
A Multi-threaded Execution Model

for the Agent-Based SEMSim Traffic Simulation�

Heiko Aydt1, Yadong Xu1,2, Michael Lees3, and Alois Knoll4

1 TUM CREATE Ltd., Singapore
2 Nanyang Technological University, Singapore
3 University of Amsterdam, The Netherlands
4 Technical University of Munich, Germany

Abstract. An efficient simulation execution engine is crucial for agent-
based traffic simulation. Depending on the size of the simulation sce-
nario the execution engine would have to update several thousand agents
during a single time step. This update may also include route calcula-
tions which are computationally expensive. The ability to dynamically
re-calculate the route of agents is a feature often not required in classical
microscopic traffic simulations. However, for the agent-based traffic sim-
ulation which is part of the Scalable Electro-Mobility Simulation (SEM-
Sim) platform, the routing ability of agents is an important feature. In
this paper, we describe a multi-threaded simulation engine that explic-
itly supports routing capabilities for every agent. In addition, we analyse
the efficiency and performance of our execution model in the context of
a Singapore-based simulation scenario.

1 Introduction

In the context of electro-mobility research we are currently developing the SEM-
Sim (Scalable Electro-Mobility Simulation) platform. This platform will provide
the capability to simulate the various aspects related to electro-mobility for an
entire city. In particular, this includes microscopic simulation of the traffic sys-
tem (SEMSim Traffic) and microscopic simulation of the power system (SEMSim
Power). SEMSim Traffic is more precisely an agent-based traffic simulation where
each agent represents a driver-vehicle unit. This agent not only integrates typical
driver behaviour models (e.g., car following, gap acceptance and lane changing
models) but also explicit vehicle component models (e.g., drive train, battery,
air conditioning).

Integrating these models and the ability to couple SEMSim Traffic with SEM-
Sim Power allows us to study the impact of the disruptive technology ‘electric
vehicle’ on the traffic and power infrastructure of an entire city. For example,
the SEMSim platform will allow us to study the impact of the electric vehicle

� This work was financially supported by the Singapore National Research Foundation
under its Campus for Research Excellence And Technological Enterprise (CREATE)
programme.

G. Tan et al. (Eds.): AsiaSim 2013, CCIS 402, pp. 1–12, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 H. Aydt et al.

population on the power system under various electro-mobility scenarios (e.g.,
placement of charging infrastructure, vehicle design, regulations and operating
policies). The goal of this research is to develop the capability to analyse an
entire city, such as Singapore, from a complex systems perspective.

Coupling of the different simulation entities (e.g., SEMSim Traffic and SEM-
Sim Power) will be done by means of the High Level Architecture (HLA)[1].
An electro-mobility simulation will thus be distributed across multiple nodes. In
addition, SEMSim Traffic will also be parallelised to deal with the large number
of agents and the variety of models they incorporate. Parallelisation can be done
in multiple ways which we will further discuss in Section 2. In this paper we
focus on parallelisation by means of using a multi-threaded execution engine.

We follow a bottom-up modelling approach for developing the SEMSim plat-
form. As already mentioned, for SEMSim Traffic this means that individual
agents will be equipped with driver behaviour and vehicle component models.
We therefore also refer to this kind of simulation as nanoscopic traffic simula-
tion, as opposed to microscopic traffic simulation which does not consider vehicle
component models for individual agents. Large-scale microscopic traffic simula-
tions are known to be very compute intensive. The additional vehicle models
make a nanoscopic traffic simulation even more computationally demanding. An
efficient simulation execution engine is thus very important.

In general, the agents in an agent-based simulation have the ability to react
upon perceived changes in the environment. In the context of agent-based traffic
simulation, for example, this refers to the ability of an agent to plan routes and
drive from its current location to the destination. Driving requires the agent to
accelerate/decelerate to achieve the desired velocity. In addition, it may have
to change lanes at appropriate locations, avoiding collisions with other vehicles
at any time. While dynamic re-routing may not be needed in many microscopic
traffic simulations, this is an important feature in SEMSim Traffic. For example,
it enables agents to change their routes towards the nearest charging station
if necessary. In this paper, we describe a multi-threaded simulation execution
engine that explicitly supports routing capabilities for every agent.

