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Abstract

This paper discusses parameter-based exploration methods for reinforcement learning. Parameter-based methods

perturb parameters of a general function approximator directly, rather than adding noise to the resulting actions.

Parameter-based exploration unifies reinforcement learning and black-box optimization, and has several advantages

over action perturbation. We review two recent parameter-exploring algorithms: Natural Evolution Strategies and

Policy Gradients with Parameter-Based Exploration. Both outperform state-of-the-art algorithms in several complex

high-dimensional tasks commonly found in robot control. Furthermore, we describe how a novel exploration method,

State-Dependent Exploration, can modify existing algorithms to mimic exploration in parameter space.
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1. Introduction

Reinforcement learning (RL) is the method of choice for many complex

real-world problems where engineers are unable to explicitly determine

the desired policy of a controller. Unfortunately, as the indirect reinforce-

ment signal provides less information to the learning algorithm than the

teaching signal in supervised learning, learning requires a large number

of trials.

Exploration is a critical component of RL, affecting both the number

of trials required and the quality of the solution found. Novel solu-

tions can be found only through effective exploration. Preferably, explo-

ration should be broad enough not to miss good solutions, economical

enough not to require too many trials and intelligent in the sense that

the information gained through it is high. Clearly, those objectives are

difficult to trade off. In practice, unfortunately, many RL practitioners do

not focus on exploration, instead relying on small random perturbations

of the actions of the current policy.

In this paper we review some alternative methods of exploration for

Policy Gradient (PG) based RL that go beyond action-based explo-

ration, directly perturbing policy parameters instead. We will look at

two recent parameter-exploring algorithms: Natural Evolution Strate-

gies (NES) [33] and Policy Gradients with Parameter-Based Exploration

(PGPE) [22]. Both algorithms have been shown to outperform state-

of-the-art PG methods in several complex high-dimensional tasks com-

monly found in robot control. We will review further a novel exploration

technique, called State-Dependent Exploration (SDE), first introduced

in [18]. SDE can modify existing PG algorithms to mimic exploration in

∗E-mail: ruecksti@in.tum.de

parameter space and has also demonstrated to improve state-of-the-

art PG methods.

We take a stand for parameter exploration (PE), the common factor of

the above mentioned methods, which has the advantage of reducing

the variance of exploration, while at the same time easing credit as-

signment. Furthermore, we establish how these methods relate to the

field of Black-Box Optimization (BBO), and Evolution Strategies (ES) in

particular. We highlight the topic of parameter-based exploration from

different angles and give an overview of the superiority of this approach.

We also give reasons for the increase in performance and insights in

additional properties of this exploration approach.

The general outline of this paper is as follows: In Section 2 we intro-

duce the general frameworks of RL and BBO and review the state-of-

the-art. Section 3 then details parameter-based exploration, reviews

two parameter-exploring algorithms and demonstrates how traditional

algorithms can be brought to behave like parameter-exploring ones. Ex-

perimental results are described in Section 4 and the paper concludes

in Section 5.

2. Background

In this section we introduce the RL framework in general and fix the ter-

minology. In that context, we then formalize the concept of exploration.

Finally we provide a brief overview of policy gradients and black-box

optimization.

2.1. Reinforcement Learning

RL generally tries to optimize an agent’s behavior in its environment.

Unlike supervised learning, the agent is not told the correct behavior
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directly, but only informed about how well it did, usually in terms of

a scalar value called reward.
Learning proceeds in a cycle of interactions with the environment. In

time t, the agent observes a state st from the environment, performs an

action at and receives a reward rt . The environment then determines

the next state st+1. We will use the term history for the concatenation

of all encountered states, actions and rewards up to time step t as

ht = {s0, a0, r0, . . . , st−1, at−1, rt−1, st}.
Often, the environment fulfills the Markov assumption, i.e. the proba-

bility of the next state depends only on the last observed state and

the current action: p(st+1|ht) = p(st+1|st , at). The environment is

episodic if it admits at least one terminal, absorbing state.

The objective of RL is to maximize the ‘long term’ return Rt , which is

the (discounted) sum of future rewards Rt = ∑T
k=t γ

krt+1+k . In the

episodic case, the objective is to maximize R1, i.e., the discounted sum

of rewards at the initial time step. The discounting factor γ ∈ [0, 1] can

put more or less emphasis on the most recent rewards. For infinite-

horizon tasks that do not have a foreseeable end, γ < 1 prevents

unbounded sums.

Actions are selected by a policy π that maps a history ht to a prob-

ability of choosing an action: π(ht) = p(at|ht). If the environment

is Markovian, it is sufficient to consider Markovian policies that satisfy

p(at |ht) = p(at|st).
We define J(θ) to be the performance of a policy π with parameters

θ: J(θ) = E{Rt}. For deterministic policies, we also write π(s′) = a.

In either case, the selected action is not necessarily the one executed,

as it can be modified or substituted by a different action, depending on

the exploration component. We describe exploration in detail in Section

2.2.

Three main categories can be found in RL: direct, value-based and

model-based learning, as depicted in Figure 2.1.

Value-based RL tries to map each combination of state and action to

a Q-value. A Q-value is the expected return, if we execute action a in

state s at time t and follow the policy π greedily thereafter: Qπ(s, a) =
E{Rt|st = s, at = a}. If the task is episodic, we can approximate

the values by Monte-Carlo methods, generating several episodes and

averaging over the received returns.

