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Abstract—Future manufacturing systems have to be more
adaptable to be able to compete in fast changing markets and
address specific customer demands. To increase adaptability of
production systems, the software and communication infrastruc-
tures have to be adaptable as well. Current communication
paradigms tightly couple manufacturing systems to communi-
cation infrastructures. Changes in the manufacturing system
require manual reconfiguration of software and communication
infrastructure. In this paper we define the requirements for
future adaptable manufacturing systems. They have to be loosely
coupled, dynamic, adaptable, and capable of plug & play. We also
propose a data-centric approach to make communication systems
more adaptable. Using a simplified industrial setup, we show that
the approach is feasible for manufacturing systems and increases
the adaptability.

I. INTRODUCTION

Traditional manufacturing systems are designed to fulfill
dedicated tasks. They are configured accordingly and this
configuration is not changed during the lifetime of the man-
ufacturing system. Future manufacturing systems need to be
able to cope with volatile markets, shorter product life cycles,
and customized products. There are dynamic requirements
regarding lot sizes, product variants, lead times, and cost.
Adaptable manufacturing systems are necessary to manage
these requirements. They have to be flexible enough to quickly
change between different products while keeping setup times
at a minimum.

Current approaches to increase adaptability focus on
mechatronic compatibility. However, introducing a change in
current manufacturing processes and rearranging the factory
still requires a lot of manual effort and reconfiguration of IT
and communication systems. This is costly and time consum-
ing — if at all possible. Costs for setup and installation in
current manufacturing systems add up to a third of the total
cost [1]. When a change in the production system is necessary,
the installation costs and downtimes are even considerably
higher. Reasons for this are inflexible communication infras-
tructures as well as the lack of portability of software com-
ponents [1]. To have real adaptable manufacturing systems,
the IT systems have to be modularized and quickly adapt to
changes [2]. The flexibility of IT and communication systems
has to be increased. Configuration effort and changeover times
have to be kept at a minimum for adding, changing, and
removing components. Ideally, all setups should be supported
without reconfiguration of IT and communication systems.

Currently, there is no accepted standard for IT interfaces
and modules that enables communication within all levels of
a manufacturing system. Thus, it is very difficult to add com-
ponents from different vendors and integrate them with each
other. The exchange of information between components is
also a challenge in current manufacturing systems. However, as
IT is becoming increasingly important for manufacturing [3],
new concepts from the IT domain are gradually introduced
to the automation industry. A standard software architecture
featuring a modular construction and component layout would
enable a fast and inexpensive reconfiguration of production
lines without the need for high technical expertise.

This paper describes the requirements for the communica-
tion and IT infrastructure for adaptable manufacturing systems.
We suggest using data-centric communication together with a
plug & play capable infrastructure to facilitate the integration
of different components and provide a loose coupling of com-
ponents. This approach aims at standardizing communication
mechanisms on all levels of a manufacturing system from the
shop floor to the management level. The same infrastructure
can be used for horizontal and vertical communication. We
focus on showing how the requirements can be satisfied with
the data-centric paradigm.

The paper is structured as follows: In Section III paradigms
for communication systems are explained. The requirements
on communication for adaptable manufacturing systems are
stated in Section IV. The data-centric communication paradigm
and its benefits for future manufacturing systems are explained
in Section V. One example of a data-centric communication
infrastructure is presented there as well. Section VI describes
the experimental setup and gives an overview of different
application areas for this approach. In Section VII the ap-
proach is evaluated and discussed. Section II evaluates existing
approaches and gives an overview on related work. Finally,
Section VIII concludes the paper.

II. RELATED WORK

There has been a lot of work in the field of adaptable
manufacturing systems. The adaptability of software and com-
munication systems in the manufacturing industry has also
received increased attention in the past years. Much research
has been done on transferring service oriented architectures
(SOA) from the business domain to the manufacturing domain.

Jammes and Smit state the opportunities and challenges of
using SOA in manufacturing [1]. They propose an approach



for integrating SOA in a manufacturing system. However, the
approach is based on Ethernet technologies and is not suitable
for some legacy systems.

The approach of Kirkham et al. looks at applying web
services at factory element level to enable a SOA in manu-
facturing [4]. Their approach helps to bring the business logic
closer to the shop floor. Nevertheless, the approach still has
some issues that involve scalability problems and quality of
service definitions for the interaction.

Ollinger et al. use SOA to ease integration of compo-
nents [5]. The advantage of using SOA in this case is the
ability to reuse control programs. It facilitates programming
whenever changes occur. Still, the approach does not consider
agility during run-time of the manufacturing system. It does
not address adding, removing, and/or replacing components
over the life cycle of a manufacturing system while it is
operating.

