
Natural Evolution Strategies

Daan Wierstra, Tom Schaul, Jan Peters and Juergen Schmidhuber

Abstract— This paper presents Natural Evolution Strategies
(NES), a novel algorithm for performing real-valued ‘black
box’ function optimization: optimizing an unknown objective
function where algorithm-selected function measurements con-
stitute the only information accessible to the method. Natu-
ral Evolution Strategies search the fitness landscape using a
multivariate normal distribution with a self-adapting mutation
matrix to generate correlated mutations in promising regions.
NES shares this property with Covariance Matrix Adaption
(CMA), an Evolution Strategy (ES) which has been shown
to perform well on a variety of high-precision optimization
tasks. The Natural Evolution Strategies algorithm, however, is
simpler, less ad-hoc and more principled. Self-adaptation of the
mutation matrix is derived using a Monte Carlo estimate of the
natural gradient towards better expected fitness. By following
the natural gradient instead of the ‘vanilla’ gradient, we can
ensure efficient update steps while preventing early convergence
due to overly greedy updates, resulting in reduced sensitivity
to local suboptima. We show NES has competitive performance
with CMA on unimodal tasks, while outperforming it on several
multimodal tasks that are rich in deceptive local optima.

I. INTRODUCTION

Real-valued ‘black box’ function optimization is one of

the major branches of modern applied machine learning

research [1]. It concerns itself with optimizing the continuous

parameters of some unknown objective function, also called

a fitness function. The exact structure of the objective func-

tion is assumed to be unknown or unspecified, but specific

function measurements, freely chosen by the algorithm, are

available. This is a recurring problem setup in real-world

domains, since often the precise structure of a problem is

either not available to the engineer, or too expensive to model

or simulate. Numerous real-world problems can be treated as

real-valued black box function optimization problems. In or-

der to illustrate the importance and prevalence of this general

problem setup, one could point to a diverse set of tasks such

as the classic nozzle shape design problem [2], developing

an Aibo robot gait [3] or non-Markovian neurocontrol [4].

Now, since exhaustively searching the entire space of

solution parameters is considered infeasible, and since we do

not assume a precise model of our fitness function, we are

forced to settle for trying to find a reasonably fit solution that

satisfies certain pre-specified constraints. This, inevitably,

involves using a sufficiently intelligent heuristic approach.

Though this may sound crude, in practice it has proven to

be crucial to find the right domain-specific trade-off on issues

such as convergence speed, expected quality of the solutions

Daan Wierstra, Tom Schaul and Juergen Schmidhuber are with IDSIA,
Manno-Lugano, Switzerland (email: [daan, tom, juergen]@idsia.ch).

Jan Peters is with the Max Planck Institute for Biological Cybernetics,
Tuebingen, Germany (email: mail@jan-peters.net).

This research was funded by SNF grants 200021-111968/1 and 200021-
113364/1.

found and the algorithm’s sensitivity to local suboptima on

the fitness landscape.

A variety of algorithms has been developed within this

framework, including methods such as Simulated Anneal-

ing [5], Simultaneous Perturbation Stochastic Optimiza-

tion [6], simple Hill Climbing, Particle Swarm Optimiza-

tion [7] and the class of Evolutionary Algorithms, of which

Evolution Strategies (ES) [8], [9], [10] and in particular its

Covariance Matrix Adaption (CMA) instantiation [11] are of

great interest to us.

Evolution Strategies, so named because of their inspira-

tion from natural Darwinian evolution, generally produce

consecutive generations of samples. During each generation,

a batch of samples is generated by perturbing the parents’

parameters – mutating their genes, if you will. (Note that ES

generally uses asexual reproduction: new individuals typi-

cally are produced without crossover or similar techniques

more prevalent in the field of genetic algorithms). A number

of samples is selected, based on their fitness values, while the

less fit individuals are discarded. The winners are then used

as parents for the next generation, and so on, a process which

typically leads to increasing fitness over the generations. This

basic ES framework, though simple and heuristic in nature,

has proven to be very powerful and robust, spawning a wide

variety of algorithms.