For infinite-horizon tasks, the definition of the Q-values can be trans-

formed: Qπ(s, a) = E{Rt|st = s, at = a} = E{rt+1 +
γQπ(st+1, at+1)|st = s, at = a}. Using an exponential moving aver-

age and replacing Q(st+1, at+1) by maxa Q(st+1, a), we end up with

the well-known Q-Learning algorithm [31]:

Q(st , at)← Q(st , at)+α(rt+1 +γ max
a

Q(st+1, a)−Q(st , at)) (1)

A greedy policy then selects the action with the highest Q-value in a

given state.

Figure 1. Different Reinforcement Learning categories.

In a continuous action space, action selection is much harder, mainly

because calculating arg maxa Q(s, a) is not trivial. Using a general

function approximator (FA) to estimate the Q-values for state-action

pairs, it is possible but expensive to follow the gradient
∂Q(s,a)

∂a
towards

an action that returns a higher Q-value. In actor-critic architectures

[27], where the policy (the actor) is separated from the learning com-

ponent (the critic), one can backpropagate the temporal difference er-

ror through the critic FA (usually implemented as neural networks) to

the actor FA and train the actor to output actions that return higher

Q-values [16, 30].

Direct reinforcement learning methods, in particular Policy Gradient

methods [13, 14, 34], avoid the problem of finding arg maxa Q(s, a)
altogether, thus being popular for continuous action and state domains.

Instead, states are mapped to actions directly by means of a parameter-

ized function approximator, without utilizing Q-values. The parameters

θ are changed by following the performance gradient ∇θJ(θ). Different

approaches exist to estimate this gradient [14].

Finally, model-based RL aims to estimate the transition probabilities

Pa
ss′ = p(s′|s, a) and the rewards Ra

ss′ = E{r|s, s′, a} going from

state s to s′ with action a. Having a model of the environment allows

one to use direct or value-based techniques within the simulation of the

environment, or even for dynamic programming solutions.

2.2. Exploration

The exploration/exploitation dilemma is one of the main problems that

needs to be dealt with in Reinforcement Learning: Without exploration,

the agent can only go for the best solution found so far, not learning

about potentially better solutions. Too much exploration leads to mostly

random behavior without exploiting the learned knowledge. A good

exploration strategy carefully balances exploration and greedy policy

execution.

Many exploration techniques have been developed for the case of

discrete actions [28, 32], commonly divided into undirected and di-

rected exploration. The most popular—albeit not the most effective—

undirected exploration method is ε-greedy exploration, where the prob-

ability of choosing a random action decreases over time. In practice,

a random number r is drawn from a uniform distribution r ∼ U(0, 1),
and action selection follows this rule:

π(s) =
{

arg maxa Q(s, a) if r ≥ ε

random action from A(s) if r < ε

where A(s) is the set of valid actions from state s and 0 ≤ ε ≤ 1
is the trade-off parameter, which is reduced over time to slowly tran-

sition from exploration to exploitation. Other exploration methods for

discrete actions are presented in [28]. For the remainder of the paper,

we will ignore the well-established area of discrete action exploration

and concentrate on continuous actions.

In the case of continuous actions, exploration is often neglected. If the

policy is considered to be stochastic, a Gaussian distribution of actions

is usually assumed, where the mean is often selected and interpreted

as the greedy action:

a ∼ N (agreedy, σ 2) = agreedy + ε, where ε ∼ N (0, σ 2) (2)

During learning, exploration then occurs implicitly—almost as a side-

effect— by sampling actions from the stochastic policy. While this is

convenient, it conceals the fact that two different stochastic elements
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are involved here: the exploration and the stochastic policy itself. This

becomes most apparent if we let σ adapt over time as well, following

the gradient
∂J(θ)
∂σ

, which is well-defined if the policy is differentiable. If

the best policy is in fact a deterministic one, σ will decrease quickly and

therefore exploration comes to a halt as well. This clearly undesirable

behavior can be circumvented by adapting the variance manually, e.g.

by decreasing it slowly over time.

Another disadvantage of this implicit exploration is the independence

of samples over time. In each time step, we draw a new ε and add it

to the actions, leading to a very noisy trajectory through action space

(see Figure 2 top). A robot controlled by such actions would exhibit

a very shaky behavior, with a severe impact on the performance. Imag-

ine an algorithm with this kind of exploration controlling the torques of

a robot end-effector directly. Obviously, the trembling movement of the

end-effector will worsen the performance in almost any object manip-

ulation task. And we ignore the fact that such consecutive contradict-

ing motor commands might even damage the robot or simply cannot

be executed. Thus applying such methods requires the use of mo-

tion primitives [19] or other transformations. Despite these problems,

many current algorithms [13, 17, 34] use this kind of Gaussian, action-

perturbing exploration (cf. Equation 2).

2.3. Policy Gradients

In this paper, we will compare the parameter-exploring parameters to

policy gradient algorithms that perturb the resulting action, in particu-

lar to REINFORCE [34] and eNAC [13]. Below, we will give a short

overview of the derivation of policy gradient methods.

we start with the probability of observing history hπ under policy π,

which is given by the probability of starting with an initial observation

s0, multiplied by the probability of taking action a0 under h0, multiplied

by the probability of receiving the next observation s1, and so on. Thus,

(3) gives the probability of encountering a certain history hπ .

p(hπ) = p(s0)
T−1∏

t=0
π(at|h

π
t ) p(st+1|h

π
t , at) (3)

Inserting this into the definition of the performance measure J(θ), we

can rewrite the equation by multiplying with 1 = p(hπ )/p(hπ ) and using
1
x
∇x = ∇ log(x) to get

∇θJ(π) =
∫

p(hπ)
p(hπ)∇θp(hπ)R(hπ) dhπ (4)

=
∫

p(hπ)∇θ log p(hπ)R(hπ) dhπ . (5)

For now, let us consider the gradient ∇θ log p(hπ). Substituting the

probability p(hπ) according to (3) gives

∇θ log p(hπ) = ∇θ log
[
p(s0)

T−1∏

t=0
π(at|h

π
t ) p(st+1|h

π
t , at)

]

= ∇θ

[
log p(s0) +

T−1∑

t=0
log π(at|h

π
t +

+
T−1∑

t=0
log p(st+1|h

π
t , at)

]
. (6)

Figure 2. Illustration of the main difference between action (left) and parameter
(right) exploration. Several rollouts in state-action space of a task with

state x ∈ R
2 (velocity and angle axes) and action a ∈ R (torque

axis) are plotted. While exploration based on action perturbation fol-
lows the same trajectory over and over again (with added noise), pa-
rameter exploration instead tries different strategies and can quickly
find solutions that would take a long time to discover otherwise.

