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Abstract. The crossword puzzle is a classic pastime that is well-known
all over the world. We consider the crossword manufacturing process in
more detail, investigating a two-step approach, first generating a mask,
which is an empty crossword puzzle skeleton, and then filling the mask
with words from a given dictionary to obtain a valid crossword. We show
that the whole manufacturing process is NP-complete, and in particu-
lar also the second step of the two-step manufacturing, thus reproving
in part a result of Lewis and Papadimitriou mentioned in Garey and
Johnson’s monograph [M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-Completeness. W. H. Free-
man and Company, 1979.] but now under real world crossword puzzle
conditions. Moreover, we show how to generate high-quality masks via a
memetic algorithm, which is used and tested in an industrial manufac-
turing environment, leading to very good results.

1 Introduction

While an early predecessor of the crossword puzzle appeared in England as early
as in the 19th century, the puzzle in its common form has its origin in the USA,
where the first of its kind was published in the New York World newspaper [5].
Today, a variety of different crossword puzzle styles exist, such as, e.g., American-
, English-, and Swedish-style, to mention a few. In this paper, we will focus only
on the latter one, the Swedish-style crossword puzzle, which is the most popular
variant in Germany. The puzzle is usually presented as a grid consisting of three
different types of fields: definition fields, letter fields and cut-out fields. The task
of the puzzle solver is to guess the words that are described by the definition
fields and to fill out the corresponding letter fields that are denoted by an arrow
from the definition field. The cut-out fields are merely gaps in the puzzle that are
often used to show images or other additional information. An example Swedish-
style crossword is shown in Figure 1.

In current practice, crossword puzzles are created in two steps: At first, a
so-called mask is created, describing only the arrangement of letter fields and
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Fig. 1. A Swedish-style crossword puzzle with its solution

definition fields. The actual words filling the puzzle are then found in a second
step, resulting in the complete crossword puzzle. These words usually come from
a huge database, the so-called dictionary, and may be chosen to cover a particular
topic, such as, e.g., Greek mythology, famous pop bands, etc. The reason for this
separation is that, while efficient computer programs exist for solving the second
step, the first step is still often done manually. Although there in fact exist com-
puter programs which can create valid masks, those are usually of inferior quality.
In this paper, we will investigate both steps, thus covering the whole process of
crossword generation. During our investigations we have used the expertise of
the company Axel Ruepp Rätselservice (http://www.raetselservice.de), one
of the leading experts on puzzle generation in Germany.

Before we can start with the investigation of the aforementioned two crossword
puzzle generation steps, let us consider the main part of the crossword, the mask
in more detail. A mask is then a two-dimensional rectangular matrix or grid
through which the definition fields and letter fields are defined. It is obvious that
not every possible matrix corresponds to a valid crossword mask. We therefore
define four simple, absolute constraints which a valid mask has to meet:

1. Each letter field is to be part of at least one word.
2. Each word has to span over at least two letters.
3. Each word is to be enclosed in between two non-letter fields.
4. No two horizontal or two vertical words may overlap.

Examples for the violation of these four constraints are shown in Figure 2.
In the next section we show that generating high-quality masks can be per-

formed via memetic algorithms. The problem of filling a mask is then shown to
be NP-complete, as well as the problem of simultaneously generating and filling

Fig. 2. Violations of validity constraints 1-4, from left to right

http://www.raetselservice.de
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a mask. Finally, we conclude with a summary of the obtained results and some
open problems for further research.

2 Crossword Puzzle Mask Generation—Step One

Creating crossword puzzle masks is a problem that turns out to be more difficult
than one might anticipate at first sight. Some attempts at creating software
for automatic generation of crossword masks have been made, but the resulting
masks were usually by far inferior to manually created masks. Thus, high-quality
masks have until now been created by human experts that have good expertise
on quality characteristics gained over decades.

Some basic criteria for a “good” mask, stated informally, are the following:

1. Coverage: A large number of horizontally and vertically covered fields is
desirable, so there are two hints for finding out the letter that belongs in a
field.

2. Word lengths: Words must not be too long, because then it might be very
difficult to fill the resulting mask with words from the dictionary. Then again,
words must also not be too short, because puzzles containing longer words
are considered more interesting.

3. Clustering of definition fields: Large ”clusters” of definition fields are to be
avoided, such that definition fields and letter fields are distributed as evenly
as possible.

These criteria can be captured quite well by means of a mathematical function,
which leads to our idea of trying to optimize this function through evolutionary
algorithms. To this end, we have implemeted a genetic algorithm and a memetic
algorithm for generating masks, and we were able to show that the memetic
algorithm performs significantly better than the genetic algorithm. For more
details on evolutionary algorithms in general, we refer the reader to [1]. Here,
we are focusing on genetic algorithms as described by Holland [3], which are a
specific class of evoluationary algorithms.