In Evolution Strategies, mutations are generally drawn

from a normal distribution with specific mutation sizes

associated with every problem parameter. One of the major

research topics in Evolution Strategies concerns the auto-

mated adjustment of the mutation sizes for the production

of new samples, a procedure generally referred to as self-

adaptation of mutation. Obviously, choosing mutation sizes

too high will produce debilitating mutations and ensure that

convergence to a sufficiently fit region of parameter space

will be prevented. Choosing them too low leads to extremely

small convergence rates and causes the algorithm to get

trapped in bad local suboptima. Generally the mutation size

must be chosen from a small range of values – known as

the evolution window – specific to both the problem domain

and to the distribution of current individuals on the fitness

landscape. ES algorithms must therefore adjust mutation

during evolution, based on the progress made on the recent

evolution path. Often this is done by simultaneously evolving

both problem parameters and the corresponding mutation

sizes. This has been shown to produce excellent results in

a number of cases [10].

The Covariance Matrix Adaptation algorithm constitutes

a more sophisticated approach. CMA adapts a variance-

covariance mutation matrix Σ used by a multivariate normal

distributions from which mutations are drawn. This en-

3381

978-1-4244-1823-7/08/$25.00 c©2008 IEEE

ables the algorithm to generate correlated mutations, speed-

ing up evolution significantly for many real-world fitness

landscapes. Self-adaptation of this mutation matrix is then

achieved by integrating information on successful mutations

on its recent evolution path, by making similar mutations

more likely. CMA performs excellently on a number of

benchmark tasks. One of the problems with the CMA algo-

rithm, however, is its ad-hoc nature and relatively complex or

even contrived set of mathematical justifications and ‘rules

of thumb’. Another problem pertains to its sensitivity to local

optima.

The goal of this paper is to advance the state of the

art of real-valued ‘black box’ function optimization while

providing a firmer mathematical grounding of its mechanics,

derived from first principles. Simultaneously, we want to de-

velop a method that can achieve optimization up to arbitrarily

high precision, and reduce sensitivity to local suboptima

as compared to certain earlier methods such as CMA. We

present an algorithm, Natural Evolution Strategies, that is

both elegant and competitive, inheriting CMA’s strength of

correlated mutations, while enhancing the ability to prevent

early convergence to local optima.

Our method, Natural Evolution Strategies (which can ac-

tually be seen as a (1, λ)-Evolution Strategy with 1 candidate

solution per generation and λ samples or ‘children’), adapts

both a mutation matrix and the parent individual using a

natural gradient based update step [12]. Every generation,

a gradient towards better expected fitness is estimated using

a Monte Carlo approximation. This gradient is then used

to update both the parent individual’s parameters and the

mutation matrix. By using a natural gradient instead of a

‘vanilla’ gradient, we can prevent early convergence to local

optima, while ensuring large update steps. We show that

the algorithm has competitive performance with CMA on

a number of benchmarks, while it outperforms CMA on

the Rastrigin function benchmark, a task with many local

suboptima. Similar

The paper is organized as follows. The next section

provides a quick overview of the general problem framework

of real-valued black box function optimization. The ensuing

sections describe the derivation of the ‘vanilla’ gradient

approach, the concept of ‘fitness shaping’, and the natural

gradient instantiation of our algorithm. The section of ex-

perimental results shows our initial results with a number of

benchmark problems, and compares the performance to the

CMA algorithm. The paper concludes with a discussion on

the advantages and problems of the method, and points out

possible directions for future work.