On the right side of (6), only the policy π is dependent on θ, so the

gradient can be simplified to

∇θ log p(hπ) =
T−1∑

t=0
∇θ log π(at|h

π
t ). (7)

We can now resubstitute this term into (5) and get

∇θJ(π) =
∫

p(hπ)
T−1∑

t=0
∇θ log π(at|h

π
t )R(hπ) dhπ

= E

{
T−1∑

t=0
∇θ log π(at|h

π
t )R(hπ)

}
. (8)
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Unfortunately, the probability distribution p(hπ) over the histories pro-

duced by π is not known in general. Thus we need to approximate

the expectation, e.g. by Monte-Carlo sampling. To this end, we

collect N samples through world interaction, where a single sample

comprises a complete history hπ (one episode or rollout) to which a re-

turn R(hπ) can be assigned, and sum over all samples which basically

yields Williams’ [34] episodic REINFORCE gradient estimation:

∇θJ(π) ≈
1
N

∑

hπ

T−1∑

t=0
∇θ log π(at |h

π
t )R(hπ) (9)

The derivation of eNAC is based on REINFORCE but taken further. It

is an actor-critic method that uses the natural gradient to estimate the

performance gradient. Its derivation can be found in [13].

2.4. Black-Box Optimization

The objective of optimization is to find parameters x ∈ D that max-

imize a given fitness function f(x). Black-box optimization places lit-

tle restrictions on f , in particular, it does not require f to be differen-

tiable, continuous or deterministic. Consequently, black-box optimiza-

tion algorithms have access only to a number of evaluations, that is

(x, f(x))-tuples, without the additional information (e.g., gradient, Hes-

sian) typically assumed by other classes of optimization algorithms.

Furthermore, as evaluations are generally considered costly, black-box

optimization attempts to maximize f with a minimal number of them.

Such optimization algorithms allow domain experts to search for good

or near-optimal solutions to numerous difficult real-world problems in

areas ranging from medicine and finance to control and robotics.

The literature on real-valued blackbox optimization is too rich to be ex-

haustively surveyed. To our best knowledge, among various families of

algorithms (e.g., hill-climbing, differential evolution [23], evolution strate-

gies [15], immunological algorithms, particle swarm optimization [8] or

estimation of distribution algorithms [10]), methods from the evolution

strategy family seem to have an edge, particularly in cases where the fit-

ness functions are high dimensional, non-separable or ill-shaped. The

common approach in evolution strategies is to have a Gaussian mu-

tation distribution maintained and updated through generations. The

Gaussian mutation distribution is updated such that the probability

of generating points with better fitness is high. Evolution strategies

have been extended to account for correlations between the dimen-

sions of the parameter space D , leading to state of the art methods

like covariance-matrix adaptation (CMA-ES) [6] and natural evolution

strategies (see section 3.4).

3. Parameter-based Exploration

A significant problem with policy gradient algorithms such as REIN-

FORCE [34] is that the high variance in the gradient estimation leads

to slow convergence. Various approaches have been proposed to re-

duce this variance [1, 3, 14, 26]. However, none of these methods

address the underlying cause of the high variance, which is that re-

peatedly sampling from a probabilistic policy has the effect of injecting

noise into the gradient estimate at every time-step. Furthermore, the

variance increases linearly with the length of the history [12], since each

state may depend on the entire sequence of previous samples. An al-

ternative to the action-perturbing exploration described, as described

in Section 2.2, is to manipulate the parameters θ of the policy directly.

In this section we will start by showing how this parameter-based ex-

ploration can be realized (section 3.1) and provide a concrete algorithm

for doing so (section 3.2). Realizing how this relates to black-box op-

timization, specifically evolution strategies (section 3.3), we then de-

scribe a related family of algorithms from that field (section 3.4). Finally

we introduce a methodology for bridging the gap between action-based

and parameter-based exploration (section 3.5).

3.1. Exploring in Parameter Space

Instead of manipulating the resulting actions, parameter exploration

adds a small perturbation δθ directly to the parameter θ of the pol-

icy before each episode, and follow the resulting policy throughout the

whole episode. Finite differences are a simple approach to estimate

the gradient ∇θJ(θ) towards better performance:

∇θJ(θ) ≈
J(θ + δθ) − J(θ)

δθ
(10)

In order to get a more accurate approximation, several parameter per-

turbations are usually collected (one for each episode) and the gradient

is then estimated through linear regression. For this, we generate sev-

eral rollouts by adding some exploratory noise to our policy parameters,

resulting in an action a = f(s; θ +δθ). From the rollouts, we generate

the matrix Θ which has one row for each parameter perturbation δθi.

