the GPU memory pages are mapped into the system’s virtual
address space providing a single address space instead of multiple address spaces, one for
the CPU and one for each GPU. For the CUDA platform this simplifies the programming
interface, but on the other hand requires pinning for DMA transfers.

The NVIDIA device driver provides the function nvidia p2p get pages to pin a GPU
memory region [14]. This function must be called from within the kernel space, i.e. from
the third party device driver. It accepts a virtual GPU address and, if the pinning is suc-
cessful, returns a page table struct containing the physical addresses to each GPU memory
page. The virtual GPU address must be aligned to a 64KB boundary. The listing 5.3 pro-
vides an example of this process. nvidia p2p put pages is the corresponding function
to unpin the pages. Additionally, a callback function has to be registered which has to
call the function nvidia p2p free page table to release resources. This callback is
invoked by the NVIDIA driver when it has to revoke the mapping for some reason. This
is mostly the case when the associated user process terminates.

Listing 5.3: Pinning GPU memory [14]

// do proper alignment, as required by NVIDIA kernel driver
u64 virt_start = ((u64)address) & GPU_BOUND_MASK;
u64 pin_size = ((u64)address) + size - virt_start;

25

5. Implementation of Direct GPU-FPGA Communication

struct nvidia_p2p_page_table page_table;
nvidia_p2p_get_pages(0, 0, virt_start, pin_size,

&page_table, free_callback, &page_table);

For Kepler class GPUs the pages typically have a size of 64KB. The PCIe BAR is up to
256MB large of which 32MB are reserved for internal use. This means that, in theory, up
to 224MB can be pinned at a time [14]. However, during development, this number has
been found to be slightly smaller, around 200MB.

5.3. Extension of the Altera PCIe Driver

The DMA component of the PCIe device driver provided by Altera expects a virtual ad-
dress that maps to the CPU memory. It tries to pin the buffer with the get user pages
function to get a list of the pages and their physical addresses. Simply passing a GPU
address to the module will thus result in an error. Neither will it work by just replac-
ing get user pages with nvidia p2p get pages, the corresponding GPU memory
pinning function, due to assumptions related to the address space (for example about the
page size) and differences in the pinning work flow. A new RDMA component, managing
only the direct GPU-FPGA communication, will thus extend the driver. Transfers to and
from CPU memory will be handled by the original code which shall remain untouched as
far as possible.

New driver commands ACLPCI CMD RDMA and ACLPCI CMD RDMA UPDATE are added to
differentiate between the original DMA and the new RDMA transfers. They are issued via
file I/O to the /dev/acl0 device file, the same way as the original commands. Section
5.5 describes in detail how to use the new commands from user space.

5.3.1. Basic Version

To avoid unnecessary complications during development only a very basic RDMA mech-
anism has been implemented first. Its limitations include:

• Only one active transfer at a time

• Only one active descriptor at a time. The next descriptor is sent only after the pre-
vious one is finished.

• The size of descriptors fixed to 4KB. This is equivalent to the maximum size of an
ATT entry.

• Overall transfer size limited to 192MB. As noted in section 5.2 this is roughly the
maximum that can be pinned at a time.

Section 5.3.2 provides an overview over some improvements to this version.

The new RDMA component consists of five main functions. Figure 5.2 illustrates their
relationship. Their semantics are as follows:

26

5.3. Extension of the Altera PCIe Driver

Figure 5.2.: The main functions of the new RDMA component

. rdma start: The entry point for all RDMA transfers, invoked when the user space
program issues the new ACLPCI CMD RDMA driver command. If there is no other active
RDMA transfer, it tries to pin the supplied virtual GPU address as in listing 5.3. If
successful, the actual transfer is started by calling the rdma send next descriptor
function.

. rdma send next descriptor: This function performs the actual communication with
the DMA controller on the FPGA. It has to write the physical GPU address to an ATT
entry of the PCI core and send a descriptor with the addresses and the size of the trans-
fer. After this function, the driver terminates the execution and returns the control to
the user space.

. rdma update: This function is invoked from user space with the new driver command
ACLPCI CMD RDMA UPDATE to continue with the transfer. If the previous descriptor
has finished, it calls rdma send next descriptor to send the next one. It returns
1 if there is still data remaining to be transferred and 0 when the transfer finished to
inform the user program.

. rdma service interrupt: This is the new DMA interrupt handler for the device
driver. It replaces the previous interrupt handler aclpci dma service interrupt
from the original DMA code. It is called whenever the DMA controller signals an in-
terrupt, i.e. when a descriptor is finished. Its first task is to acknowledge the interrupt
by clearing the IRQ bit as soon as possible, to avoid multiple interrupts in a row. An
interrupt does not differentiate whether a descriptor is from the RDMA or the origi-
nal DMA component. Therefore the new handler has to relay to the original one if no
RDMA transfer is active.

Listing 5.4: Acknowledging the interrupt and relaying to the original handler if needed

// Clear the IRQ bit
dma_write32 (aclpci, DMA_CSR_STATUS, ACL_PCIE_GET_BIT(DMA_STATUS_IRQ));

27

5. Implementation of Direct GPU-FPGA Communication

//check whether the interrupt is for RDMA or DMA
if(!rdma_active)
{

//this is an interrupt for the original DMA component
return(aclpci_dma_service_interrupt(aclpci));

}

An interrupt handler has to return as fast as possible. Therefore it should not directly
call rdma update to continue with the transfer. Instead, it issues the new SIG INT RDMA
signal to the user process, which in turn drives the transfer with the rdma update
function.

At this point, one of the few interactions to the driver’s original DMA component has to
be made: this component keeps track of the number of completed descriptors to be able
to calculate how much data has been transferred. This value has to be kept updated,
otherwise it will not function correctly. This update procedure is shown in listing 5.5.

Listing 5.5: Updating the number of completed descriptors in the original code

// Read the DMA status register
dma_status = dma_read32 (aclpci, DMA_CSR_STATUS);
// Compute how many descriptors completed since last reset
done_count = ACL_PCIE_READ_BIT_RANGE(dma_status,

DMA_STATUS_COUNT_HI,
DMA_STATUS_COUNT_LO);

//have to update the dma_data struct
//so that the original DMA module does not get confused
aclpci->dma_data.m_old_done_count = done_count;

. rdma reset: Unpins the GPU buffer and removes the rdma active flag again, so
that future hardware interrupts are relayed to the original DMA component.

5.3.2. Optimizations

The version presented above describes only a very basic implementation with the purpose
to prevent errors and to be intuitive to understand. Maximal bandwidth should not be
expected from it. This section presents three main optimizations for higher performance.

Larger Descriptor Sizes

Descriptors of size 4KB, as used above, are convenient because this corresponds to the
maximal size of an ATT page. By increasing the descriptor size, overall less descriptors
are required to complete a transfer. This in turn, reduces the number of interrupts and the
delays caused by the software to react to a hardware interrupt. Larger descriptors can be
constructed by simply incrementing the bytes count register sent to the DMA controller.
After the transfer of the first 4KB of an ATT entry is finished, the consecutive ATT entry

28

5.3. Extension of the Altera PCIe Driver

is used. However the addresses have to be continuous. Up to 128 ATT entries can be
covered by one descriptor [3]. This corresponds to a size of up to 512KB.