II. ALGORITHM FRAMEWORK

First let us introduce the algorithm framework and the

corresponding notation. The objective is to optimize the n-

dimensional continuous vector of objective parameters x for

an unknown fitness function f : R
n → R. The function

is unknown or ‘black box’, in that the only information

accessible to the algorithm consists of function measurements

selected by the algorithm. The goal is to optimize f(x),

while keeping the number of function evaluations – which

are considered costly – as low as possible. This is done by

evaluating a number 1 . . . λ of separate individuals z1 . . . zλ

each successive generation g, using the information from

fitness evaluations f(z1) . . . f(zλ) to adjust both the current

candidate objective parameters x and the mutation sizes.

In conventional Evolution Strategies, optimization is

achieved by mimicking natural evolution: at every gener-

ation, parent solution x produces offspring z1 . . . zλ by

mutating string x using a multivariate normal distribution

with zero mean and some variance σ. After evaluating all

individuals, the best μ individuals are kept (selected), stored

as candidate solutions and subsequently used as ‘parents’ for

the next generation. This simple process is known to produce

excellent results for a number of challenging problems.

Algorithm 1 Natural Evolution Strategies

g ← 1
initialize population parameters θ(g) = 〈x,Σ = A

T
A〉

repeat
for k = 1 . . . λ do

draw zk ∼ π(x,Σ)
evaluate cost of f(zk)
∇x log π (zk) = Σ

−1 (zk − x)
∇Σ log π (zk) =

1

2
Σ

−1 (zk − x) (zk − x)T Σ
−1 −

1

2
Σ

−1

∇A log π (zk) = A

h
∇Σ log π (zk) +∇Σ log π (zk)T

i

end for

Φ =

2
64
∇x log π(z1) ∇A log π(z1) 1

...
...

...
∇x log π(zλ) ∇A log π(zλ) 1

3
75

R = [f(z1), . . . , f(zλ)]T

δθ = (ΦT
Φ)−1

Φ
T
R

θ
(g+1) ← θ

(g) − β · δθ
g ← g + 1

until stopping criterion is met

III. ‘VANILLA’ GRADIENTS FOR EVOLUTION

STRATEGIES

Our approach, however, is different from conventional

Evolution Strategies in one important respect. Instead of

‘wasting’ information by discarding low-fitness samples, we

aim to use all available fitness values, even the bad ones, to

generate a gradient for updating our population.

The core idea is that we want to optimize expected ‘fitness’

J = Ez[f(z)] of the next generation. We assume at every

generation g a population π(g) parameterized by θ = 〈x,Σ〉,
representing the current candidate solution (‘parent’) x and

mutation matrix Σ used for producing the next generation

of search points.

In order to adjust parameters θ = 〈x,Σ〉 towards solutions

that are likely more fit, we estimate a gradient on θ for the

expected fitness. Now let f(z) be the fitness at a particular

search point z, and, utilizing the familiar multivariate normal

distribution, let

3382 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

π(z|θ) = N (z|x,Σ)

=
1

(2π)n/2|Σ|1/2
exp

[
−

1

2
(z− x)TΣ

−1(z− x)

]
denote the probability density of search point z given the

current population θ = 〈x,Σ〉. Expected fitness can then be

expressed as

J = Ez[f(z)] =

∫
π(z|θ)f(z)dz.

Taking the derivative of J with respect to θ of population π,

we can write

∇θJ = ∇θEz[f(z)]

=

∫
∇θπ(z|θ)f(z)dz

=

∫
π(z|θ)

π(z|θ)
∇θπ(z|θ)f(z)dz

=

∫
π(z|θ)∇θ log π(z|θ)f(z)dz

using the ‘likelihood-ratio’ trick. Taking a Monte Carlo

approximation of this expectation by choosing λ search

points, we get

∇θJ = Ez [∇θ log π(z|θ)f(z)]

≈
1

λ

λ∑
k=1

∇θ log π(zk|θ)f(zk)

The population parameter vector θ = 〈x,Σ〉 is comprised

of both the current candidate solution center and its muta-

tion matrix, concatenated in one single vector. In order to

calculate the derivatives of the log-likelihood with respect

to individual elements of θ for this mixture of multivariate

normal distributions, first note that

log π (z|x,Σ) =
n

2
log(2π)−

1

2
log detΣ

−
1

2
(z− x)

T
Σ

−1 (z− x) .