The remainder of this paper is structured as follows. Section 2 gives an
overview of the different parallelisation techniques used for microscopic traf-
fic simulations. Section 3 and Section 4 explain the underlying SEMSim Traffic
simulation model and execution engine, respectively. We evaluate the proposed
execution engine and discuss the experimental results in Section 5. We present
our conclusions and discuss future work in Section 6.

2 Related Work

Parallel computing methods are used by a variety of existing microscopic traffic
simulators. In general, parallelisation can be achieved in two ways: (1) by dis-
tributing the simulation on multiple nodes by using some form of partitioning
and (2) by using multi-threading to exploit the advantages of shared-memory
systems. Most work published in the literature is concerned with distributing

A Multi-threaded Execution Model 3

a simulation on multiple nodes. For this purpose, it is generally distinguished
between functional decompositioning and domain decompositioning. Functional
decompositioning can be found in DYNAMIT/MITSIM [3,4]. However, accord-
ing to [9] functional decompositioning may be easier to implement but poses
limitations on the achievable speed-up.

Using domain compositioning for parallel traffic simulation has been described
in various works. Nagel and Rickert describe how domain decompositioning has
been used in a parallel implementation of TRANSIMS [9] which is based on cellu-
lar automata for representing driving dynamics. Different geographical regions are
processed bymultiple CPUs. Various key challenges for domain decompositioning,
concernedwith dividing the network, is explained byKlefstad et al. [8]. Yet another
parallel traffic simulation that uses domain decompositioning is FastTrans. Thu-
lasidasan et al. describe different strategies to perform domain decompositioning
and show how different strategies affect the simulation performance [13].

Distributing a simulation on multiple nodes has several advantages. For ex-
ample, large-scale simulations may be too large to fit into the memory of a single
compute node. If memory limitations are not an issue, it is in principle also pos-
sible to distribute the simulation on multiple cores on the same compute node.
However, in this case, the advantages of a shared memory system may not be
fully utilised. In principle, a distributed simulation is not limited to the number
of processors (or cores). Of course, scalability limits the amount of cores that
can effectively be used.

In contrast to distributed simulation, one of the main disadvantages of the
multi-threading approach is the total number of available processors (or cores)
which is limited to the number of processors available on a single compute node.
As of 2013, high-end processors (e.g., Intel Xeon E7 family) provide up to 10
cores with support for hyper-threading which effectively doubles the number of
threads that be executed concurrently. Another limitation is the memory avail-
able. Large-scale simulations that require large amounts of memory may be too
big to fit into the memory of one compute node. Nevertheless, one important ad-
vantage of multi-threading solutions is the significantly reduced communication
overhead needed for synchronisation. Given the current trend towards many-core
processors, multi-threading solutions deserve serious consideration.

The work by Barceló et al. [2] is very relevant to the work presented in this
paper. They describe the multi-threaded execution engine used for AIMSUN2
and analyse its performance. Their execution engine is based on the idea of
grouping parts of the road network (i.e., lanes) together in such a way as to
minimise the need for synchronisation. This is the same approach taken by us
in this paper. A key difference between AIMSUN2 and SEMSim Traffic is the
way how traffic is generated. According to [2], vehicles in AIMSUN2 do not
have knowledge about their complete path along the network. In contrast, the
agents in our traffic simulation have complete routes to follow in order to reach
the destination. This is an important difference because route calculation is
computationally expensive and the execution engine presented here takes this
explicitly into consideration.

4 H. Aydt et al.

A noteworthy and very recent development is the IBM Mega Traffic Simulator
(Megaffic), a microscopic traffic simulation that aims for being used in large-
scale traffic simulation of mega cities [10]. Megaffic is based on a platform for
massive agent-based simulation: X10-based Agent eXecutive Infrastructure for
Simulation (XAXIS) [11]. Suzumura et al. evaluate the performance in terms of
scalability, including an analysis of the scalability on a single node with a different
number of threads [12], showing that Megaffic achieves a five-fold speed-up when
using 12 threads.

3 Simulation Model

The road network is a directed graph in which edges represent lanes and vertices
represent the start and end points of a lane in terms of longitude and latitude co-
ordinates. The length L of a lane follows from the geographical distance between
the start and end point of this lane. A lane is modelled by a spatial queue, i.e.,
a queue of agents in which each agent has also a spatial location relative to the
start point in addition to its logical position in the queue. Figure 1 illustrates the
concept of spatial queues. Agents are not directly placed in the queue. Instead,
place holder objects that have the same size as the agent are placed in the queue.
These place holder objects have a reference to the corresponding agent.