Listing 5.6: Setting the size of a descriptor as large as possible

for(i=0; i < ACL_PCIE_DMA_MAX_ATT_PER_DESCRIPTOR; i++)
{

unsigned offset_i = i * ACL_PCIE_DMA_MAX_ATT_PAGE_SIZE;
unsigned page_nr_i = offset_i / GPU_PAGE_SIZE;

//check whether the transfer size has already been reached
if(bytes_sent + dmadesc.bytes >= transfer_size)
{ break; }

//check whether the next gpu page is consecutive to previous one
if(page_table->pages[page_nr + page_nr_i]->physical_address

!= phymem+page_nr_i * GPU_PAGE_SIZE)
{ break; }

set_att_entry(aclpci, phymem + offset_i, next_free_att_row);
dmadesc.bytes += ACL_PCIE_DMA_MAX_ATT_PAGE_SIZE;
next_free_att_row = (next_free_att_row+1)%ACL_PCIE_DMA_MAX_ATT_SIZE;

}

Multiple Descriptors

Additionally to larger descriptors, the DMA controller on the FPGA also accepts multiple
descriptors at once. They are buffered in a FIFO queue and processed one after the other.
As with the optimization above, this can reduce the number of delays from an interrupt
until the next descriptor. The size of the FIFO queue is fixed in the hardware to a maxi-
mum of 128 descriptors [3]. However, the actual number depends even more on the size
of the ATT which is limited to 256 entries or 1MB. Only two 512KB descriptors already
span the whole table. Sending a third one would require to overwrite the ATT entries of
the first descriptor which would result in incorrectly transmitted data.

Instead of calling rdma send next descriptor directly, the functions rdma update
and rdma start will now call the new function rdma send many descriptors.

Listing 5.7: Sending as many descriptors as possible or needed

//maximum of two descriptors because this would override ATT
for(i = 0; i < 2; i++)
{

//check whether all data has been sent already
if(bytes_sent >= transfer_size){ break; }
rdma_send_next_descriptor();

}

Since the descriptors may be of different sizes, two additional values have to be stored
between the transfers: The number of descriptors sent to the FPGA which is incremented

29

5. Implementation of Direct GPU-FPGA Communication

in rdma send next descriptor and the number of completed descriptors, updated in
the interrupt handler. Due to possible race conditions, the number of sent descriptors can-
not be accessed in the asynchronous interrupt handler: an interrupt may arrive while the
driver is still busy sending new descriptors to the DMA controller and thus incrementing
this value. Access synchronization with mutexes or semaphores is not possible because
an interrupt handler is not allowed to wait. The handler will only update the done count
to the value read out from the DMA status register. The rdma update function which is
called via a command from the user space will then compare those two values. If equal,
then the next descriptors can be issued to the DMA controller.

Lazy Unpinning

Lazy Unpinning is an optimization technique that is recommended by NVIDIA in the
GPUDirect RDMA documentation [14]. Pinning GPU memory pages with the function
nvidia p2p get pages is an expensive operation that may take several milliseconds to
complete. It should be performed as rarely as possible. A naive implementation, as the
one described above, that pins a buffer before every transfer and unpins it afterwards will
not perform to full potential.

For a higher degree of performance, the memory region should be kept pinned after the
transfer is finished. For the first transfer to or from a buffer, the driver still has to pin
the memory and the optimization will not affect it. All following transfers however, will
benefit.

To realize this behavior, a look-up table will store the virtual GPU addresses and the
corresponding page tables containing the physical addresses between the transfers. The
size of the look-up table is fixed to 6. Section 5.5 explains why this number was chosen.
When a transfer command is initiated, the requested virtual GPU address has to be looked
up in the table first. Actual pinning is then only required if the table does not contain this
address.

A buffer should be only unpinned when the table is full to make room for a new entry.
The decision which entry to remove is not straightforward. A strategy like least recently
used (LRU) can be beneficial if many buffers (more than 6) have to be accessed in a non-
sequential order. On the other hand, if the access is strictly consecutive it is better to
remove always one specific entry and leave the other 5 pinned. This strategy was selected
also because it is beneficial for very large transfers (>200MB) and easier to implement. In
future, if a higher degree of control is desired, it may be reasonable to leave this decision
to the user application.

When the user space process terminates, the NVIDIA driver revokes the mapping. The
look-up table has to be cleaned up accordingly in the callback function.

The look-up table also indirectly removes the limitation of the maximum transfer size of
192MB. This is explained in section 5.5.

30

5.4. GPUDirect RDMA for OpenCL

5.4. GPUDirect RDMA for OpenCL

The GPUDirect RDMA technology that allows direct PCIe communication between a
NVIDIA GPU and a third-party device is only suppported for the CUDA toolkit and not
for OpenCL [14]. The central function nvidia p2p get pages returns the error code
-EINVAL if it is called with an address from a buffer allocated by OpenCL. This the-
sis proves that it is nevertheless possible to make it work with OpenCL despite the lack
of official support. This section documents the actions that were taken to achieve this.
In subsection 5.4.1, the communication calls to the NVIDIA driver from the CUDA and
OpenCL libraries are analyzed using reverse engineering techniques. Subsection 5.4.2
describes the modifications to the NVIDIA kernel module that are necessary to imitate
CUDA buffer allocation from within OpenCL.

5.4.1. Reverse Engineering the NVIDIA Driver Communication

The CUDA and OpenCL dynamic libraries, as provided by NVIDIA, communicate with
the NVIDIA kernel module via the ioctl system call [28]. The ioctl call takes 3 argu-
ments [24]:

• an open file descriptor (in this case referring to /dev/nvidia0)

• a 32-bit request code of which bits 7 to 0 are the command number.

• a pointer to a parameter stored in the user address space. Its size is encoded in the
bits 29 to 16 of the request code mentioned above.

Inside the module, the function nvidia ioctl(...) is registered as a callback func-
tion for this kind of calls. Besides thread synchronization and several sanity checks the
function itself only performs very simple operations like returning device information
or the driver version. For all other commands it relays the ioctl parameters to the
rm ioctl(...) function which is defined in the proprietary binary driver. The seman-
tics of the ioctl commands are not documented by the vendor.

The GPUDirect RDMA function nvidia p2p get pages is defined in the NVIDIA ker-
nel module and thus has itself no way of knowing whether CUDA or OpenCL is used in
the user program. As a consequence, there must be some differences in the way the two
libraries communicate with the module. Of special interest are the commands for buffer
allocation.

In several experiments, the module has been modified to save all incoming ioctl com-
mands and their parameter data to files on the hard drive to analyze them later. Two
minimalistic applications, one for CUDA and one for OpenCL, that perform as little ini-
tialization as needed and allocate one or more memory buffers provided the stimuli. The
data files were then compared for differences.

Some observations from the resulting data are that both libraries perform internal device
memory management to some degree. Small buffer allocations up to a size of 1MB are
sometimes not relayed to the driver. Additionally, NVIDIA’s OpenCL implementation

31

5. Implementation of Direct GPU-FPGA Communication

Figure 5.3.: Communication between CUDA/OpenCL and the NVIDIA driver

seems to utilize lazy buffer allocation, i.e. no communication to the driver happens until
the buffer is actually used. To circumvent this, at least one byte of data had to be written
to the buffer for the experiments.