We will need its derivatives, that is, ∇x log π (z|x,Σ) and

∇Σ log π (z|x,Σ). The first is trivially

∇x log π (z|x,Σ) = Σ
−1 (z− x) ,

while the latter is

∇Σ log π (z|θ) =
1

2
Σ

−1 (z− x) (z− x)
T

Σ
−1 −

1

2
Σ

−1.

Mutation matrix Σ needs to be constrained, though, in order

to preserve symmetry, ensure positive variances and to keep it

positive semi-definite. We accomplish that by representing Σ

as a product Σ = A
T
A. Instead of using the log-derivatives

on ∇Σ log π (z) directly, we compute the derivatives with

respect to A as

∇A log π (zk) = A

[
∇Σ log π (zk) +∇Σ log π (zk)

T
]
.

Using these derivatives to calculate ∇θJ , we can then update

parameters θ = 〈x,Σ = A
T
A〉 as θ ← θ + β∇θJ using

learning rate β. This produces a new candidate solution

x
(g+1) each generation, and simultaneously self-adapts the

associated mutation matrix to Σ
(g+1). This simple update

rule, which covers both object parameters and strategy pa-

rameters in one framework, is in marked contrast to the

complicated procedure the CMA algorithm uses.

IV. NONLINEAR FITNESS SHAPING

Apart from slow convergence, one of the main problems

encountered by the current ‘vanilla’ version of the algorithm

described so far is the early convergence of the algorithm

due to quickly decreased mutation sizes of Σ. To see why

this happens, one has to imagine the curvature of some

hypothetical fitness landscape around x. If the fitness de-

creases quickly in one direction along the main axis of the

hyperellipsoid defined by Σ, while it increases only slowly

in the immediate neighborbood along the opposite direction,

the estimated gradient will tend to decrease Σ too much,

even driving it towards 0.

To overcome this problem, we introduce fitness shaping,

the use of a nonlinear fitness transformation function that, in-

tuitively speaking, ‘awards’ better samples more than it ‘pun-

ishes’ bad samples. The choice of fitness shaping function is

arbitrary as long as it is monotonically increasing with the

original fitness, and should therefore be considered one of the

tuning parameters of the algorithm, and chosen in a domain-

dependent manner. We have empirically found that ranking-

based shaping functions work best for various problems, also

because they circumvent the problem of extreme fitness val-

ues disproportionately distorting the gradient, making careful

adaptation of the learning rate during evolution unnecessary

even for problems with wildly fluctuating fitnesses. The

ranking function used for all experiments in this paper shapes

fitness as f(z) = i+5λi20 where i is the relative rank of z’s

original fitness in the batch z1 . . . zλ, scaled between 0 . . . 1.

V. NATURAL EVOLUTION STRATEGIES

Standard gradient methods have been shown to converge

slowly, however, in optimization landscapes with ridges and

plateaus. An ad-hoc and often-used method for overcoming

this would be the use of momentum. Natural gradients con-

stitute a more principled approach, however. First introduced

by Amari [12], natural gradients have numerous advantages

over ‘vanilla’ gradients.

The traditional gradient ∇J simply follows the steepest

descent in the space of the actual parameters. While this

might be a good idea in many problems, the main drawback

comes if we need to maintain uncertainty as it generates

the necessary exploration for the solutions. In this case, we

need to stay close to the presented type of solutions while

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 3383

maximizing the fitness. As our solutions are presented by

a random sample, we need to use a measure of distance

D(θ̂||θ) between probability distributions πθ (z) and πθ̂ (z).
The natural measure distance between two probability distri-

butions is the Kullback-Leibler divergence, but alternatively

one could use the Hellinger distance. In this case, the natural

gradient is given by

max
δθ

J (θ + δθ) = δθT∇J,

s.t. D (θ + δθ||θ) = ε,

where J (θ) is the expected fitness of population π param-

eterized by θ, δθ is the direction of constrained steepest

descent,∇J is the steepest descent or gradient, D (θ + δθ||θ)
a measure of closeness on probability distributions and ε a

small increment size.