Fig. 1. A lane with an origin N0 and destination N1 is represented by a spatial queue
with length L. This queue can contain an arbitrary number of agents. The index i
indicates the logical position of an agent within the queue. In addition, the spatial
position of the agent is indicated as distance from the origin of the lane N0 to the head
and tail of the vehicle.

When moving forward, agents can crossover from one lane to the next. During
that transition period, an agent can be partially located on one lane and partially
on the next (see Figure 2(a)). Technically this is done by having two place holder
objects in either queue, both of which are referring to the same agent (see Figure
2(b)). Each time step, the place holder objects of the various agents in the simula-
tion are moved forward by some distanceΔs which depends on the agents current
speed. Once an agent is leaving a lane, i.e., when its tail reaches the end of the lane,
the place holder object is removed. Similarly, a new place holder object is created
when an agent is entering a lane when its head reaches the beginning of the lane.

A Multi-threaded Execution Model 5

(a) (b)

Fig. 2. An agent a0 which is overlapping on two lanes (a) has place holder objects in
each lane that reserve the required space for the agent (b). When the agent is moved
forward, all place holder objects associated with this agent need to be moved. If a place
holder object leaves the lane entirely, it is deleted and the agent is entirely part of the
next lane.

This kind of crossing over is not to be confused with lane changes to adjacent lanes
to the left or right for which there is no transition period.

Agent-based traffic simulation requires an agent to perceive its environment
and executing certain actions which include route calculation, lane changes (if
necessary or desired) and moving forward with a certain acceleration and speed.
There are a number of standard models for lane changing and acceleration which
can be found in the literature. For example, car following models (e.g., [7] and
[14]) are used to determine the acceleration of the agent at every time step. This
typically depends on the current speed and the distance to the next car in front
as well as the speed of the car in front. In this paper, we focus on the following
three operations an agent can perform: (1) routing, (2) lane changing and (3)
moving forward (by accelerating and decelerating).

4 Execution Model

Microscopic traffic simulators typically generate fixed traffic before executing the
simulation. Two common practices are using origin-destination matrices (e.g.,
PARAMICS [5]) and stochastic turning ratios at road junctions (e.g., AIMSUN
[2] and VisSim [6]). For example, in case of AIMSUN, agents do not have knowl-
edge about the complete route. Instead their driving directions are based on
some probabilistic decision model. While this execution model avoids calculat-
ing entire routes, it would be too restrictive in the context of nanoscopic traffic
simulation where energy consumption of individual agents is being considered.
An important feature of the execution model presented in this section is the
routing feature which is also the key difference to the multi-threaded execution
engine used in AIMSUN/MT [2]

6 H. Aydt et al.

In principal, a time-stepped execution models is used as the underlying models
involved in moving agents (such as the car following model) are inherently time-
stepped. However, for any other behavioural models (e.g., decision models) or
vehicle component models this may not be case. Therefore, in SEMSim Traffic we
use a discrete-event engine that allows to schedule events at arbitrary moments
of time. The event triggering of the execution model will be scheduled recurringly
with a certain time interval (typically less or equal to 1 second), thus effectively
emulating time-stepped behaviour. This approach enables to use time-stepped
models alongside with model components that schedule events infrequently.

Since the scope of this paper is the execution model only, we consider time-
stepped execution of the simulation where agents are updated once every time
step. During each of these updates, an agent may re-calculate its route, change
lanes if necessary and move forward. In a multi-threaded by-agent parallel exe-
cution model, all agents are distributed to multiple threads each of which is ex-
ecuting the various operations. This naive form of parallel execution may cause
significant synchronisation overhead: initialising an agent (i.e., placing an agent
on a lane), changing lanes or moving forward requires information of the state
of multiple lanes. In order to maintain the integrity of a spatial queue, it is
important that only one thread is operating on a queue at a time.

There are five synchronisation cases that requires threads to have varying
mutually exclusive access to lanes: (1) inserting an agent into a queue (i.e.,
placing an agent onto a lane), (2) changing lanes, (3) moving forward without
overlaps, (4) moving forward with overlap to the next queue and (5) moving
forward with overlap to the previous queue. These cases are illustrated in Figure
3. A thread that operates on the granularity of agents needs mutually exclusive
access to various spatial queues. During this operation, none of the other agents
that are contained by the affected lanes can be processed as the exclusive access
concerns the entire spatial queue.