The key finding from these experiments is that CUDA sends 3 ioctl messages to the
kernel module to allocate a buffer, OpenCL on the other hand sends only 2. Their request
codes are as follows (command numbers highlighted):

Order CUDA OpenCL
1 0xc0a0464a 0xc0a0464a
2 0xc0384657 0xc0384657
3 0xc020462a -

Libcudest [10] is a project aimed at reverse engineering the CUDA platform. Its docu-
mentation pages provide explanations to some of the command codes. The 0x4a and
0x57 commands are not listed but the 0x2a command, that is missing in OpenCL, is de-
scribed there as a GPU method invocation. The ioctl parameter is 32 (0x20) bytes large
and specifies the GPU method type in the second and third words, an address to the
GPU method parameter in the fifth and sixth words and its size in the seventh and eighth
words. No information about the first word of the parameter is provided there. The anal-
ysis of the data from several experiment trials showed that this word always contains the
value 0xc1d00001 for the first process that is started after the NVIDIA driver is loaded.
It is then incremented for each following process that uses CUDA or OpenCL. Therefore
this word will be called User Identifier in this thesis. The following table provides an ex-
ample of the 0x2a ioctl parameter that is missing in OpenCL:

32

5.4. GPUDirect RDMA for OpenCL

Offset Content Description
0x00 0xc1d00001 User / Process Identifier
0x04 0x5c000007 GPU method type [10]
0x08 0x503c0104
0x0c 0x00000000 unknown / always zero
0x10 0xcbfe9bc0 Address to a GPU method parameter [10]
0x14 0x00007fff (user space)
0x18 0x00000004 Size of the GPU method parameter [10]
0x1c 0x00000000 (4 bytes)

This GPU method (0x5c000007:503c0104) is not documented by Libcudest. The GPU
method parameter in this case is 4 bytes large. Again, after data analysis it has been
observed that, similarly to the User Identifier, this parameter value starts with a fixed
number for the first device buffer allocation within a process and increments for each
of the following buffer allocations. It will be called Buffer Identifier from now on. For
completeness, a GPU method parameter of the first user buffer allocated in CUDA is
shown in this table:

Offset Content Description
0x00 0x5c000029 Buffer Identifier

Both, the User Identifier as well as the Buffer Identifier are also present in the parameters
of the preceding 0x4a and 0x57 ioctl commands (also in OpenCL). The following table
shows a partial example of the 0x57 command parameter. The identifiers are located at
offsets 0x00 and 0x0c.

Offset Content Description
0x00 0xc1d00001 User Identifier
0x04 0x5c000001 unknown
0x08 0x5c000003 unknown
0x0c 0x5c000029 Buffer Identifier
0x10 0x00000000 unknown
0x14 0x00000000 unknown
0x18 0x04000000 Buffer Size
0x1c 0x00000000 (64MB)
... ... unknown

After sending the missing 0x2a ioctl command with the correct identifiers manually,
following to a call to clCreateBuffer in OpenCL, the nvidia p2p get pages will
accept the OpenCL buffer and return its physical address. This allows to emulate CUDA
behavior in OpenCL for GPUDirect RDMA transfers.

5.4.2. Extension of the NVIDIA Kernel Module

Neither the User Identifier nor the Buffer Identifier are accessible to the user application
because they are managed internally by the CUDA and OpenCL libraries. A possible way

33

5. Implementation of Direct GPU-FPGA Communication

to retrieve them is to intercept the 0x4a or 0x57 ioctl messages. Again, modification
of the NVIDIA kernel module is required.

The new module will simply extract the identifiers from the 0x57 messages and store
them in a static variable. A new ioctl command will then return the intercepted identi-
fiers to the user application. The the new request code should be chosen carefully, so that
it does not collide with an existing NVIDIA ioctl command. Unfortunately, a complete
list of these codes is not available. Out of observation and from the Libcudest project
[10] the assumption was made that all original NVIDIA commands use read and write
parameters as encoded in the bits 31 and 30 of the 32-bit request code. In this case, the
parameter can be write-only, thus the read bit has been chosen to be 0. At the same time,
this should guarantee the new code to be collision-free. Since two 32-bit values have to be
retrieved, the parameter size (bits 29 to 16) should be 0x08. The module type code (bits
15 to 8) used by NVIDIA is 0x46 and was adopted. Finally, the command number (bits 7
to 0) was chosen to be 0x00 resulting in the complete request code 0x40084600.

The changes applied to the module can be summarized as in listing 5.8.

Listing 5.8: Changes to nvidia ioctl(..) in the NVIDIA kernel module

if(arg_cmd == 0x57)
{

last_buffer_id = *(unsigned*)(arg_copy + 12);
last_user_id = *(unsigned*)(arg_copy + 0);

}
if(cmd == 0x40084600)
{

((unsigned*)arg_copy)[0] = last_buffer_id;
((unsigned*)arg_copy)[1] = last_user_id;
goto done;

}

It should be noted that these modifications are not thread-safe, i.e. allocating multiple
buffers in different threads or processes at the same time will cause race conditions. How-
ever, since buffer allocation is usually performed only once during the initialization, this
issue should not be of large concern. Further development is needed if thread safety is
desired.

5.5. User Space Invocation

A user space application cannot simply use the standard OpenCL data transfer functions
to make use of the new capabilities of the modified driver. Peer to peer transfer func-
tions for example, are only provided by vendor specific extensions. The small library
cl rdma.c will thus provide an interface to the new RDMA mechanism. An example
minimal application is shown in appendix A. This section is mainly concerned with the
inner workings of this library.

34

5.5. User Space Invocation

The initialization procedure involves opening both of the device driver files located in the
path /dev/*. All of the communication to the drivers will happen will happen through
the read, write and ioctl system calls on the resulting file descriptors. An example of
how to issue a command to the Altera driver, in this case the retrieval of the driver version,
is shown in the listing 5.9. The modified driver appends the string "with rdma" to the
version which should be checked to ensure that the correct driver is loaded. Moreover,
a signal handler has to be installed to catch the signals that are issued when a RDMA
descriptor is finished.

Listing 5.9: Initialization procedure

//open the device drivers
int nvidia0fd = open("/dev/nvidia0", O_RDWR);
int acl0fd = open("/dev/acl0", O_RDWR);

//check whether the modified altera driver is loaded
char cbuf[1024] = { 0 };
struct acl_cmd cmd = { ACLPCI_CMD_BAR, ACLPCI_CMD_GET_DRIVER_VERSION,

NULL, &cbuf, sizeof(cbuf) };
read(acl0fd, &cmd, sizeof(cbuf));
if(strstr(cbuf, "with_rdma") == NULL){ return(1); }

//setup signal handler for interrupts from the driver
struct sigaction sa = { 0 };
sa.sa_sigaction = signal_handler;
sigemptyset(&sa.sa_mask);
sigaction(SIG_INT_RDMA, &sa, NULL);

The signal handler (listing 5.10) is very simple. Its only task is to wake up the main thread
which is waiting for a descriptor to complete. This is done through a global semaphore.

Listing 5.10: Signal handler function

static void signal_handler(int signum, siginfo_t* siginfo, void* uctx)
{

sem_post(&semaphore);
}

An address from each buffer is needed for the RDMA transfers. Unfortunately, the OpenCL
buffer allocation function clCreateBuffer returns an object of the type cl mem and not
directly the address to the memory on the device. In the header file <CL/cl.h>, the type
cl mem is defined as

typedef struct _cl_mem* cl_mem;

with struct cl mem not defined, which means that the struct is defined externally in
the proprietary NVIDIA or Altera OpenCL dynamic libraries and its layout is unknown.
Specifically, the buffer address cannot be simply extracted from the pointer. A solution is
to launch the kernel that is shown in listing 5.11 with the desired buffer as parameter a.

35

5. Implementation of Direct GPU-FPGA Communication

Listing 5.11: OpenCL C kernel to retrieve the address from a cl mem object

__kernel void get_address(__global unsigned long* a)
{

a[0] = (unsigned long) a;
}

The kernel writes the address of the buffer into the buffer itself. This value can then be
retrieved by reading the first 8 bytes from the buffer with the clEnqueueReadBuffer
function. This procedure has to be performed only once for each buffer during the initial-
ization of a program.