If D (θ + δθ||θ) is the Kullback-Leibler divergence or the

Hellinger distance, we have

D (θ + δθ||θ) = δθT
F (θ) δθ + (const),

for small δθ → 0, where

F (θ) =

∫
π (z)∇ log π (z)∇ log π (z)

T
dz,

= E

[
∇ log π (z)∇ log π (z)

T
]

is the Fisher information matrix which yields the natural

gradient δθ defined by the necessary condition

F (θ) δθ = β∇J,

with β being the learning rate.

Additionally, we can introduce a fitness baseline b as

∇J =

∫
∇π (z) f (z) dz + 0

=

∫
∇π (z) f (z) dz + b∇

∫
π (z) dz︸ ︷︷ ︸

=1

=

∫
∇π (z) f (z) dz + b

∫
∇π (z) dz

=

∫
∇π (z) [f (z)− b] dz

=

∫
π (z)∇ log π (z) [f (z)− b] dz

= E [∇ log π (z) [f (z)− b]] .

Thus, we have the fitness baseline parameter b

which can be used to reduce the estimation variance

Var [∇ log π (z) [f (z)− b]]. Note that

Var [∇ log π (z) Cf (z)] = Var [∇ log π (z) f (z)] C2,

that is, the variance grows quadratically with the average

magnitude of the fitnesses. It can be significantly reduced

if a proper fitness baseline is used, reducing the number

of samples required to correctly estimate the gradient. This

changes the equation to

E

[
φ (z) φ (z)

T
]
δθ = E [φ (z) f (z)]−E [φ (z) b]

with φ (z) = ∇ log π (z) with one open parameter b. We

obtain b by realizing the lower bound

Var [φ (z) [f (z)− b]]

= f̄2 Var

[
φ (z)

(
f (z)− f̄

)
f̄

]
+ Var

[
φ (z)

[
f̄ − b

]]
,

≥ f̄2
E

[
φ (z) φ (z)

T
]

+ Var
[
φ (z)

[
f̄ − b

]]
,

where f̄ = E [f (z)]. Thus, we have a minimum at b = f̄ .

However, this is not ideal as it ignores the interplay between

δθ and b. However, as E [φ (z)] = 0, we can obtain the

equation

0 + b = E [f (z)] ,

E [φ (z)]
T

δθ + b = E [f (z)] .

Now, we have the equation system

E

[
φ (z) φ (z)

T
]
δθ + E [φ (z) b] = E [φ (z) f (z)]

E [φ (z)]
T

δθ + b = E [f (z)] .

This system can be solved straightforwardly as a linear

regression problem using the pseudoinverse, and when re-

placing the E [·] by sample averages, we obtain the general

natural gradient estimator

δθ = (ΦT
Φ)−1

Φ
T
R

where

Φ =

⎡
⎢⎣ ∇θ log π(z1) 1

...

∇θ log π(zλ) 1

⎤
⎥⎦

R = [f(z1), . . . , f(zλ)]
T

The resulting Natural Evolution Strategies algorithm is de-

scribed in pseudocode in Algorithm 1

Fig. 1. The evolution of the mutation matrices over the generations. Shown
are the Σ-defined ellipsoids of generations 0, 20, 40, 60 and 80 imposed
on the fitness landscape of the Rosenbrock benchmark. The function has its
optimum at point (1, 1). It can clearly be seen how the mutations ‘learn’
to align themselves in the local direction towards improved fitness.

3384 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

TABLE I

UNIMODAL AND MULTIMODAL BENCHMARK FUNCTIONS TO BE MINIMIZED.