We also generate a column vector J with the corresponding J(θ + δθ)
in each row:

Θi = [ δθi 1 ] (11)
Ji = [ J(θ + δθi) ] (12)

The ones in the right column of Θ are needed for the bias in the linear

regression. The gradient can now be estimated with

β = (ΘT Θ)−1 ΘT J (13)

where the first n elements of β are the components of the gradient

∇θJ(θ), one for each dimension of θ.

Parameter-based exploration has several advantages. First, we no

longer need to calculate the derivative of the policy with respect to

its parameters, since we already know which choice of parameters

has caused the changes in behavior. Therefore policies are no longer

required to be differentiable, which in turn provides more flexibility in

choosing a suitable policy for the task at hand.

Second, when exploring in parameter space, the resulting actions

come from an instance of the same family of functions. This contrasts

with action-perturbing exploration, which might result in actions that

the underlying function could never have delivered itself. In the latter

case, gradient descent could continue to change the parameters into

a certain direction without improving the overall behavior. For example,

in a neural network with sigmoid outputs, the explorative noise could

push the action values above +1.0.

Third, parameter exploration avoids noisy trajectories that are due to

adding i.i.d. noise in each timestep. This fact is illustrated in Figure 2.

Each episode is executed entirely with the same parameters, which

are only altered between episodes, resulting in much smoother action

trajectories. Furthermore, this introduces much less variance in the roll-

outs, which facilitates credit assignment and generally leads to faster

convergence [18, 22].

Lastly, the finite difference gradient information is much more accessi-

ble and simpler to calculate, as compared to the likelihood ratio gradient

in [34] or [13].
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3.2. Policy Gradients with Parameter-based Explo-
ration

Following the idea above, in [22] it is proposed to use policy gradi-
ents with parameter-based exploration, where a distribution over

the parameters of a controller is maintained and updated. Therefore

PGPE explores purely in parameter space. The parameters are sam-

pled from this distribution at the start of each sequence, and thereafter

the controller is deterministic. Since the reward for each sequence de-

pends only on a single sample, the gradient estimates are significantly

less noisy, even in stochastic environments.

In what follows, we briefly summarize [21], outlining the derivation that

leads to PGPE. We give a short summary of the algorithm as far as it

is needed for the rest of the paper.

Given the RL formulation from 2.1 we can associate a cumulative re-

ward R(h) with each history h by summing over the rewards at each

time step: R(h) = ∑T
t=1 rt . In this setting, the goal of reinforcement

learning is to find the parameters θ that maximize the agent’s expected

reward

J(θ) =
∫

H

p(h|θ)R(h)dh. (14)

An obvious way to maximize J(θ) is to find ∇θJ and use it to carry out

gradient ascent. Noting that R(h) is independent of θ, and using the

standard identity ∇xy(x) = y(x)∇x log y(x), we can write

∇θJ(θ) =
∫

H

p(h|θ)∇θ log p(h|θ)R(h)dh. (15)

Assuming the environment is Markovian, and the states are condition-

ally independent of the parameters given the agent’s choice of actions,

we can write p(h|θ) = p(s1)ΠT
t=1p(st+1|st , at)p(at |st , θ). Substitut-

ing this into Eq. (15) yields

∇θJ(θ) =
∫

H

p(h|θ)
T∑

t=1
∇θp(at |st , θ)R(h)dh. (16)

Clearly, integrating over the entire space of histories is unfeasible, and

we therefore resort to sampling methods

∇θJ(θ) ≈
1
N

N∑

n=1

T∑

t=1
∇θp(an

t |sn
t , θ)r(hn), (17)

where the histories hi are chosen according to p(hi|θ). The ques-

tion then is how to model p(at|st , θ). In policy gradient methods such

as REINFORCE, the parameters θ are used to determine a probabilis-

tic policy πθ(at|st) = p(at|st , θ). A typical policy model would be

a parametric function approximator whose outputs define the probabil-

ities of taking different actions. In this case the histories can be sampled

by choosing an action at each time step according to the policy distribu-

tion, and the final gradient is then calculated by differentiating the policy

with respect to the parameters. However, sampling from the policy on

every time step leads to a high variance in the sample over histories,

and therefore to a noisy gradient estimate.

PGPE addresses the variance problem by replacing the probabilistic

policy with a probability distribution over the parameters θ, i.e.

p(at |st , ρ) =
∫

Θ
p(θ|ρ)δFθ (st ),at dθ, (18)

where ρ are the parameters determining the distribution over θ, Fθ(st)
is the (deterministic) action chosen by the model with parameters θ in

state st , and δ is the Dirac delta function. The advantage of this ap-

proach is that the actions are deterministic, and an entire history can

therefore be generated from a single parameter sample. This reduc-

tion in samples-per-history is what reduces the variance in the gradient

estimate. As an added benefit the parameter gradient is estimated by

direct parameter perturbations, without having to backpropagate any

derivatives, which allows the use of non-differentiable controllers.

The expected reward with a given ρ is

J(ρ) =
∫

Θ

∫

H

p(h, θ|ρ)R(h)dhdθ. (19)

Noting that h is conditionally independent of ρ given θ, we have

p(h, θ|ρ) = p(h|θ)p(θ|ρ) and therefore ∇ρ log p(h, θ|ρ) =
∇ρ log p(θ|ρ), we have

∇ρJ(ρ) =
∫

Θ

∫

H

p(h|θ)p(θ|ρ)∇ρ log p(θ|ρ)R(h)dhdθ, (20)

where p(h|θ) is the probability distribution over the parameters θ and ρ
are the parameters determining the distribution over θ. Clearly, integrat-

ing over the entire space of histories and parameters is unfeasible, and

we therefore resort to sampling methods. This is done by first choosing

θ from p(θ|ρ), then running the agent to generate h from p(h|θ):