As noted in section 5.4, normal NVIDIA OpenCL buffers cannot be simply pinned by the
nvidia p2p get pages function. The 0x2a ioctl command has to be sent manually
with the Buffer and User Identifiers retrieved from the modified NVIDIA module. More-
over, the size of the buffer should be at least 1MB and one byte has to be written into it to
ensure it is actually allocated. The complete procedure is shown in listing 5.12

Listing 5.12: Creating a pinnable buffer in OpenCL

//a buffer will not always be allocated if its smaller than 1MB
if(size < 1024 * 1024){ size = 1024 * 1024; }
cl_mem buffer = clCreateBuffer(context,CL_MEM_READ_WRITE,size,NULL,NULL);

//make sure the buffer actually gets allocated by writing a byte into it
char dummydata = 0xff;
clEnqueueWriteBuffer(queue,buffer,CL_TRUE,0,1,&dummydata,0,NULL,NULL);

//get the buffer and user identifiers from the modified NVIDIA module
unsigned ioctl_param[2];
ioctl(fd, 0x40084600, ioctl_param);

//send the missing 0x2a ioctl to emulate CUDA behavior
unsigned gpu_method_param = ioctl_param[0];
unsigned gpu_method[8] = { ioctl_param[1],

0x5c000007u,
0x503c0104u,
0x00000000u,
0x00000000u,
0x00000000u,
0x00000004u,
0x00000000u };

((unsigned long*) gpu_method)[2] = (unsigned long) &gpu_method_param;
ioctl(fd, 0xc020462a, gpu_method);

The actual transfer is started by sending the new ACLPCI CMD RDMA command to the
Altera driver including the FPGA and GPU addresses. This will invoke the function
rdma start inside the driver. As mentioned in section 5.2, the GPU is not able to pin
more than ca. 200MB at a time. Therefore, for large buffers, the transfer has to be parti-
tioned into smaller blocks which are processed sequentially. A rather small block size of
32MB was chosen. This allows the look-up table (from the Lazy Unpinning optimization

36

5.5. User Space Invocation

in section 5.3.2) to be used in a more efficient way: when frequent unpinning is required,
only these 32 MB will be unpinned. With a maximum size of 6, the table can thus hold up
to 192MB pinned GPU blocks, which is almost the maximum amount that can be pinned
at a time. The block size of 32MB is still large enough to have no measurable impact on
the performance.

Listing 5.13: RDMA transfer initation

unsigned blocksize=1024*1024*32; //32MB
for(int i = 0; i < size; i += blocksize)
{

if(i+blocksize> size){blocksize=size-i;}
struct acl_cmd cmd={ACLPCI_DMA_BAR, ACLPCI_CMD_RDMA,

(void*)(fpga_address+i), (void*)(gpu_address+i),
blocksize, 0};

read(acl0fd, &cmd, blocksize);
clrdma_wait_for_transfer(timeout_seconds);

}

As noted in section 2.3, kernel modules are always completely event-driven, i.e. do not
have a main loop. As a consequence, the RDMA component must be triggered from
outside to continue with the transfer after a descriptor is finished. This is done by sending
the new driver command ACLPCI CMD RDMA UPDATE to the driver which will invoke
the driver function rdma update. To avoid busy waiting, a wait on a semaphore is used,
which gets interrupted by the signal handler from listing 5.10. In case of an error a timeout
can be specified to avoid a deadlock.

Listing 5.14: Driving the RDMA transfer

struct timespec ts;
struct timeval tp;
gettimeofday(&tp, NULL);
// Convert from timeval to timespec
ts.tv_sec = tp.tv_sec;
ts.tv_nsec = tp.tv_usec * 1000;
ts.tv_sec += timeout_seconds;

while(rdma_result != 0)
{

//request transfer update from driver
struct acl_cmd cmd={ACLPCI_DMA_BAR, ACLPCI_CMD_RDMA_UPDATE,

NULL, NULL, 0};
rdma_result=read(acl0fd, &cmd, sizeof(cmd));
if(rdma_result == 0){ break; } //transfer done

//wait for interrupt from signal handler
while(1)
{

int rc=sem_timedwait(&semaphore, &ts);
if(rc && errno == EINTR){ continue; } //spurious wakeup
else{ break; } //actual interrupt or timeout } }

37

5. Implementation of Direct GPU-FPGA Communication

38

6. Implementation of Concurrent Indirect
GPU-FPGA Communication

While direct device to device communication is in theory always the fastest possible
method, it is more cumbersome to use, requires unofficial modified drivers and is only
available for NVIDIA Quadro and Tesla graphics cards. The indirect method that in-
volves a round-trip via the CPU on the other hand can be simply implemented in stan-
dard OpenCL, also with the more popular GeForce cards. This section describes a naive
version and an optimization that can be applied for large transfers

The simplest possible procedure of an indirect transfer can be summarized as follows:

1. Read data from the first device into a CPU buffer

2. Wait until the transfer is done

3. Send data from the CPU buffer to the second device

In OpenCL this can easily be accomplished in only two lines of code (error checking omit-
ted):

Listing 6.1: Sequential indirect device to device transfer in OpenCL

clEnqueueReadBuffer (queue_device1, buffer_device1, CL_TRUE,
0, size, cpu_buffer, 0, NULL, NULL);

clEnqueueWriteBuffer(queue_device2, buffer_device2, CL_TRUE,
0, size, cpu_buffer, 0, NULL, NULL);

However, this is highly inefficient because at any time one of the two devices is not doing
anything.

Both, the GPU as well as the FPGA have one DMA controller. Both can operate indepen-
dently of each other. By splitting up a large transfer into multiple small transfers, one
DMA controller can read from a portion of the temporary CPU buffer while the other one
is simultaneously writing to the next portion. This results in an overall faster transfer, as
illustrated in figure 6.1.

An important parameter is the size and number of the smaller transfers. If their size is
too large, hardly any benefit from the concurrency is gained. With a lot of transfers on
the other hand, too much time is wasted for synchronization and in the worst case may
be even slower than the sequential transfer strategy. Different parameters were evaluated
and the results are presented in section 7.3.

During the implementation of this transfer strategy, several problems appeared that are
documented in the following paragraphs:

39

6. Implementation of Concurrent Indirect GPU-FPGA Communication

Figure 6.1.: Comparison of sequential (top) and concurrent (bottom) indirect transfer
strategies. The two large transfers are splitted into 10 smaller transfers, 8
of them can be performed simultaneously. The gray vertical lines represent
synchronization barriers.

The first attempt was to utilize the asynchronous memory transfer capabilities of OpenCL.
A function call that initiates an asynchronous transfer does not wait until the transfer is
done and returns immediately. This can be used to perform other operations in the mean-
time. In OpenCL, the blocking write argument of the clEnqueueWriteBuffer can
be set to CL FALSE to start an asynchronous write operation. The complete but simplified
code is presented in listing 6.2 (error checking omitted).