Name Type Fitness Function

SphereFunction unimodal
∑n

j=1 z2
j

SchwefelFunction unimodal
∑n

j=1

[∑j
k=1 zj

]2

Tablet unimodal (1000z1)
2 +

∑n
j=2 z2

j

Rosenbrock unimodal
∑n−1

j=1

[
100

(
z2
j − zj+1

)2
+ (zj − 1)

2
]

DiffPow unimodal
∑n

j=1 |zj |
2+10 i−1

n−1

Elli unimodal
∑n

j=1

(
zj1000

i−1

n−1

)2

SharpR unimodal −z1 + 100
√∑n

j=2 z2
j

ParabR unimodal −z1 + 100
∑n

j=2 z2
j

Cigar unimodal z2
1 +

∑n
j=2 (1000zj)

2

Rastrigin multimodal 10n +
∑n

j=1

[
z2
j − 10 cos (2πzj)

]
Ackley multimodal −20 exp

(
−0.2

√
1
n

∑n
j=1 z2

j

)
− exp

(
1
n

∑n
j=1 cos(2πzj)

)
+ 20 + e

Weierstrass multimodal
∑n

j=1

∑20
k=0 0.5k cos(2π3k(zj + 0.5))

Griewank multimodal
∑n

j=1

z2

j

4000 −
∏n

j=1 cos(
zj√

j
) + 1

Fig. 2. Left: Results for experiments on the unimodal benchmark functions, dimensionality 5. Shown are averages over 50 runs. Right: Results for the
unimodal benchmark functions with dimensionality 15, averaged over 10 runs.

VI. EXPERIMENTS

To test the performance of the algorithm, we chose a stan-

dard set of unimodal and multimodal benchmark functions

from [13] and [11] that are often used in the literature. Good

fitness functions should be easy to interpret, but do scale up

with n. They must be highly nonlinear, non-separable, largely

resistant to hill-climbing, and preferably contain deceptive

local suboptima. The multimodal functions were tested with

both Natural Evolution Strategies and the CMA algorithm

– widely regarded as one of the premier algorithms in this

field – for comparison purposes. An overview of the function

definitions can be seen in Table I.

In order to prevent potentially biased results, and to avoid

trivial optima (e.g. at the origin), we follow [13] and con-

sistently transform (by a combined rotation and translation)

the functions’ inputs in order to make the variables non-

separable.

The tunable parameters of the NES algorithm are com-

prised of generation size λ, the fitness shaping function

applied on the fitness function f and learning rate β. The first

parameter, the generation size, should be chosen such that

underconstrained linear regression during the pseudoinverse

does not occur. This entails a minimum size of 1+n+n2 (the

size of the matrix plus the length of the vector plus one). The

second parameter, the fitness shaping function, was taken to

be ranking-based as described above for all experiments. The

algorithm proved robust to changes in the specific parameters

used in this function. The last parameter, the learning rate,

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 3385

should be set as high as possible without destabilizing the

updates. Too large updates can cause destructive updates to

both x and Σ, and the algorithm diverges or reaches early

convergence especially if values of Σ are driven too close to

0.

We ran NES on the set of unimodal fitness functions with

dimensions 5 and 15 using a target precision of 10−6. On

the multimodal functions we performed experiments while

varying the distance of the initial guess to the optimum

between 1 and 100. Those runs were performed on dimension

2 with a target precision of 0.01, since here the focus was

on avoiding local minima.

Figure 2 shows the average performance over 50 runs on

the unimodal functions with dimensionality 5. The parameter

settings were identical in all runs: β = 0.02 and λ = 50,

and all runs converged. Additionally it shows the average

performance over 10 runs on the unimodal functions with

dimensionality 15. The parameter settings here are β = 0.01
and λ = 250. Note that for SharpR and ParabR the plot

stops at 10−2. This is because these two functions do not

have a minimum, but their fitness can become −∞, so they

are stopped as soon as their fitness becomes negative.