∇ρJ(ρ) ≈
1
N

N∑

n=1
∇ρ log p(θ|ρ)r(hn). (21)

In the original formulation of PGPE, ρ consisted of a set of means

{µi} and standard deviations {σi} that determine an independent nor-

mal distribution for each parameter θi in θ of the form p(θi|ρi) =
N (θi|µi, σ 2

i ) Some rearrangement gives the following forms for the

derivative of log p(θ|ρ) with respect to µi and σi:

∇µi log p(θ|ρ) = (θi − µi)
σ 2

i

∇σi log p(θ|ρ) = (θi − µi)2 − σ 2
i

σ 3
i

, (22)

which can then be substituted into (21) to approximate the µ and σ
gradients that gives the PGPE update rules. Note the similarity to REIN-

FORCE [34]. But in contrast to REINFORCE, θ defines the parameters

of the model, not the probability of the actions.

3.3. Reinforcement Learning as Optimization

There is a double link between RL and optimization. On one hand,

we may consider optimization to be a simple sub-problem of RL, with

only a single state and a single timestep per episode, where the fitness

corresponds to the reward (i.e. a bandit problem).

On the other hand, more interestingly, the return of a whole RL episode

can be interpreted as a single fitness evaluation, where the parameters

x now map onto the policy parameters θ. In this case, parameter-

based exploration in RL is equivalent to black-box optimization. More-

over, when the exploration in parameter space is normally distributed,

a directly link between RL and evolution strategies can be established.
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3.4. Natural Evolution Strategies

The original PGPE can be seen as a stochastic optimization algorithm,

where the parameters are adapted separately. However, in practice,

parameters representing the policies are often strongly correlated, ren-

dering per-parameter update less efficient.

The family of natural evolution strategies [24, 25, 33] offers a princi-

pled alternative by following the natural gradient of the expected fit-

ness. NES maintains and iteratively updates a multivariate Gaussian

mutation distribution. Parameters are updated by estimating a natu-
ral evolution gradient, i.e., the natural gradient on the parameters

of the mutation distribution, and following it towards better expected

fitness. The evolution gradient obtained automatically takes into ac-

count the correlation between parameters, thus is particularly suitable

here. A well-known advantage of natural gradient methods over ‘vanilla’

gradient ascent is isotropic convergence on ill-shaped fitness land-

scapes [2]. Although relying exclusively on function value evaluations,

the resulting optimization behavior closely resembles second order opti-

mization techniques. This avoids drawbacks of regular gradients which

are prone to slow or even premature convergence.

The core idea of NES is its strategy adaptation mechanism: NES fol-

lows a sampled natural gradient of expected fitness in order to update

(the parameters of) the search distribution. NES uses a Gaussian dis-

tribution with a fully adaptive covariance matrix, but it may in principle

be used with a different family of search distributions. NES exhibits the

typical characteristics of evolution strategies. It maintains a population

of vector-valued candidate solutions, and samples new offspring and

adapts its search distribution generation-wise. The essential concepts

of NES are briefly revisited in the following.

We collect the parameters of the Gaussian, the mean µ and the co-

variance matrix C , in the variable θ = (µ, C ). However, to sample ef-

ficiently from this distribution we need a square root of the covariance

matrix (a matrix A fulfilling AAT = C ). Then x = µ + Az transforms

a standard normal vector z ∼ N (0, I) into a sample x ∼ N (µ, C ). Let

p(x | θ) = 1
(2π) d

2 det(A)
· exp

(
−

1
2

∥∥∥A · (x − µ)
∥∥∥

2
)

denote the density of the normal search distribution N (µ, C ), and let

f(x) denote the fitness of sample x (which is of dimension d). Then,

J(θ) = E[f(x) | θ] =
∫

f(x) p(x | θ) dx (23)

is the expected fitness under the search distribution given by θ. Again,

the log-likelihood trick enables us to write

∇θJ(θ) =
∫ [

f(x) ∇θ log(p(x | θ))
]

p(x | θ) dx .

From this form we obtain the Monte Carlo estimate

∇θJ(θ) ≈ ∇θ Ĵ(θ) = 1
n

n∑

i=1
f(xi) ∇θ log(p(x | θ))

of the expected fitness gradient. For the Gaussian search distribution

N (µ, C ), the term ∇θ log(p(x | θ)) can be computed efficiently, see

e.g. [24].

Instead of using the stochastic gradient directly for updates, NES

follows the natural gradient [2]. In a nutshell, the natural gradient

amounts to G = F−1∇θJ(θ), where F denotes the Fisher informa-

tion matrix of the parametric family of search distributions. Natural gra-

dient ascent has well-known advantages over vanilla gradient ascent.

Most prominently it results in isotropic convergence on ill-shaped fit-

ness landscapes because the natural gradient is invariant under linear

transformations of the search space.

Additional techniques were developed to enhance NES’ performance

and viability, including importance mixing to reduce the number of re-

quired samples [24, 25], and exponential parametrization of the search

distribution to guarantee invariance while at the same time providing

an elegant and efficient way of computing the natural gradient without

the need of the explicit Fisher information matrix or its costly inverse

(under review). NES’ results are now comparable to the well-known

CMA-ES [5, 9] algorithm, the de facto ‘industry standard’ for continu-

ous black-box optimization.