Listing 6.2: Asynchronous indirect device to device transfer

unsigned bytes_done = 0;
while(bytes_done < size)
{

if(blocksize > size - bytes_done){blocksize = size - bytes_done;}

//synchronous read
clEnqueueReadBuffer (queue_device1, buffer_device1, CL_TRUE,

bytes_done, blocksize, cpu_buffer+bytes_done,
0, NULL, NULL);

//asynchronous write
clEnqueueWriteBuffer(queue_device2, buffer_device2, CL_FALSE,

bytes_done, blocksize, cpu_buffer+bytes_done,
0, NULL, NULL);

bytes_done += blocksize;
}
//wait for the asynchronous write transfers to finish
clFinish(queue_device2);

40

The first observation from the execution of this code was, that NVIDIA’s implementation
of the clEnqueueWriteBuffer function does not return immediately despite passing
CL FALSE as the blocking write argument. Instead it blocks until the write is com-
pleted, as if it was a synchronous transfer. The solution to this issue can be found in the
NVIDIA OpenCL Best Practices Guide [27]. A pinned CPU memory buffer is required as the
source for asynchronous writes. It can be created as shown in listing 6.3 and simply used
in the previous code example.

Listing 6.3: Creation of a pinned CPU buffer in OpenCL

cl_mem pinned_buffer =
clCreateBuffer(gpu_context,

CL_MEM_READ_ONLY | CL_MEM_ALLOC_HOST_PTR,
size, NULL, NULL);

unsigned char* cpu_buffer =
(unsigned char*) clEnqueueMapBuffer(gpu_queue, pinned_buffer, CL_TRUE,

CL_MAP_WRITE, 0, size, 0,
NULL, NULL, NULL);

The larger issue stems from the Altera side. Though its asynchronous transfer initiation
call does not block (as expected), the clFinish function, required for the final synchro-
nization, blocks for a surprisingly long time. In fact, this time is roughly equivalent to
the time that is needed for a complete synchronous transfer. This indicates that no data
is actually transferred, until this function is called. This suspicion is substantiated when
taking into account the architecture of the Altera PCIe driver: Its DMA component does
not notify the user space process when a transfer (or a portion of it) is completed. Instead,
it relies on polling from the user space to drive the transfer. In all likelihood this polling is
performed by clFinish.

In an attempt to circumvent this problem, the code has been modified to start a second
thread which calls the clFinish function while the main thread continues to issue the
asynchronous transfers as before. Though at first glance, this seemed to work, a new
unexpected behavior appeared: Approximately 2% of the time, clFinish did not ter-
minate at all (or resulted in a segmentation fault after some time) while CPU usage was
constantly at 100% workload. This behavior is of course not acceptable in a real appli-
cation. The reasons for this are unknown. One can only speculate that Altera’s OpenCL
implementation is maybe not thread-safe.

The final solution that proved to work, was to use only synchronous transfers, but in
two threads. While one thread is only concerned with reading from device 1, the second
thread waits until a read transfer is finished and then performs a blocking write to device
2. The simplified code for both threads is shown in listings 6.4 and 6.5.

41

6. Implementation of Concurrent Indirect GPU-FPGA Communication

Listing 6.4: First thread for concurrent device to device transfer

unsigned bytes_read = 0;
pthread_t write_thread;
pthread_create(&write_thread, NULL,

concurrent_write_thread, (void*) &bytes_read);
while(bytes_read < size)
{

clEnqueueReadBuffer(queue_device1, buffer_device1, CL_TRUE,
bytes_read, blocksize, cpu_buffer+bytes_read,
0, NULL, NULL);

bytes_read += blocksize;
}
pthread_join(write_thread, NULL);

Listing 6.5: Second thread for concurrent device to device transfer

unsigned bytes_sent = 0;
while(bytes_sent < size)
{

//busy waiting until a read transfer is completed
while(bytes_sent >= bytes_read) { sched_yield(); }

clEnqueueWriteBuffer(queue_device2, buffer_device2, CL_TRUE,
bytes_sent, blocksize, cpu_buffer+bytes_sent,
0, NULL, NULL);

bytes_sent += blocksize;
}

Note that no synchronization with mutexes is required to access the shared variable
bytes read because this is a single producer single consumer case. However, a condi-
tion variable may be useful to eliminate the busy waiting loop. Additionally for stability
reasons, an abort flag is shared between the threads, not shown in these code snippets.

42

7. Evaluation

The three methods (direct, concurrent indirect and sequential indirect) have been evalu-
ated for bandwidth. This section presents the results of these evaluations. All tests were
performed 5 times and the results averaged. In each trial, the memory buffer on the first
device was filled with random data. After the benchmarked transfer from device 1 to de-
vice 2, the data was read out from the second device again and compared to the original
data to make sure it is correct.

The largest issue that appeared already during the development of the driver is that the
direct transfer in the direction from the GPU to the FPGA does not work. Trying this
direction, will make the FPGA board unresponsive or may even result in a complete freeze
of the operating system. This makes the issue hard to debug, because each time a system
reboot is required. Despite extensive efforts, including an analysis of the OpenCL IP
system on the FPGA and contacting Altera, this issue could not be fixed during this thesis.

7.1. Hardware Configuration

A NVIDIA Quadro GPU and an Altera Stratix V FPGA were used for the development
and evaluation during this thesis. The relevant features for both devices are shown in the
following table:

FPGA [26] GPU [18]
Model Nallatech 385-D5 Hewlett-Packard Quadro K600
Architecture Altera Stratix V D5 NVIDIA Kepler GK 107
Original driver version 13.1 340.58
PCIe Generation 3.0 2.0
Number of PCIe lanes 8x 16x
Global memory size 8GB 1GB
Memory type DDR3 GDDR3
Measured bandwidth to CPU 750 MB/s 1930 MB/s
Measured bandwidth from CPU 550 MB/s 1950 MB/s

7.2. Effects of RDMA Optimizations

To find out to which extent the optimizations from section 5.3.2 contribute to the final
performance, each of them has been evaluated. The results are shown in figure 7.1.

43

7. Evaluation

The first version, that was developed mainly as a prototype performs very poorly, as ex-
pected. A maximum bandwidth of only 170 MB/s has been measured, which is even
slower than the sequential indirect transfer method. Its main bottleneck is the response
latency from a PCIe interrupt until the next descriptor is sent, as indicated by the mea-
surements from the larger descriptors optimization. This optimization had the largest
impact, raising the bandwidth to ca. 580 MB/s for large transfers with 512KB descriptor
sizes.

The multiple descriptors optimization raises the maximum measured bandwidth to ca.
610 MB/s. The overall improvement is rather small because of the limitation of being
able to process only 2 descriptors at a time which in turn is due to the small ATT.

Lazy unpinning contributes a roughly constant performance gain, independent of the
transfer size. This is especially important for the smaller transfers. Note that the data
for this version does not include the first transfer, which performs the actual pinning and
does not benefit from this optimization. Only the subsequent transfers are considered.
This is nevertheless representable, since real applications usually require many transfers.

Figure 7.1.: Comparison of the optimizations described in section 5.3.2. Each optimiza-
tion is added to the previous version (i.e. the Lazy Unpinning benchmark
also includes the Multiple Descriptors and 512KB Descriptors optimizations).
The Lazy Unpinning benchmark does not include the first transfer, which per-
forms the actual memory pinning.

44

7.3. Parameter Choice for Concurrent Indirect Transfer

7.3. Parameter Choice for Concurrent Indirect Transfer

As already mentioned in section 6, the choice of the block size parameter is important for
the concurrent indirect transfer method. Different values have been evaluated. Figure 7.2
presents the results.

The preliminary idea that too small and too large block sizes are detrimental can be con-
firmed. However, the extent partly depends on the transfer size and direction. For the
direction from the GPU to the FPGA, a block size of one fourth of the transfer size seems
to be an overall good choice. The opposite direction is not as clear. Large transfers seem
to benefit from smaller block sizes of ca. one eighth of the overall size, whereas for small
transfers the synchronization costs are rather large and a blocks of one half of the overall
size should be chosen.