Table II shows, for all multimodal functions, the percent-

age of runs where NES found the global optimum (as op-

posed to it getting stuck in a local suboptimum) conditioned

on the distance from the initial guess to the optimum. The

percentages are computed over 100 runs.

Figure 1 shows the development of the covariance matrix

during a run on the Rosenbrock function. It can be seen how,

over the successive search batches, the covariances of the

mutation matrix adapt to align perfectly with the curvature

of the test function.

To summarize, our experiments indicate that NES is

competitive with other high-performance algorithms in black

box optimization on the selected high-precision unimodal

test functions, and even tends to outperform CMA on some

multimodal benchmarks, which is likely due to its natural

gradient-induced prevention of premature convergence of

parameters θ. We expect the algorithm to do well on future

real-world experiments with many deceptive local suboptima.

VII. DISCUSSION

Natural Evolution Strategies constitute a well-principled

approach to real-valued black box function optimization

with a relatively clean derivation from first principles. Its

theoretical relationship to the field of Policy Gradients [14],

[15], and in particular Natural Actor-Critic [16], should be

clear to any reader familiar with both fields. In recent work

carried out independently from ours, the similarities between

Policy Gradient methods and Evolution Strategies have also

been pointed out [17], which suggests there might be fruitful

future interaction between the two fields.

The experiments however show that, on most unimodal

benchmarks, NES is still roughly 2 to 5 times slower in

performance than CMA. This contrasts with the results

on the multimodal functions, on which NES occasionally

outperforms CMA. That result suggests NES might be less

sensitive to local suboptima than CMA, possibly due to the

use of natural gradients which can typically better preserve

uncertainty in the production of new samples, causing a

better exploration-exploitation trade-off.

The results also suggest that NES and CMA scale similarly

with increased dimensionality. We argue, though, that a

method such as Natural Evolution Strategies or CMA should

be used only for problems with relatively small dimensional-

ity (at most a few dozen), since the number of parameters in

θ grows squared with n. In order to prevent underconstrained

linear regression in computing the natural gradient, one needs

a sufficient number of samples per generation before execut-

ing an update step. Also for this reason the dimensionality

n needs to be kept low. Alternatively, instead of using the

entire mutation matrix, one could use only the diagonal if n

becomes infeasibly large.

NES does require the user to manually specify some

algorithm parameters: the learning rate, the batch/generation

size, and the fitness shaping function. In contrast, the CMA

algorithm has a set of excellent ‘magic’ default settings.

Future work on Natural Evolution Strategies must de-

termine whether NES can be made to outperform CMA

consistently on typical benchmarks and real-world tasks. We

suggest extending the algorithm from a single multinormal

distribution as population representation to a mixture of

Gaussians, thus further reducing its sensitivity to local subop-

tima. Another improvement could be achieved by replacing

the pseudoinverse by Recursive Least Squares, enabling the

algorithm to make update steps after every new sample,

moving away from generational batches. Finally, even though

NES uses all samples even the low-fitness ones (unlike

conventional ES and CMA), we suspect further developing

sound statistical methods for better exploiting the information

in low-fitness samples might greatly improve performance.

VIII. CONCLUSION

In this paper we presented Natural Evolution Strategies,

a novel algorithm for tackling the important class of real-

valued ‘black box’ function optimization problems. The pro-

posed method is nearly competitive with the well-established

Covariance Matrix Adaptation algorithm, which shares its

property of producing correlated mutations that greatly help

performance in real-world problem domains. Using a Monte

Carlo-estimated natural gradient for updating both candidate

solutions and the mutation matrix, one might suspect a re-

duced sensitivity to getting stuck in local suboptima, and our

initial experimental results suggest that this might indeed be

the case. Moreover, NES seems simpler and better-principled

than CMA and other Evolution Strategies. Future work

will determine whether NES can be shown to consistently

outperform CMA on more realistic problem settings and

benchmarks.