3.5. State-Dependent Exploration

An alternative to parameter-based exploration, that addresses most of

the shortcomings of action-based exploration is State-Dependent Ex-

ploration [18]. Its core benefit is that it is compatible with standard policy

gradient methods like REINFORCE in a way that it can simply replace

or augment the existing Gaussian exploration described in Section 2.2

and Equation 2. Actions are generated as follows, where f is the pa-

rameterized function approximator:

a = f(s, θ) + ε̂(s, θ̂), θ̂ ∼ N (0, σ̂ 2). (24)

Instead of adding i.i.d. noise in each time step (cf. Equation 2), [18] in-

troduces a pseudo-random function ε̂(s), that takes the current state as

input and itself is parameterized with parameters θ̂. These exploration

parameters are in turn drawn from a Normal distribution with zero mean.

The exploration parameters are varied between episodes (just like intro-

duced in Section 3.1) and held constant during the rollout. Therefore,

the exploration function ε̂ can still carry the necessary exploratory ran-

domness through variation between episodes, but will always return

the same value in the same state within an episode.

Effectively, by drawing θ̂, we actually create a policy delta, similar to

finite difference methods. In fact, if both f(s; Θ) with Θ = [θji] and

ε̂(x, Θ̂) with Θ̂ = [θ̂ji] are linear functions, we see that

a = f(s; Θ) + ε̂(s; Θ̂)
= Θs + Θ̂s

= (Θ + Θ̂)s, (25)

which shows that direct parameter perturbation methods (cf. Equation

(10)) are a special case of SDE and can be expressed in this more

general framework.

In effect, state-dependent exploration can be seen as a converter from

action-exploring to parameter-exploring methods. A method equipped

with the SDE converter does not benefit from all the advantages men-

tioned in Section 3.1, e.g. actions are not chosen from the same family

of functions, since the exploration value is still added to the greedy ac-

tion. It does, however, cause smooth trajectories and thus mitigates

the credit assignment problem (as illustrated in Figure 2).

For a linear exploration function ε̂(s; Θ) = Θs it is also possible to

calculate the derivative of the log likelihood with respect to the variance.
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Following the derivation in [18], we see that the action element aj is

distributed as

aj ∼ N (fj (s, Θ),
∑

i

(siσ̂ji)2). (26)

Therefore, differentiation of the policy with respect to the free parame-

ters σ̂ji yields:

∂ log π(a|s)
∂σ̂ji

=
∑

k

∂ log πk (ak |s)
∂σj

∂σj

∂σ̂ji

=
(aj − µj )2 − σ 2

j

σ 4
j

s2
i σ̂ji, (27)

which can directly be inserted into the gradient estimator of REIN-

FORCE. For more complex exploration functions, calculating the exact

derivative for the sigma adaptation might not be possible and heuristic

or manual adaptation (e.g. with slowly decreasing σ̂ ) is required.

4. Experimental Results

In this section we compare the reviewed parameter-exploring methods

PGPE and NES to action-exploring policy gradient algorithms REIN-

FORCE and eNAC on several simulated control scenarios. We also

demonstrate how both policy gradient algorithms can perform better

when equipped with the SDE converter to act more like parameter-

exploring methods. The experiments are all executed in simulations,

but their complexity is similar to today’s real-life RL problems [11, 14].

For all experiments we plot the agent’s reward against the number of

training episodes. An episode is a sequence of T interactions of the

agent with the environment, where T is fixed for each experiment, dur-

ing which the agent makes one attempt to complete the task. For all

methods, the agent and the environment are reset at the beginning of

every episode. All the experiments were conducted with empirically

tuned meta-parameters. The benchmarks and algorithms are included

in the open source Machine Learning library PyBrain [20].

Section 4.1 describes each of the experiments briefly, and section 4.2

lists the results which are discussed in section 4.3.

4.1. Benchmark Environments

4.1.1. Pole Balancing

The first scenario is the extended pole balancing benchmark as de-

scribed in [17]. Pole balancing is a standard benchmark in reinforce-

ment learning. In contrast to [17] however, we do not initialize the con-

troller with a previously chosen stabilizing policy but rather start with

random policies, which makes the task more difficult. In this task the

agent’s goal is to maximize the length of time a movable cart can bal-

ance a pole upright in the centre of a track. The agent’s inputs are the

angle and angular velocity of the pole and the position and velocity of

the cart. The agent is represented by a linear controller with four inputs

and one output unit. The simulation is updated 50 times a second. The

initial position of the cart and angle of the pole are chosen randomly.

4.1.2. Biped Robust Standing

The task in this scenario was to keep a simulated biped robot stand-

ing while perturbed by external forces. The simulation, based on the

biped robot Johnnie [29] was implemented using the Open Dynamics

Engine. The lengths and masses of the body parts, the location of the

connection points, and the range of allowed angles and torques in the

joints were matched with those of the original robot. Due to the diffi-

culty of accurately simulating the robot’s feet, the friction between them

and the ground was approximated by a Coulomb friction model. The

framework has 11 degrees of freedom and a 41 dimensional obser-

vation vector (11 angles, 11 angular velocities, 11 forces, 2 pressure

sensors in feet, 3 degrees of orientation and 3 degrees of acceleration

in the head).

The controller is a Jordan network [7] with 41 inputs, 20 hidden units

and 11 output units. The aim of the task is to maximize the height of the

robot’s head, up to the limit of standing completely upright. The robot

is continually perturbed by random forces (depictured by the particles

in Figure 3) that would knock it over unless it counterbalanced. Figure

3 shows a typical scenario of the robust standing task.

4.1.3. Object Grasping

The task in this scenario was to grasp an object from a table. The sim-

ulation, based on the CCRL robot [4] was implemented using the Open

Dynamics Engine. The lengths and masses of the body parts and the

location of the connection points were matched with those of the origi-

nal robot. Friction was approximated by a Coulomb friction model. The

framework has 7 degrees of freedom and a 35 dimensional observa-

tion vector (8 angles, 8 angular velocities, 8 forces, 2 pressure sensors

in hand, 3 degrees of orientation and 3 values of position in hand, 3

values of position of object). The controller was a Jordan network [7]

with 35 inputs, 1 hidden units and 7 output units.