Efficient parallelisation requires to minimise the need for synchronisation. This
can be achieved by forming blocks of queues that are direct or indirect neighbours
to each other. Neighbouring lanes are those lanes that can be reached by changing
lanes. For example, if a road splits into two different directions, then the lanes of
those two alternatives are not considered neighbours since lane changing between
them is impossible. Figure 4 shows an example how several spatial queues are
grouped together to form blocks.

Based on the concept of blocks, we can now introduce an alternative execu-
tion engine which performs block processing rather than processing by agents.
The execution model is thus referred to as by-block execution model. The by-
block parallel execution model has the advantage that threads operate on the
granularity of blocks rather than agents. As a consequence, the above-mentioned
synchronisation cases (1), (2) and (3) are completely eliminated as agent place-
ment on lanes, lane changing and moving forward without overlaps is done within
the boundaries of a single block. Since only one thread can process a block, there
are only potential needs for synchronisation in cases (4) and (5).

A Multi-threaded Execution Model 7

(a) (b) (c) (d) (e)

Fig. 3. Overview of the various synchronisation cases where threads need mutually
exclusive access to spatial queues. Inserting an agent into a queue requires mutually
exclusive access of this queue (see 3(a)). Changing lanes requires mutually exclusive
access to the current lane and the target lane (see 3(b)). Moving forward requires
mutually exclusive access at least to the current lane (see 3(c)). In case the agent is
moving from one queue to another, mutually exclusive access to the next or previous
queue is also needed (see 3(d) and 3(e), respectively).

Fig. 4. Overview of grouping spatial queues to blocks. Spatial queues that belong to
different branches are not grouped into one block because lane changing between them
is impossible. For example, spatial queues q0 and q1 belong to a different block than
spatial queue q2.

We further reduce the probability of synchronisation by declaring blocks either
as ’even’ blocks or ’odd’ blocks and processing them in batches. Which block is
declared ’even’ or ’odd’ is arbitrary and not important so as long it is guaranteed
that adjacent blocks are never of the same group. For example, consider Figure
4. If block b0 is, say, ’even’ then it follows that blocks b1, b2, b3, b4 and b5 are
’even’, ’odd’, ’even’, ’odd’ and ’odd’, respectively. Even and odd blocks are also
kept separately in different sets B0 and B1. The first batch will process even
blocks and the second batch will process odd blocks.

8 H. Aydt et al.

The by-block execution model, illustrated in Algorithm 1, performs two differ-
ent steps. Step 1 is concerned with updating the routes of newly created agents
or existing agents that need to change their route. Step 2 processes the blocks
and updates the position of the agents in the various blocks. Step 2 is executed
twice, first for the even blocks in B0 and then for the odd blocks in B1. A
multi-threading parallel execution engine can be realised by having n threads
performing the necessary operations during Step 1 and Step 2. For this purpose,
each Step 1 worker thread removes one agent a from A and processes it. Sim-
ilarly, Step 2 worker threads remove a block b from B and process it. Worker
threads will continue until agents in A or all blocks in B have been processed.
The processed agents and blocks are then consolidated and represent the set of
agents and blocks that are being processed in the next cycle.

Algorithm 1. By-block execution model

A← ∅;
B0 ← ∅;
B1 ← ∅;
repeat

t← t+ δt;
A← A∪ generate new agents(t);
perform step1(A);
perform step2(B0);
perform step2(B1);

until A = ∅;

5 Experimental Evaluation

We evaluate the proposed parallel by-block execution model in two ways. First,
we analyse the efficiency during the execution of Step 1 and Step 2 depending on
the number of agents for an increasing number of threads. Second, we analyse
the achieved speed-up depending on the number of agents for an increasing num-
ber of threads. For evaluation purposes, a Java implementation of the execution
engine has been used. For the simulation scenario, we use road network of Singa-
pore and generate traffic up to 20,000 agents in a 2-stage experiments. In Stage
1, the simulation generates agents up to a limit of 20,000 agents at which point
Stage 2 begins. In Stage 2 no new agents are generated and no route calculations
take place. The 2-stage approach is used in order to see the impact of Step 1
on the overall performance. The experiments have been performed on a system
equipped with one Intel i5-2520M CPU with 4 cores, running at 2.5 GHz, and 8
GB memory.