The essential parts of a genetic algorithm are the fitness function, a mutation
operator, and a crossover operator. The evaluation function is computed by ac-
cumulating penalty points for several criteria, some of which correspond directly
to the validity constraints, while others are related to puzzle quality criteria:

1. Coverage: If a letter field is covered by one horizontal and one vertical defini-
tion field, then we consider such a letter field to be optimal. Every deviation
from that optimal situation is penalized.

2. Word lengths: Word lengths are rated according to a predefined rating table,
penalizing words that are “too long” or “too short.”

3. Word intersections: Filling a mask becomes very difficult if it contains inter-
secting words that are very long. This is because, usually, the dictionary that
is used for filling a mask does not contain a lot of very long words. Thus,
intersections of “long” words (with length more than 6) are penalized.



134 J. Engel et al.

4. Clustering: The size of each 8-connected definition field cluster is determined
and penalized according to a fixed rating table. Note that definition field
accumulations cannot be avoided at the left and right border of the mask,
thus they are not penalized as rigidly as other fields.

5. Invalid definitions: Every word that is not enclosed between two non-letter
fields is penalized.

6. Dead ends: Letter fields that are enclosed by three adjacent non-letter fields
are considered undesirable and are penalized.

Note that the exact penalty values for evaluating a mask have been determined
experimentally, by showing the generated mask to an expert and adjusting values
according to his feedback. One advantage of the described fitness function is that
an approximate rating for each distinct cell of a mask can be computed. This
is done by, for example, distributing the penalty points a large definition field
cluster receives among all fields contained in that cluster. This allows to estimate
the rating of only one half of a mask, or to locate areas that are especially “bad,”
and hence need to be improved.

The simplest idea for realizing a mutation operator on masks is to define
mutation as replacement of k randomly chosen fields with new random field
types; our experiments suggest that the value of k is most efficient if is chosen
randomly from {2, 3}. In the case of mask generation, however, the success rate
of such an operation is rather low, so it makes sense to instead use a modified
mutation operator as follows:

– Field type probability: Since about 2
3 of a typical mask consists of letter

fields, a letter field type is chosen with a probability of 2
3 . Furthermore, the

different definition field types are also not distributed equally, and are chosen
with probabilities that reflect the typical distribution.

– Centralized mutation: Often, it is necessary to simultaneously change a num-
ber of fields that are close together to achieve an improvement of mask qual-
ity. Thus, we do not choose the fields to be mutated uniformly from the
mask, but instead we choose one central field, and the other fields are then
chosen to be normally distributed around the center field.

– Guided mutation: The probability for choosing a problematic field, according
to localized fitness, as central mutation field, was increased.

– Predefined mutation: Two fixed mutation types have also been employed.
These correspond to shifting of definition fields by 1 cell, and splitting long
words.

Finally, the crossover operation between two masks was defined by splitting the
masks in two halves along a line passing through the mask center with arbitrary
orientation, and then producing a new mask by combining the two resulting
halves. See Figure 3 for a crossover operation on two arbitrary chosen masks.

During our experiments with the genetic algorithm, we found that convergence
is very slow, such that the genetic algorithm is even outperformed by a simple
hill-climber method. Thus, it seems that the advantages of genetic algorithms
cannot be exploited with such a simple approach. There are several reasons for
that:
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Fig. 3. An example for crossover. While both parent masks meet all validity constraints
and have an acceptable quality rating, the mask resulting from a crossover along the
dashed line contains seven violations and is rated far worse.

– The crossover operator is essentially useless. Figure 3 shows the reason for
that: Violations of validity constraints are introduced with high probability
by the crossover operator, which causes the mask rating to worsen consider-
ably and crossover results to be discarded immediately.

– Low Mutation Success Rate: Due to the discrete nature of the problem and
its very high dimension, there is a huge number of possible mutations. For
a 20× 20 mask for example, there are approximately two billions of possible
mutations of size three. The probability for successful mutation is very low.

– Low diversity: It turns out that even for very low selection pressure, the
diversity among the population decreases very quickly.

This gives rise to the concept of introducing a “second” evolutionary algorithm
on a higher level: This evolutionary algorithm only uses crossover, but a hill-
climber is applied after each crossover to repair the resulting child mask. This
idea is also known as memetic algorithm [4]. While the “outer” evolutionary
algorithm uses only crossover and specializes in exploration, the hill-climber
process does both exploration and exploitation.

Since the mask-repairing hill-climber algorithm is computationally very ex-
pensive, we apply two techniques in order to assure that it is only used on promis-
ing mask candidates. First of all, we estimate the potential rating of a crossover
result by using the local rating of both parents, by simply summing the local
ratings of both halves. This estimate only accounts for the quality of both halves
on their own, without taking the problems arising along the splitting line into
account. A pre-selection of crossover results based on their potential rating is
performed, and only pre-selected masks are repaired using the hill-climber.