REFERENCES

[1] J. Spall, S. Hill, and D. Stark, “Theoretical framework for comparing
several stochastic optimization approaches,” Probabilistic and Ran-

domized Methods for Design under Uncertainty, pp. 99–117, 2006.

3386 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

TABLE II

RESULTS FOR THE MULTIMODAL BENCHMARK FUNCTIONS. SHOWN ARE PERCENTAGES OF RUNS THAT FOUND THE GLOBAL OPTIMUM, FOR BOTH

NES AND CMA, FOR VARYING STARTING DISTANCES.

Function Distance NES CMA

Rastrigin 1 32% 13%

Rastrigin 10 24% 11%

Rastrigin 100 22% 14%

Ackley 1 95% 89%

Ackley 10 88% 70%

Ackley 100 1% 3%

Weierstrass 1 44% 90%

Weierstrass 10 58% 92%

Weierstrass 100 67% 92%

Griewank 1 99% 100%

Griewank 10 9% 2%

Griewank 100 2% 0%

[2] J. Klockgether and H.-P. Schwefel, “Two-phase nozzle and hollow
core jet experiments,” in Proc. 11th Symp. Engineering Aspects of

Magnetohydrodynamics, 1970, pp. 141–148.
[3] N. Kohl and P. Stone, “Policy gradient reinforcement learning for fast

quadrupedal locomotion,” in Proceedings of the IEEE International

Conference on Robotics and Automation, May 2004.
[4] F. J. Gomez and R. Miikkulainen, “Solving non-Markovian control

tasks with neuroevolution,” in Proc. IJCAI 99. Denver, CO: Morgan
Kaufman, 1999.

[5] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, Number 4598, 13 May 1983, vol. 220,
4598, pp. 671–680, 1983.

[6] J. C. Spall, “Stochastic optimization and the simultaneous perturbation
method,” in WSC ’99: Proceedings of the 31st conference on Winter

simulation. New York, NY, USA: ACM, 1999, pp. 101–109.
[7] J. Kennedy and R. C. Eberhart, Swarm intelligence. San Francisco,

CA, USA: Morgan Kaufmann Publishers Inc., 2001.
[8] I. Rechenberg, “Evolutionsstrategie: Optimierung technischer systeme

nach prinzipien der biologischen evolution,” Ph.D. dissertation, TU
Berlin, 1971.

[9] H.-G. Beyer and H.-P. Schwefel, “Evolution strategies: A compre-
hensive introduction,” Natural Computing: an international journal,
vol. 1, no. 1, pp. 3–52, 2002.

[10] H.-G. Beyer, “Toward a Theory of Evolution Strategies: Self-
Adaptation,” Evolutionary Computation, vol. 3, no. 3, pp. 311–347,
1996.

[11] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evolutionary Computation, vol. 9,
no. 2, pp. 159–195, 2001.

[12] S. Amari, “Natural gradient works efficiently in learning,” Neural

Computation, vol. 10, no. 2, pp. 251–276, 1998.
[13] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. P. Chen, A. Auger,

and S. Tiwari, “Problem definitions and evaluation criteria for the
cec 2005 special session on real-parameter optimization,” Nanyang
Technological University, Singapore, Tech. Rep., 2005.

[14] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine Learning, vol. 8, pp.
229–256, 1992.

[15] J. Peters and S. Schaal, “Policy gradient methods for robotics,” in
Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), Beijing, China, 2006, pp. 2219 – 2225.
[16] J. Peters, S. Vijayakumar, and S. Schaal, “Natural actor-critic,” in

Proceedings of the 16th European Conference on Machine Learning

(ECML 2005), 2005, pp. 280–291.
[17] V. Heidrich-Meisner and C. Igel, “Similarities and differences between

policy gradient methods and evolution strategies,” in To appear in:

16th European Symposium on Artificial Neural Networks (ESANN),
2008.

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 3387

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