Mendes et al. analyze the usage of SOA in manufacturing
in terms of strengths and weaknesses [6]. The main benefits
of SOA are the loose coupling of systems as well as the ver-
tical and horizontal integration. Both aspects can be achieved
through data-centric approaches as well. One weakness of
SOA is however the description methods of the services,
which are unknown to automation systems engineers. This
is not necessary for data-centric approaches since only data
is modeled and the resources can still be programmed with
automation languages like IEC 61131.

Calvo et al. and Ryll and Ratchev both suggest means
to use the Data Distribution Service (DDS) in manufacturing
systems. Calvo et al. propose a method to integrate DDS with
IEC 61499 [7]. The focus here is only on the field level and
not on the whole manufacturing system up to the management
level. Ryll and Ratchev evaluate the applicability of DDS for
manufacturing systems [8]. They also only focus on the field
level.

There are some approaches to increase adaptability on
communication level. One example is the work of Reinhart
et al.. However, this approach is limited to Ethernet Networks
and only provides the plug&play capability on network level.

Middleware approaches like DDS and OPC UA according
to Sauer and Jasperneite help increase the adaptability of
software at field level [2]. However, the authors also recognize
that the problem with these approaches is that interfaces have
to be known in advance. Alternatively, they suggest using
physical variables for communication. This only addresses
the decoupling of software modules from PLCs. Additionally,
DDS only focuses on the specification of communication
requirements, whereas we suggest to specify fixed commu-
nication relationships instead.

In contrast to mentioned work, we define a list of required
features of future adaptable manufacturing systems. We present
a data-centric solution to fulfill future requirements. Besides
addressing the manufacturing system as a whole with its differ-
ent levels, our proposed approach also includes a suggestion to
define a global dictionary for data to overcome the problem of
unknown interfaces. Compared to available middlewares that
support data-centric communication, CHROMOSOME (XME)

focuses on extra-functional requirements to give timing guar-
antees, which is a key requirement for industrial manufacturing
systems.

III. COMMUNICATION PARADIGMS

Interoperability in industrial automation has been a difficult
topic since its origins due to the large amount of vendors and
standards that are available. Several middleware technologies
have been developed to allow exchange of data between control
devices and higher level systems. In this section we describe
the most common technologies.

A. Remote Procedure Call

Remote procedure calls (RPC) are a means for remote ex-
ecution of procedures or subroutines. The programmer writes
code in the same way as for local functions and when an
RPC is initiated, a temporary binding is created between the
computer and the networked resource that will execute the
procedure. The most widespread example of this technology
in industrial automation is OLE for Process Control (OPC),
especially its Data Access (DA) specification that defines the
access to real-time data from control devices. OPC DA is based
on Microsoft’s COM/DCOM technology, which is not further
developed anymore. Traditionally, this has been considered a
drawback and has raised security concerns. Additionally, it is
even incompatible between different Windows versions which
is a further disadvantage [9].

B. Service Oriented Architecture Based on Messages / Web
Services

These methods define an exchange of information based
on a request-response pattern between loosely coupled com-
ponents. Compared with the previous approach, it reduces the
complexity of identification, discovery, and communication
among networked components. Data is exchanged over the
network with standards such as XML, SOAP, HTTP, TCP/IP,
and UDP. Based on these principles, the OPC Foundation
released OPC Unified Architecture (UA), which adds many
new features with respect to OPC DA while maintaining inter-
operability. The new features include platform independence,
information models to facilitate the communication, security
and reliability, and two communication protocols: UA Binary
based on TCP and UA XML based on XML/Web Services that
can as well be binary encoded for TCP transport.

C. Data-centric Service Oriented Architecture

Data-centric SOA is an evolution of message-based SOA,
where the main focus is on the data to be transmitted rather
than on the message. The data is exchanged in real-time
through low-level binary protocols in a publish-subscribe man-
ner using a global data space. Nodes subscribe to the data or
topics they are interested in and can, as well, publish their own
data. Solutions such as DDS [10] or XME [11] are based on
this paradigm. Section V gives a more detailed overview of
data-centric communication and its use in industrial automa-
tion.



IV. REQUIREMENTS FOR ADAPTABLE MANUFACTURING
SYSTEMS

In a manufacturing system, adaptability is required on all
levels ranging from the shop floor level to the management
level [2]. IT systems have to be able to cope with different
types of hardware and software components. Software and
hardware in manufacturing systems is typically diverse and
often equipped with proprietary interfaces. In order to be
adaptable, IT and communication systems have to enable an
easy integration of different components and interfaces. Future
manufacturing systems should in addition offer services such
as self-description, self-configuration, data acquisition, real-
time monitoring, and planning of production [12]. To fully
enable plug & play in manufacturing systems, standardized de-
scription methods have to be used as well [13]. In our previous
work [14] we described how to achieve adaptability using a
model-based approach to automatically detect resources and
their connections within a factory. In this paper we want to
highlight further requirements to achieve adaptability and we
focus on one possible solution to improve adaptability on
communication and software level.