The system has only 7 DoF while having 8 joints, because the actual

grasping is realized as a reflex. Has the hand reached the center of

gravity of the object sufficiently close enough the hand closes auto-

matically. Other simplifications are that the object is always at the same

position at the very edge of the table.

By this simplifications the task is easy enough to be learned from

scratch within 20,000 episodes. The needed controller could be con-

structed small enough to allow also methods that use a covariance ma-

trix to learn the task. Figure 4 shows a typical solution of the grasping

task.

4.1.4. Ball Catching

This series of experiments is based on a simulated robot hand with

realistically modeled physics. We chose this experiment to show the

predominance of policy gradients equipped with SDE, especially in a re-

alistic robot task. We used the Open Dynamics Engine to model the

hand, arm, body, and object. The arm has 3 degrees of freedom: shoul-

der, elbow, and wrist, where each joint is assumed to be a 1D hinge

joint, which limits the arm movements to forward-backward and up-

down. The hand itself consists of 4 fingers with 2 joints each, but for

simplicity we only use a single actor to move all finger joints together,

which gives the system the possibility to open and close the hand, but

it cannot control individual fingers. These limitations to hand and arm

movement reduce the overall complexity of the task while giving the

system enough freedom to catch the ball. A 3D visualization of the

robot attempting a catch is shown in Figure 5.

The reward function is defined as follows: upon release of the ball, in

each time step the reward can either be −3 if the ball hits the ground

(in which case the episode is considered a failure, because the system

cannot recover from it) or else the negative distance between ball cen-

ter and palm center, which can be any value between −3 (we capped

the distance at 3 units) and −0.5 (the closest possible distance consid-

ering the palm heights and ball radius). The return for a whole episode

is the mean over the episode: R = 1
N

∑N
n=1 rt . In practice, we found

an overall episodic return of −1 or better to represent nearly optimal

catching behavior, considering the time from ball release to impact on
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Figure 3. The original Johnnie (left). From left to right, a typical solution which worked well in the robust standing task is shown: 1. Initial posture. 2. Stable posture.
3. Perturbation by heavy weights that are thrown randomly at the robot. 4. - 7. Backsteps right, left, right, left. 8. Stable posture regained.

Figure 4. The original CCRL robot (left). From left to right, a typical solution
which worked well in the object grasping task is shown: 1. Initial pos-
ture. 2. Approach. 3. Enclose. 4. Take hold. 5. Lift.

palm, which is penalized with the capped distance to the palm center.

4.2. Results

We present the results of our experiments below, ordered by bench-

mark. All plots show performance (e.g. average returns) over episodes.

The solid lines are the mean over many repetitions of the same exper-

iments, while the thick bars represent the variance. The thin vertical

lines indicate best and worst performance of all repetitions. The Ball

Catching experiment was repeated 100 times, the Object Grasping ex-

periment was repeated 10 times. All other experiments were repeated

40 times.

4.2.1. Pole Balancing

For the first set of experiments, we compared PGPE to REINFORCE

with varying action perturbation probabilities. Instead of changing the

Figure 5. Visualization of the simulated robot hand while catching a ball. The
ball is released above the palm with added noise in x and y coordi-
nates. When the fingers grasp the ball and do not release it through-
out the episode, the best possible return (close to −1.0) is achieved.

additive ε from Eqn. (2) in every time step, the probability of draw-

ing a new ε was set to 0.125, 0.25, 0.5 and 1.0 respectively (the last

one being the original REINFORCE again). Figure 6 shows the results.

PGPE clearly outperformed all versions of REINFORCE, finding a bet-

ter solution in shorter time. Original REINFORCE showed worst perfor-

mance. The smaller the probability was to change the perturbation, the

faster REINFORCE improved.

A second experiment on the pole balancing benchmark was con-

ducted, comparing PGPE, NES and eNAC directly. The results are illus-

trated in Figure 7. NES converged fastest while PGPE came second.

The action-perturbing eNAC got stuck in a plateau after approx. 1000

episodes but eventually recovered and found a equally good solution,

although much slower.

4.2.2. Biped Robust Standing

This complex, high-dimensional task was executed with REINFORCE

and its parameter-exploring version PGPE, as shown in Figure 8. While

PGPE is slower at first, it quickly overtakes REINFORCE and finds a ro-

bust posture in less than 1000 episodes, whereas REINFORCE needs

twice as many episodes to reach that performance.

4.2.3. Object Grasping

The object grasping experiment compares the two parameter-exploring

algorithms PGPE and NES. Object Grasping is a mid dimensional task.

As can be seen in Figure 9 with a parameter dimension of 48 both

algorithms perform nearly the same. Both algorithms manage to learn

to grasp the object from scratch in reasonable time.

4.2.4. Ball Catching

Two experiments demonstrate the performance of eNAC and REIN-

FORCE, both with and without SDE. The results are shown in Figure 10

and 11, respectively. REINFORCE enhanced with SDE clearly exceed

its action-exploring counterpart, finding a superior solution with very

low variance. REINFORCE without SDE on the other hand has a very

high variance, which indicates that it finds good solutions sometimes

while it gets stuck early on at other times. The same experiment was

repeated with eNAC as policy gradient method, again with and without

SDE. While the results are not as clear as in the case of REINFORCE,

SDE still improved the performance significantly.