Furthermore, we also apply a technique that allows us to quickly reject masks
that turn out to be difficult to repair or are of inferior quality despite being pre-
selected according to the estimate described above. Such masks are filtered out
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Fig. 4. Memetic approach vs. basic hill-climber vs. genetic algorithm

by first applying a hill-climber with a weak termination condition on all masks,
and then filtering out inferior masks before continuing the regular hill-climbing
process.

The memetic approach described above performs significantly better than
both the genetic algorithm and the hill-climber, as can be seen from Figure 4. To
generate that plot, 8 mask generation runs have been evaluated. The continuous
line depicts the average over all runs, the boxes denote the average plus/minus
the estimated standard deviation. The best and worst results are depicted by
the whiskers of the box plots.

In the preceding explanations, the parameters were judged based solely on
the fitness values of the masks created. This makes sense, as the fitness value is
the only information about a mask available for the algorithm—hence the better
the fitness of the masks created, the better the algorithm.

From a practical point of view however, the resulting mask itself is relevant—
and not some fitness value. The professional opinion from employees at Axel
Ruepp Rätselservice was solicited:

“[The masks] are surprisingly good, almost as good as handmade. Only
very few adjustments are necessary to make them fit for being used in
practice.”

An interesting point to add is that, regardless of which fitness-function settings
are used (i.e., how the different features are penalized), the automatically gener-
ated masks are always better—by a large fraction—than the manually created
“originals,” with respect to the fitness function used. This strongly suggests that,
apart from optimizing the running time of the algorithm, further improvement
is only possible by finding a better fitness function.
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3 Filling a Crossword Puzzle Mask—Step Two

Since we have now exhaustively discussed the first step in crossword making
practice, we now consider the second step: Filling a given mask with words from
a dictionary or the so called common crossword generation problem (CWG),
which is defined as follows:1

Instance: A mask M and a dictionary D.
Question: Can the mask M be filled using only words from D satisfying the

constraints on the crossword to be valid—cf. introduction?

This problem is often solved in practice by using a backtracking algorithm, which
provides reasonably good performance. This is contrary to the result mentioned
in Garey and Johnson’s monograph [2], where it is stated that filling crossword
puzzles is NP-complete; the result is credited to a private communication of
Lewis and Papadimitriou. In this paper we deliver an alternative proof under
real world assumptions on crosswords, along with an analysis of a variant of
the original problem in order to determine that the whole puzzle generation
process is intractable, too. We assume the reader to be familiar with the basics
of complexity theory as contained in [2]. Hardness and completeness are always
meant with respect to log-space reducibilities.

Now we are going to prove the first of our two statements:

Theorem 1. CWG is NP-complete.

Containment of CWG in NP is immediate, since we can guess an assignment of
characters to letter fields and verify that all resulting words are in the dictionary
in polynomial time. It remains to be shown that CWG is NP-hard. We prove
this by reduction from the well-known NP-complete problem 3SAT [2], which is
defined as follows:

Instance: A finite set of Boolean variables X = {x1, x2, . . . , xn} and a finite
set of clauses C = {c1, c2, . . . , cm}, where each clause consists of 3 literals.

Question: If the input is interpreted in the obvious way as a 3CNF formula,
is there an assignment for the variables such that the formula evaluates to
true?

For our construction we will use building blocks (also referred to as gates) that
can be used to emulate Boolean formulas. The basic idea is as follows: Boolean
values true and false will be represented by letter fields that contain 1 or 0. Words
that begin and end with the same character will then be used to transmit these
signals. To simplify the explanation of our construction, we will at first assume
that multiple occurrences of the same word within one puzzle are allowed and
that the alphabet contains, besides 0 and 1, additional characters ⇔ and �.
The additional characters will later on be replaced by binary counters of certain
lengths, which assures that the puzzle can be filled even if no word is allowed
to appear twice. An overview of all gates used in our construction is shown in

1 We assume ”‘standard”’ encodings of the mask and the dictionary, respectively.
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Figure 5. We will treat each device as being 6 fields wide and a multiple of 3
fields high, as indicated by the gray bounding boxes. This property assures that
we can easily combine gates. There are also some devices that appear to be wider
than 6 fields, but in all of those cases, the fields outside the 6× 3 frame do not
interfere with other gates, so there will be no problem combining arbitrary gates.
The fields that contain the characters ⇔ and � should for now be considered as
letter fields with forced value of ⇔. The fields labelled with ”in” and ”out” are
just regular letter fields in the mask, and for our gates, they function as input
and output interfaces. Our devices can be combined by letting input and output
fields coincide.