7.4. Method Comparison

Figure 7.3 presents a comparison of the sequential indirect, concurrent indirect and the
direct transfer methods. For contrast, the CPU-FPGA bandwidth, which can be regarded
as an upper limit for the GPU-FPGA bandwidth, is also shown. Again, the first transfer
which includes the expensive pinning operation is not included in the graphs.

Different block size values were used for the concurrent indirect method: Transfers with
sizes until including 1MB used a value of one half, from 2MB until 8MB a value of one
fourth and from 16MB on a value of one eighth of the overall size.

As expected, the direct transfer method is indeed the fastest of the three methods, peaking
at 740MB/s. For large transfers the concurrent indirect approach performs almost as well
with a speed of up to 730MB/s. This results in a speed-up of ca 30% and 28% compared
with the indirect transfers. For the direction from the GPU to the FPGA, for which the
direct transfer could not be enabled, this is even the best solution, with a bandwidth of ca
525MB/s and a speed-up of ca 39%.

The bandwidth of the direct method deteriorates after the 192MB transfer size mark. This
is due to the limitation of the graphics card not being able to pin more than ca. 200MB
at a time. For larger transfers, a memory region has to be unpinned first which costs a
significant amount of time.

The 512MB transfer for the concurrent indirect method failed to succeed. Presumably, the
pinned CPU memory buffer (mentioned in section 6) uses up space not only on the CPU
but also on the GPU. As a consequence this exceeds the memory limit of the Quadro K600
of 1GB.

45

7. Evaluation

7.5. Comparison with Previous Work

The following table compares the relevant features of the approaches from previous re-
search, presented in section 3 and the two approaches from this thesis, direct and concur-
rent indirect (the two columns on the right). Note that the bandwidths cannot be simply
compared due to different devices.

Previous Work This Thesis
Bittner & Ruf FPGA2 Susanto Direct Concurrent

Operating System Windows Linux Linux Linux
DMA Master GPU FPGA FPGA FPGA Both
Processes 1 1 2 1
FPGA Vendor Xilinx Xilinx Altera Altera
FPGA Model Virtex 6 Virtex 5 Stratix V Stratix V
FPGA IP Stack Custom Custom Vendor Vendor
FPGA Driver Custom Custom Modified Modified Original
FPGA Programming HDL HDL OpenCL OpenCL
GPU Vendor NVIDIA NVIDIA NVIDIA NVIDIA
GPU Model GeForce GeForce GeForce Quadro

GTX580 8400GS GTX660Ti K600
GPU Driver Original Nouveau Original Modified Original
GPU Programming CUDA gdev CUDA OpenCL
Effective PCIe lanes 8 1 8 8
Effective 1.0 1.1 not 2.0
PCIe generation specified
Maximal bandwidth 514MB/s 203MB/s 680MB/s 740MB/s 730MB/s
FPGA to GPU
Maximal bandwidth 1.6GB/s 189MB/s 540MB/s N/A 525MB/s
GPU to FPGA

The approaches that utilize the FPGA as the DMA master perform better for the direction
from the FPGA to the GPU. The opposite is true if the GPU is used as the DMA master.
This may have to do with the PCIe protocol: an extra PCIe packet is required to read from
another device, whereas writing to the other device requires only one packet.

46

7.5. Comparison with Previous Work

Figure 7.2.: Influence of the block size parameter on the performance for the concurrent
indirect transfer method. Higher bandwidth is darker. The white dots mark
the maximum bandwidth for each transfer.

47

7. Evaluation

Figure 7.3.: Comparison of sequential indirect, concurrent indirect and direct transfer
methods.

48

8. Conclusions and Future Work

This thesis shows an example implementation of direct communication between a GPU
and a FPGA over PCIe for use in OpenCL. Several major problems had to be solved,
e.g. the lack of official support of the GPUDirect RDMA technology for OpenCL and
the lack of an ICD from Altera. Unfortunately, only the transfer direction from FPGA
to GPU could be realized. This direction showed significant performance improvement
compared to the indirect method with a round-trip via CPU. Moreover, an alternative to
the direct method, that is simple to implement yet yields decent results and works for
both directions, has been evaluated.

Several enhancements, that either could not be finished in time or go beyond the scope of
this thesis, are still imaginable:

• The largest drawback of the implemented method is that the GPU-to-FPGA direc-
tion could not be enabled. Further investigation is required to find out the reasons
why this direction fails. A possible approach may include a thorough analysis of
the OpenCL Verilog code provided by Altera.

• The Installable Client Driver that was implemented for Altera OpenCL during the
practical part of this thesis is still incomplete as it only wraps the most basic OpenCL
functions. But also those that were implemented lack the support for OpenCL
events, which can be useful for asynchronous transfers. Supporting events would
require a rather complicated memory management system that keeps track of the
event objects’ lifetimes. The development of a full ICD is more time consuming
than could be achieved during this thesis. However, Altera announced a full ICD
implementation in the upcoming SDK version 15.0.

• The GPUDirect RDMA technology that was used as the basis for direct GPU-FPGA
communication is only available for the NVIDIA Quadro and Tesla graphics cards.
A possible alternative is to utilize a similar approach as Bittner and Ruf, which is
described in section 3.1, however without their Speedy PCIe IP core. In theory, its
functionality can be provided by the Altera’s PCIe driver and PCIe core. In contrast
to this thesis which utilizes the DMA controller on the FPGA, this alternative would
employ the GPU’s DMA controller. Not only may this enable the direct communi-
cation also for the popular GeForce cards but also the still missing GPU-to-FPGA
direction.

• It may be interesting see to which extent the higher bandwidth will speed up an
existing application that uses a heterogeneous computing system employing GPUs
and FPGAs. A candidate could be the lane detection algorithm for automated driv-
ing, used at the TU Munich [25] or some of the examples provided in [19].

49

8. Conclusions and Future Work

50

Appendix

51

A. Example RDMA application

#include <iostream>
#include <CL/opencl.h>
#include "cl_rdma.c"

using namespace std;

//transfer size 32 MB
#define N (1024 * 1024 * 32)
#define ALIGN_TO 4096

int main(int argc, char* argv[])
{
cl_uint n_platforms;
cl_context contexts[n_platforms];
cl_device_id devices[n_platforms];
cl_platform_id platformID[n_platforms];
cl_mem buffers[n_platforms];
cl_command_queue queues[n_platforms];
int altera_idx=-1;
int nvidia_idx=-1;

clGetPlatformIDs(0, NULL, &n_platforms);
if(n_platforms < 2)
{ cout<<"Found only "<<n_platforms<<" OpenCL platforms"<<endl; return(1); }

clGetPlatformIDs(n_platforms, platformID, NULL);
for(unsigned i = 0; i<n_platforms; i++)
{

char chbuffer[1024];
clGetPlatformInfo(platformID[i],CL_PLATFORM_NAME,1024,chbuffer,NULL);
if(strstr(chbuffer,"NVIDIA") != NULL){nvidia_idx = i;}
if(strstr(chbuffer,"Altera") != NULL){altera_idx = i;}

clGetDeviceIDs(platformID[i],CL_DEVICE_TYPE_DEFAULT,1,&devices[i],NULL);
clGetDeviceInfo(devices[i],CL_DEVICE_NAME,sizeof(chbuffer),chbuffer,NULL);
contexts[i]=clCreateContext(0,1,&devices[i],NULL,NULL,NULL);
queues[i]=clCreateCommandQueue(contexts[i],devices[i],0,NULL);