A Multi-threaded Execution Model 9

We compare the efficiency E1 and E2 of Step 1 and Step 2, respectively, by
measuring the time spent on useful computation tu in comparison to the total
time ts spent to perform a step:

E =
tu
ts

(1)

Overhead is caused by thread synchronisation and the time required to ini-
tialise the worker threads and the idling time by worker threads that need to
wait for other threads to finish. In particular the latter can cause significant
overhead if all threads except one have already finished their execution and need
to wait for the last thread to finish. The overhead can be expected to increase
with the number of threads. This is also supported by our experimental results,
shown in Figure 5.

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 5 10 15 20 25

E
ffi

ci
en

cy

Number of generated agents

nthreads=1
nthreads=2
nthreads=4

(a)

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

E
ffi

ci
en

cy

Number of agents

nthreads=1
nthreads=2
nthreads=4

(b)

Fig. 5. Efficiency of Step 1 (5(a)) and Step 2 (5(b)) execution depending on the number
of threads

Figure 5 illustrates the efficiency of Step 1 and Step 2 depending on the
number of threads used. The efficiency for Step 1 is significantly better than
the efficiency for Step 2. This indicates that Step 2 is of greater importance in
order to achieve good scalability. Figure 6 shows the average number of thread
synchronisations during a single Step 2 execution. These results indicate that
synchronisation is not a significant obstacle in order to achieve good scalability.
Inefficiencies in Step 2 are thus due to thread initialisation and idling.

Regardless the issue of efficiency, the actual time spent on Step 1 and Step 2
is very different. Figure 7 illustrates the execution speed of the simulation dur-
ing Stage 1 (with routing and thus with Step 1) and Stage 2 (without routing
and thus without Step 1). Simulation execution during Stage 2 is faster than
during Stage 1 by the order of roughly one magnitude. This somewhat reduces
the impact of lower efficiency for Step 2 as Step 1 is more important in terms
of execution time. However, as we explained in Section 1, SEMSim Traffic will

10 H. Aydt et al.

 0

 1

 2

 3

 4

 5

 6

 7

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

A
ve

ra
ge

 n
um

be
r

of
 s

yn
ch

ro
ni

sa
tio

n
ca

se
s

Number of agents

nthreads=2
nthreads=4

Fig. 6. Average number of synchronisation cases during Step 2 depending on the num-
ber of threads and agents

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5000 10000 15000 20000

S
pe

ed
 (

in
 x

 ti
m

es
 r

ea
l-t

im
e)

Number of agents

nthreads=1
nthreads=2
nthreads=4

(a)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5000 10000 15000 20000

S
pe

ed
 (

in
 x

 ti
m

es
 r

ea
l-t

im
e)

Number of agents

nthreads=1
nthreads=2
nthreads=4

(b)

Fig. 7. Execution speed of the simulation in terms multiple to real-time for Stage 1
(7(a)) and Stage 2 (7(b))

incorporate vehicle component models that need updating which may be trig-
gered during Step 2. This may change the proportions of Step 1 and 2 to the
overall execution time significantly.

6 Conclusions and Future Work

An efficient execution model is crucial for large-scale agent-based traffic simu-
lation of an entire city. An important feature of any agent-based simulation is
the ability of agents to react to perceived changes in the environment. In the
context of agent-based traffic simulation, for example, this refers to the ability
of the agent to change its route. This feature is often not supported by many
microscopic traffic simulations that use a more or less static form of traffic as-
signment. The AIMSUN2 engine, to which our approach is most closely related,
does not consider explicit routing. In contrast, SEMSim Traffic requires agents
to be able to change their routes. Our execution engine thus explicitly includes
the case of routing in a two-step execution model.

A Multi-threaded Execution Model 11

Our results indicate that the simulation time is dominated by Step 1 (rout-
ing) for which a high degree of efficiency can be achieved. Future work will focus
on improvements for the efficiency of Step 2 as well as the evaluation of our
multi-threading execution engine on more cores. Furthermore, we will investi-
gate possible hybrid approaches that combine the advantages of distributing the
simulation on multiple multi-core shared memory nodes.