4.3. Discussion

4.3.1. PGPE

We previously asserted that the lower variance of PGPE’s gradient es-

timates compared to action exploring methods is partly due to the fact

that PGPE requires only one parameter sample per history, whereas
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Figure 6. REINFORCE on the pole balancing task, with various action pertur-
bation probabilities (1, 0.5, 0.25, 0.125). PGPE is shown for refer-
ence.

Figure 7. PGPE and NES compared to eNAC on the pole balancing bench-
mark.

REINFORCE requires samples every time step. This suggests that re-

ducing the frequency of REINFORCE perturbations should improve its

gradient estimates, thereby bringing it closer to PGPE.

As can be seen in Figure 6 in general, performance improved with de-

creasing perturbation probability. However the difference between 0.25

and 0.125 is negligible. This is because reducing the number of per-

turbations constrains the range of exploration at the same time as it

reduces the variance of the gradient, leading to a saturation point be-

yond which performance does not increase. Note that the above trade

off does not exist for PGPE, because a single perturbation of the pa-

rameters can lead to a large change in the overall behavior. Because

PGPE also uses only the log likelihood gradient for parameter update

and does not adapt the full covariance matrix but only uses a single

variance parameter per exploration dimension, the difference in perfor-

mance is solely based on the different exploration strategies.

In Figure 8 PGPE is compared to its direct competitor and ancestor

Figure 8. PGPE compared to REINFORCE on the robust standing benchmark.

Figure 9. PGPE and NES on the object grasping benchmark.

REINFORCE. The robust standing benchmark should clearly favor RE-

INFORCE, because the policy has a lot more parameters than it has

output dimensions (1111 parameters to 11 DoF) and is further quite

noisy. Both properties are said to challenge parameter-exploring al-

gorithms [14]. While these disadvantages are most likely responsible

for the worse performance of PGPE in the beginning (less than 500

episodes), PGPE can still overtake REINFORCE and find a better so-

lution is shorter time.

4.3.2. NES

NES has shown its superiority in the Pole Balancing experiment, and

demonstrated its real strength, difficult low-dimensional tasks, which it

derived from its origins in CMA-ES. Like eNAC it uses a natural gradient

for the parameter updates of the policy. The difference in performance

is therefore only due to the adaptation of the full covariance matrix and

the exploration in parameter space.

eNAC’s convergence temporarily slows down after 1000 episodes,

where it reaches a plateau. By looking at the intermediate solution of
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Figure 10. REINFORCE compared to the SDE version of REINFORCE. While
SDE managed to learn to catch the ball quickly in every single
case, original REINFORCE occasionally found a good solution, but
in most cases did not learn to catch the ball.

Figure 11. eNAC compared to the SDE version. Both learning curves had rel-
atively high variances. While original eNAC often didn’t find a good
solution, SDE found a catching behavior in almost every case, but
many times lost it again due to continued exploration, hence the
high variance.

eNAC on plateau level, we discovered an interesting reason for this be-

havior. eNAC learns to balance the pole first, and only later proceeds to

learn to drive to the middle of the area. NES and PGPE (and in fact all

tested parameter-exploring techniques, including CMA-ES) learn both

subtasks simultaneously. This is because action-perturbing methods

try out small action variations and thus are more greedy. In effect,

they learn small subtasks first. Parameter exploring methods on the

other hand vary the strategy in each episode and are thus able to find

the overall solution more directly. Admittedly, while the latter resulted

in faster convergence in this task, it is possible that action perturbing

methods can use the greedyness to their advantage, by learning step-

by-step rather than tackling the big problem at once. This issue should

be examined further in a future publication.

We also compared NES to PGPE on the Object Grasping task with

a medium number of dimensions. As can be seen in Figure 9 with a

parameter dimension of 48 both algorithms perform similar. This un-

derlines that NES is a specialist on difficult low-dimensional problems

while PGPE was constructed to cope with high-dimensional problems.

4.3.3. SDE

The experiment that supports our claim most is probably the Ball Catch-

ing task, where REINFORCE and eNAC are compared to their SDE-

converted counterparts. The underlying algorithms are exactly the

same, only the exploration method has been switched from a nor-

mally distributed action exploration to a state-dependent exploration.

As mentioned in section 3.5, this does not make them fully parameter-

exploring, but it does carry over some of its advantageous properties.

As can be seen in Figures 10 and 11, the proposed kind of exploration

results in a completely different quality of the found solutions. The high

difference of performance on this challenging task, where torques are

directly affected by the output of the controller policy, strengthens our

arguments for parameter exploration further.

5. Conclusion

We studied the neglected issue of exploration for continuous RL, espe-

cially Policy Gradient methods. Parameter-based exploration has many

advantages over perturbing actions by Gaussian noise. Several of our

novel RL algorithms profit from it, despite stemming from different sub-

fields and pursuing different goals. All find reliable gradient estimates

and outperform traditional policy gradient methods in many applica-

tions, converging faster and often also more reliably than standard PG

methods with random exploration of action space.

SDE replaces the latter by state dependent exploration searching the

parameter space of an exploration function approximator. It combines

the advantages of policy gradients, in particular the advanced gradi-

ent estimation techniques found in eNAC, with the reduced variance

of parameter-exploring methods. PGPE goes one step further and ex-

plores by perturbing the policy parameters directly. It lacks the method-

ology of existing PG methods, but works also for non-differentiable con-

trollers, learning to execute smooth trajectories. NES finally combines

desirable properties of CMA-ES with natural gradient estimates that

replace the population/distribution-based convergence mechanism of

CMA, while keeping the covariance matrix for more informed explo-

ration.

We believe that parameter-based exploration should play a more im-

portant role not only for PG methods but for continuous RL in general,

and continuous value-based RL in particular. This is subject of ongoing

research.
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