}
if(nvidia_idx==-1)
{cout<<"NVIDIA platform not available!"<<endl;return(1);}
if(altera_idx==-1)
{cout<<"Altera platform not available!"<<endl;return(1);}

53

A. Example RDMA application

//initialize RDMA
int rc=clrdma_init_altera(contexts[altera_idx], devices[altera_idx]);
if (rc==1){cout<<"Altera Driver is not loaded!"<<endl; return(1);}
else if(rc==2){cout<<"Wrong Altera Driver is loaded!"<<endl; return(1);}
else if(rc==4){cout<<"Could not load get_address.aocx!"<<endl; return(1);}
else if(rc){cout<<"Failed to initialize rdma for Altera."<<endl; return(1);}

rc=clrdma_init_nvidia(contexts[nvidia_idx]);
if (rc==1){cout<<"Nvidia Driver is not loaded!"<<endl; return(1);}
else if(rc){cout<<"Failed to initialize rdma for NVIDIA."<<endl;return(1);}

rc=clrdma_create_pinnable_buffer_nvidia(contexts[nvidia_idx],
queues[nvidia_idx],
&buffers[nvidia_idx], N);

if(rc){cout<<"Failed to create a pinnable buffer!"<<endl; return(1);}
buffers[altera_idx]
=clCreateBuffer(contexts[altera_idx],CL_MEM_READ_WRITE,N,NULL,NULL);

unsigned long addresses[2];
rc=clrdma_get_buffer_address_altera(buffers[altera_idx],

queues[altera_idx],
&addresses[altera_idx]);

if(rc){cout<<"Could not get address for FPGA buffer."<<endl;return(1);}
rc=clrdma_get_buffer_address_nvidia(buffers[nvidia_idx],

queues[nvidia_idx],
&addresses[nvidia_idx]);

if(rc){cout<<"Could not get address for GPU buffer."<<endl;return(1);}

unsigned char* data0; unsigned char* data1;
if(posix_memalign((void**)&data0,ALIGN_TO,N))
{ cout<<"Could not allocate aligned memory!"<<endl; return(1); }
if(posix_memalign((void**)&data1,ALIGN_TO,N))
{ cout<<"Could not allocate aligned memory!"<<endl; return(1); }
for(unsigned i=0;i<N;i++){data0[i] = i%256; }
clEnqueueWriteBuffer(queues[altera_idx],buffers[altera_idx],

CL_TRUE,0,N,data0,0,NULL,NULL);

//RDMA transfer from FPGA to GPU of size N (timeout after 5 seconds)
rc = read_rdma(addresses[altera_idx], addresses[nvidia_idx], N, 5);
if(rc){cout<<"RDMA transfer failed. Code:"<<rc<<endl;return(1);}

clEnqueueReadBuffer (queues[1],buffers[1],CL_TRUE,0,N,data1,0,NULL,NULL);
//check whether the data is correct
for(unsigned i=0;i<N;i++)
{

if(data0[i]!=data1[i])
{cout<<"Transferred data is incorrect!"<<endl;break;}

}

free(data0); free(data1);
return(0);
}

54

B. Setup Instructions

This section provides an overview of the procedures needed to run the benchmarks for
this thesis. The Ubuntu 14.04 OS is assumed.

The following command installs the Altera ICD on the system. Note that <PATH TO>
should be replaced with the actual path to the dynamic library.

echo "<PATH_TO>/libalteraicd.so" >> /etc/OpenCL/vendors/alteraicd

The modified Altera PCIe module can be compiled with the following script:

./make_all.sh

The modified NVIDIA module can be compiled with the following command:

make module

To load the modified modules, the original modules have to be removed first. Since the
display manager depends on the NVIDIA module it must be stopped too. To do this,
the TTY has to be switched, e.g. with the key combination CTRL+ALT+F4. Then, the
following command sequence will replace the modules:

sudo service lightdm stop
sudo rmmod nvidia-uvm aclpci_drv nvidia
sudo insmod nvidia.ko
sudo insmod aclpci_drv.ko
sudo service lightdm start

To load the modules automatically during the boot procedure, they previous modules
should be overwritten:

sudo cp aclpci_drv.ko /lib/modules/$(uname -r)/kernel/drivers/
sudo cp nvidia.ko /lib/modules/$(uname -r)/kernel/drivers/

For testing, the code from appendix A of the provided benchmark direct benchmark
can be used.

55

Bibliography

[1] Altera Corporation. FPGA Architecture - White Paper. https://www.
altera.com/en_US/pdfs/literature/wp/wp-01003.pdf, 2006. Retrieved
on 2015.03.13.

[2] Altera Corporation. Embedded Peripherals IP User Guide. https://www.
altera.com/en_US/pdfs/literature/ug/ug_embedded_ip.pdf, 2011. Re-
trieved on 2015.03.24.

[3] Altera Corporation. Altera SDK for OpenCL (version 13.1). http://dl.altera.
com/opencl/, 2013. Retrieved on 2015.03.28.

[4] Altera Corporation. Implementing FPGA Design with the OpenCL Stan-
dard. http://www.altera.com/literature/wp/wp-01173-opencl.pdf,
2013. Retrieved on 2015.03.13.

[5] Altera Corporation. Embedded Peripheral IP User Guide, 2014. Chapter 22: Altera
Modular Scatter-Gather DMA.

[6] Altera Corporation. Stratix V Avalon-MM Interface for PCIe Solutions User Guide,
2014.

[7] Altera Corporation. Avalon Interface Specifications. https://www.altera.com/
en_US/pdfs/literature/manual/mnl_avalon_spec.pdf, 2015. Retrieved
on 2015.04.05.

[8] Ray Bittner. Speedy Bus Mastering PCI Express. 22nd International Conference on Field
Programmable Logic and Applications (FPL 2012), August 2012.

[9] Ray Bittner and Erik Ruf. Direct GPU/FPGA Communication Via PCI Express. 1st
International Workshop on Unconventional Cluster Architectures and Applications (UCAA
2012), September 2012.

[10] Nick Black. Libcudest. http://nick-black.com/dankwiki/index.php/
Libcudest. Retrieved on 2015.03.18.

[11] Ravi Budruk. PCI express system architecture. Addison-Wesley, 2003.

[12] NVIDIA Corporation. NVIDIA GPUDirect. https://developer.nvidia.com/
gpudirect, 2010. Retrieved on 2015.04.02.

[13] NVIDIA Corporation. NVIDIA’s Next Generation CUDA(TM) Compute Architec-
ture: Kepler(TM) GK110. http://www.nvidia.com/content/PDF/kepler/
NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf, 2012. Retrieved on
2015.02.25.

57

https://www.altera.com/en_US/pdfs/literature/wp/wp-01003.pdf
https://www.altera.com/en_US/pdfs/literature/wp/wp-01003.pdf
https://www.altera.com/en_US/pdfs/literature/ug/ug_embedded_ip.pdf
https://www.altera.com/en_US/pdfs/literature/ug/ug_embedded_ip.pdf
http://dl.altera.com/opencl/
http://dl.altera.com/opencl/
http://www.altera.com/literature/wp/wp-01173-opencl.pdf
https://www.altera.com/en_US/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.altera.com/en_US/pdfs/literature/manual/mnl_avalon_spec.pdf
http://nick-black.com/dankwiki/index.php/Libcudest
http://nick-black.com/dankwiki/index.php/Libcudest
https://developer.nvidia.com/gpudirect
https://developer.nvidia.com/gpudirect
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

Bibliography

[14] NVIDIA Corporation. Developing a Linux Kernel Module using GPUDirect RDMA.
http://docs.nvidia.com/cuda/gpudirect-rdma/index.html, 2014. Re-
trieved on 2015.03.11.