A by-agent execution model, in which all agents are updated concurrently by
different threads, may be the more natural execution model for an agent-based
simulation. However, it will also inevitably lead to more synchronisation cases.
In contrast, the by-block execution model minimises the need for synchronisa-
tion and does not alter the agent-based model itself, i.e., agents are updated in
exactly the same way in both execution models. The only difference is the actual
sequence in which agents are being updated. This may affect the behaviour of
the model. Future work will thus investigate the qualitative differences between
the two execution models.

References

1. IEEE Standard for Modeling and Simulation (M&S) High Level Architecture
(HLA)– Framework and Rules. IEEE Std 1516-2010 (Revision of IEEE Std 1516-
2000), pp. 1–38 (2010)

2. Barceló, J., Ferrer, J.L., Garcia, D.: Microscopic traffic simulation for ATT systems
analysis: a parallel computing version. In: 25th Anniversary of CRT, pp. 1–16
(1998)

3. Ben-Akiva, M., Koutsopoulos, H.N., Antoniou, C., Balakrishna, R.: Traffic Simu-
lation with DynaMIT. In: Barceló, J. (ed.) Fundamentals of Traffic Simulation.
International Series in Operations Research & Management Science, vol. 145,
pp. 363–398. Springer, New York (2010)

4. Ben-Akiva, M., Koutsopoulos, H.N., Toledo, T., Yang, Q., Choudhury, C.F., An-
toniou, C., Balakrishna, R., Barceló, J.: Traffic Simulation with MITSIMLab. In:
Barceló, J. (ed.) Fundamentals of Traffic Simulation. International Series in Op-
erations Research & Management Science, vol. 145, pp. 233–268. Springer, New
York (2010)

5. Cameron, G.D.B.: PARAMICS–Parallel Microscopic Simulation of Road Traffic.
The Journal of Supercomputing 53, 25–53 (1996)

6. Fellendorf, M., Vortisch, P., Barceló, J.: Microscopic Traffic Flow Simulator VIS-
SIM. In: Barceló, J. (ed.) Fundamentals of Traffic Simulation. International Series
in Operations Research & Management Science, vol. 145, pp. 63–93. Springer, New
York (2010)

7. Gipps, P.G.: A behavioural car-following model for computer simulation. Trans-
portation Research Part B: Methodological 15(2), 105–111 (1981)

8. Klefstad, R., Zhang, Y.: A Distributed, Scalable, and Synchronized Framework
for Large-Scale Microscopic Traffic Simulation. In: IEEE Conference on Intelligent
Transportation Systems, pp. 813–818 (2005)

9. Nagel, K., Rickert, M.: Parallel implementation of the TRANSIMS. Parallel Com-
puting 27, 1611–1639 (2001)

10. Osogami, T., Imamichi, T., Mizuta, H., Morimura, T., Raymond, R., Suzumura,
T., Takahashi, R., Id, T.: Research Report IBM Mega Traffic Simulator. Technical
report (2012)

12 H. Aydt et al.

11. Saraswat, V.A., Sarkar, V., von Praun, C.: X10: concurrent programming for mod-
ern architectures. In: Proceedings of the 12th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pp. 271–271. ACM (2007)

12. Suzumura, T., Kanezashi, H.: Highly Scalable X10-Based Agent Simulation Plat-
form and Its Application to Large-Scale Traffic Simulation. In: 2012 IEEE/ACM
16th International Symposium on Distributed Simulation and Real Time Applica-
tions, pp. 243–250. IEEE (October 2012)

13. Thulasidasan, S., Kasiviswanathan, S., Eidenbenz, S., Galli, E., Mniszewski, S.,
Romero, P.: Designing systems for large-scale, discrete-event simulations: Experi-
ences with the FastTrans parallel microsimulator. In: 2009 International Conference
on High Performance Computing (HiPC), pp. 428–437. IEEE (December 2009)

14. Treiber, M., Hennecke, A., Helbing, D.: Congested traffic states in empirical ob-
servations and microscopic simulations. Physical Review E 62(2), 1805 (2000)

	A Multi-threaded Execution Model
for the Agent-Based SEMSim Traffic Simulation

	1 Introduction
	2 Related Work
	3 Simulation Model
	4 ExecutionModel
	5 Experimental Evaluation
	6 Conclusions and Future Work
	References