The most basic building blocks that we will use are variables, wires and
shifters. To use these gates, we need to include the following set of words in
the dictionary:

length 3: 0 ⇔ 0, 1 ⇔ 1
length 5: 00 ⇔ 00, 11 ⇔ 11
length 6: 0 ⇔ 00 ⇔ 0, 1 ⇔ 11 ⇔ 1

Two different variants of wires are needed to avoid collisions of wires with other
gates. For the NOT, AND, and OR gates, the following words are required:

length 4: 00 ⇔ 1
11 ⇔ 0

length 7: 0 ⇔ 00 ⇔ 00
0 ⇔ 01 ⇔ 00
1 ⇔ 00 ⇔ 00
1 ⇔ 01 ⇔ 10

length 8: 0 ⇔ 00 ⇔ 000
1 ⇔ 00 ⇔ 100
0 ⇔ 01 ⇔ 100
1 ⇔ 01 ⇔ 100

It can easily be verified that the devices implement the specified Boolean func-
tions: If we have, for example, an input of 1 and 1 at the AND gate, the only
7-letter word that can be filled in is 1 ⇔ 01 ⇔ 10, and this causes a value of 1 to
be transmitted to the output field. Note that we can implement a permutation
of values in neighbouring wires using the gates introduced so far, so we are able
to rearrange values arbitrarily.

As mentioned earlier, the construction as it was explained until now ignores
the fact that multiple occurrences of words are not allowed in a crossword. The
solution to this problem is as follows: We need to determine the number of
words needed to fill the puzzle, and then we appropriately extend the lengths
of the words and use a certain number of letters in them as binary counter. If
we want to use longer words, we need to enlarge our gates in some way, and
this is where the fields containing ⇔ and � play an important role: They are
extended (⇔ horizontally, � vertically) such that they can contain the binary
number associated with a word. The number of digits needed can be determined
by counting the total number n of words in the mask, and using d := �ld(n)� as
number of digits. Then, we will easily be able to generate n words of each type,
which will be more than enough.

Now we can use the gadgets introduced above to transform any 3SAT formula
into a crossword puzzle that can be filled if and only if the corresponding formula
is satisfiable: We can generate signals corresponding to variables, we can replicate
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in

� �
⇔
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Fig. 5. Complete overview of gates used

these signals according to how often each of the variables occurs in the formula,
we can rearrange the signals such that they appear in the same order as in the
formula, we can apply OR to groups of three signals, and finally we can apply
AND to the resulting signals, and force the result to be true, represented by the
character 1. Thus, we have proven Theorem 1. ��

Finally, we consider a variant of the problem by allowing incomplete masks as
input—this means that definition fields are left out in the mask, and that they
are generated automatically. Let us call this problem the crossword generation
problem with incomplete mask (ICWG). We obtain the following result:

Theorem 2. ICWG is NP-complete.

We will show that, under some reasonable assumptions and demands on masks,
we can basically reuse the reduction developed for CWG, thus proving Theorem 2.

There are two extra conditions that masks of the generated puzzles should
fulfill. Figure 6 shows one of two potential problems one may encounter when
allowing automatically generated masks. That case can be stated informally as
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Fig. 6. Examples for “ugly” masks that we want to avoid. In the left puzzle, the let-
ter fields are disconnected. The lower part of the right puzzle is split in two, due to the
definition fields building a connection from the border to the cut-out-fields in the middle.

“we do not want definition fields to cut the puzzle into separate parts.” Assuming
that we treat the area outside of the puzzle border as cut-out area, the criterion
can be stated more formally as follows: We do not want definition fields to form
a connection between areas of cut-out fields that are separate in the incomplete
mask. Such a connection is defined with respect to 8-connectivity among puzzle
cells and cut-out cells. The other problem that we need to take care of is the
following: We want the letter fields to be connected, which is something that is
not guaranteed by the previous condition alone. Thus, we demand that there is,
for each pair of letter fields, a path between those letter fields that only uses
letter fields. This is meant with respect to 4-connectivity among letter cells.

With these preconditions, we can basically reuse the reduction developed for
CWG, showing Theorem 2. The only thing we need to do is to remove all defini-
tion fields from the devices. Because of our validity conditions, the automatically
created definition fields will then be placed in such a way that the functionality
of the gates is equivalent. We will verify this for the variable and wire devices.
See Figure 7 for the basic devices without their definition fields.

In the variable device, we can only place a right arrow definition field in the
leftmost position. Otherwise, there would be a non-defined word in the mask,
or if we place two definition fields, the letter fields can no longer be connected,
violating one of our quality criteria. The first wire device consists of 4 words, none
of which can be split up by definition fields due to our condition of connectivity.
It’s easy to see that definition fields can only be put in the same places as in the
original device. This principle works for all other devices as well, which proves
Theorem 2. ��

⇔ ⇔ out

(a) variable

in ⇔ out

� �
⇔

(b) wire 1

⇔
� �

in ⇔ out

(c) wire 2

Fig. 7. Basic Devices without definition fields
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