[15] NVIDIA Corporation. CUDA C Programming Guide [version 7.0]. http://docs.
nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf, 2015. Retrieved
on 2015.04.03.

[16] Umer Farooq, Zied Marrakchi, and Habib Mehrez. Tree-based Heterogeneous FPGA
Architectures - Application Specific Exploration and Optimization. Springer, Berlin, Hei-
delberg, 2012.

[17] Scott Hauck. Reconfigurable computing the theory and practice of FPGA-based computa-
tion. Morgan Kaufmann, Amsterdam Boston, 2008.

[18] Hewlett-Packard. Hewlett-Packard Quadro K600 Specifications. http://www8.
hp.com/h20195/v2/GetDocument.aspx?docname=c04128134, 2013. Re-
trieved on 2015.04.07.

[19] Ra Inta, David J. Bowman, and Susan M. Scott. The “Chimera”: An Off-The-Shelf
CPU/GPGPU/FPGA Hybrid Computing Platform, 2012. International Journal of
Reconfigurable Computing, Volume 2012.

[20] Khronos Group. OpenCL Extension #5: Installable Client Driver (ICD)
Loader. https://www.khronos.org/registry/cl/extensions/khr/cl_
khr_icd.txt, 2010. Retrieved on 2015.03.15.

[21] Khronos Group. OpenCL 1.2 Installable Client Driver Loader [Source]. https://
www.khronos.org/registry/cl/specs/opencl-icd-1.2.11.0.tgz, 2012.
Retrieved on 2015.04.01.

[22] Khronos Group. The OpenCL Specification Version 1.2. https://www.khronos.
org/registry/cl/specs/opencl-1.2.pdf, 2012. Retrieved on 2015.03.15.

[23] Linux man-pages project. dlopen(3) Linux man page, 2000.

[24] Linux man-pages project. ioctl(2) Linux man page, 2000.

[25] Nikhil Madduri. Hardware Accelerated Particle Filter for Lane Detection and Track-
ing in OpenCL. Master’s thesis, Technische Universität München, 2014.

[26] Nallatech Inc. Nallatech 385-D5 Specifications. http://www.nallatech.com/
wp-content/uploads/pcie_385pb_v1_21.pdf, 2014. Retrieved on 2015.04.07.

[27] NVIDIA Corporation. NVIDIA OpenCL Best Practices Guide. http:
//www.nvidia.com/content/cudazone/CUDABrowser/downloads/
papers/NVIDIA_OpenCL_BestPracticesGuide.pdf, 2009. Retrieved on
2015.03.21.

[28] NVIDIA Corporation. LINUX X64 (AMD64/EM64T) DISPLAY DRIVER (Ver-
sion 346.47) [kernel/nv.c]. http://us.download.nvidia.com/XFree86/
Linux-x86_64/346.47/NVIDIA-Linux-x86_64-346.47.run, 2015. Re-
trieved on 2015.03.19.

58

http://docs.nvidia.com/cuda/gpudirect-rdma/index.html
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://www8.hp.com/h20195/v2/GetDocument.aspx?docname=c04128134
http://www8.hp.com/h20195/v2/GetDocument.aspx?docname=c04128134
https://www.khronos.org/registry/cl/extensions/khr/cl_khr_icd.txt
https://www.khronos.org/registry/cl/extensions/khr/cl_khr_icd.txt
https://www.khronos.org/registry/cl/specs/opencl-icd-1.2.11.0.tgz
https://www.khronos.org/registry/cl/specs/opencl-icd-1.2.11.0.tgz
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://www.nallatech.com/wp-content/uploads/pcie_385pb_v1_21.pdf
http://www.nallatech.com/wp-content/uploads/pcie_385pb_v1_21.pdf
http://www.nvidia.com/content/cudazone/CUDABrowser/downloads/papers/NVIDIA_OpenCL_BestPracticesGuide.pdf
http://www.nvidia.com/content/cudazone/CUDABrowser/downloads/papers/NVIDIA_OpenCL_BestPracticesGuide.pdf
http://www.nvidia.com/content/cudazone/CUDABrowser/downloads/papers/NVIDIA_OpenCL_BestPracticesGuide.pdf
http://us.download.nvidia.com/XFree86/Linux-x86_64/346.47/NVIDIA-Linux-x86_64-346.47.run
http://us.download.nvidia.com/XFree86/Linux-x86_64/346.47/NVIDIA-Linux-x86_64-346.47.run

Bibliography

[29] Alessandro Rubini, Jonathan Corbet, and Greg Kroah-Hartman. Linux Device Drivers,
3nd Edition. O’Reilly Media, 2005.

[30] Shinpei Kato and Michael McThrow and Carlos Maltzahn and Scott Brandt. Gdev:
First-Class GPU Resource Management in the Operating System. Tech. Rep., 2012,
uSENIX Annual Technical Conference (USENIX ATC’12).

[31] David Susanto. Parallelism for Computationally Intensive Algorithm with GPU/F-
PGA Interleaving. Master’s thesis, Technische Universität München, 2014.

[32] Andrew S Tanenbaum. Modern Operating Systems. Pearson, 2 edition, 2007.

[33] Yann Thoma, Alberto Dassatti, and Daniel Molla. FPGA2: An open source frame-
work for FPGA-GPU PCIe communication. In 2012 International Conference on Recon-
figurable Computing and FPGAs, ReConFig 2013, Cancun, Mexico, December 9-11, 2013,
pages 1–6, 2013.

[34] Various Authors. Nouveau: Accelerated Open Source driver for nVidia cards. http:
//nouveau.freedesktop.org/wiki/, 2012. Retrieved on 2015.04.10.

[35] Various Authors. Nouveau: Feature Matrix. http://nouveau.freedesktop.
org/wiki/FeatureMatrix/, 2014. Retrieved on 2015.04.11.

[36] Nicholas Wilt. The CUDA handbook a comprehensive guide to GPU programming.
Addison-Wesley, Upper Saddle River, NJ, 2013.

59

http://nouveau.freedesktop.org/wiki/
http://nouveau.freedesktop.org/wiki/
http://nouveau.freedesktop.org/wiki/FeatureMatrix/
http://nouveau.freedesktop.org/wiki/FeatureMatrix/

	Abstract
	List of Abbreviations
	Introduction
	Background
	Problem Statement

	Technology Overview
	Accelerator Architectures
	Graphics Processors
	Field Programmable Gate Arrays

	OpenCL
	Linux Device Drivers
	PCIe
	Direct Memory Access

	Previous Work
	Ray Bittner & Erik Ruf
	Yann Thoma, Alberto Dassatti & Daniel Molla
	David Susanto

	Implementation of an Installable Client Driver for Altera OpenCL
	Implementation of Direct GPU-FPGA Communication
	Altera PCIe Driver and IP Overview
	GPUDirect RDMA Overview
	Extension of the Altera PCIe Driver
	Basic Version
	Optimizations

	GPUDirect RDMA for OpenCL
	Reverse Engineering the NVIDIA Driver Communication
	Extension of the NVIDIA Kernel Module

	User Space Invocation

	Implementation of Concurrent Indirect GPU-FPGA Communication
	Evaluation
	Hardware Configuration
	Effects of RDMA Optimizations
	Parameter Choice for Concurrent Indirect Transfer
	Method Comparison
	Comparison with Previous Work

	Conclusions and Future Work
	Appendix
	Example RDMA application
	Setup Instructions
	Bibliography