In the past, the system architecture of manufacturing sys-
tems has been very monolithic. There was no clear structure
and no modules were used. This resulted in a lot of manual
configuration effort to implement any change in the system.
In this section we give an overview about required features of
future adaptable manufacturing systems.

A. Modularity

The first requirement to increase the adaptability is to
modularize manufacturing systems [15]. Modularity should be
achieved on both the hardware and software side of the system.
There are a lot of approaches that tackle the hardware modular-
ity, however there has not been much work done to modularize
software as well. To achieve modularity on software level,
functionality has to be encapsulated in software modules. Each
module has a standardized interface that allows it to interact
with other modules. The manufacturing system’s software is
then composed of required modules that are integrated with
each other to fulfill the task. First steps towards modularizing
software are taken with the Application Composer from 3S'.

B. Loose Coupling of Components

In the IT domain there has been a lot of research in the field
of communication systems. Especially with the increase of
Internet applications, communication paradigms for distributed
systems have been developed in the past years. In order to cope
with a large number of components the components need to be
loosely coupled. Loosely coupled components or subsystems
have little or no knowledge of the other components in the
system. Each of the components has its own encapsulated func-
tionality and is separated from the other systems. Therefore,
loose coupling is only possible when modularity is present.
The systems interact via a service-based data exchange that
requires a semantic description of data. This can be done
through direct access to the interfaces of the component, the
invocation of services as in SOA, or by specifying the required

! Application Composer: http://www.codesys.com/products/codesys-
engineering/application-composer.html

and provided data as in data-centric communication. Direct
communication between components generates very static ap-
plications that cannot be changed easily [16]. According to
Eugster et al. [16], decoupling can be decomposed along three
dimensions: space, time, and flow. Space decoupling means
that components or subsystems have no knowledge of each
other. Components can interact through data exchange, but
they do not need to know which component is producing or
receiving the data. Time decoupled systems do not have to
participate in an interaction at the same time. Components are
not blocked until the interaction finishes as in synchronous
communication and interaction is mainly asynchronous. Flow
decoupling means that the communication activities do not
block the main control flow of the components. Communi-
cation is done concurrently to other executions so that the
main tasks of a component are not blocked. This increases the
scalability of the system, since there is no direct dependency
between the components. Coordination and synchronization ef-
forts are also decreased when systems are loosely coupled [16].

C. Heterogeneity

Manufacturing systems consist of several types of com-
ponents ranging from sensors and actuators to databases and
high performance computers that need to be integrated. Future
manufacturing systems have to include different types of
hardware and software as well as available communication
infrastructures. It is not feasible to force the use of a specific
hardware or software. Future infrastructures must allow the
use of multi-vendor and multi-purpose hardware and software
while supporting proprietary legacy systems [17].

D. Interoperability and Standardized Interfaces

Because of the large number of different systems available
within a manufacturing system, interoperability is a key feature
in future adaptable systems. Information exchange must be
possible between components from different vendors as well as
components for different purposes. Control devices on the shop
floor for example must be able to exchange information among
each other as well as with planning and monitoring systems on
management level using the same mechanisms. Interoperability
can be achieved through standardized interfaces and a semantic
description of the exchanged data. Standardized interfaces
are an important aspect to achieve adaptability. For each
component in the system, the interfaces have to be clearly
defined and accessible to other components in the system.
The interfaces have to be designed in such a way that infor-
mation for controlling, planning, and monitoring the system
is accessible. Without standardization adaptability of software
components is quite difficult to achieve [2]. For standardization
more effort has to be done especially in creating a common
global definition of exchanged data with their semantics and
syntax that different developers work with. This has to be
achieved through standardization work with several groups
and companies. This requirement is stated here for the sake
of completeness. However, suggestions on achieving this are
beyond the scope of this paper.

E. Scalability

Since future manufacturing systems change frequently, the
IT and communication infrastructure has to be scalable to cope



with different setups. The different setups result from either ex-
panding existing systems or reducing them. The system should
be efficient with a small number of components as well as
with a large number of components. Adding new components
to the system should not result in an increase in overhead and
added complexity. Performance should not be affected when
the setup of the manufacturing system changes. Moreover, the
system should not be too complex from the beginning when
it only consists of a small number of components.

F. Plug & Play

In adaptable manufacturing systems, control applications
of the production and factory setups change frequently. In
order to minimize configuration and setup efforts, the control
application should be easily exchanged and reconfigured at
run-time. Adding and removing components should also be
possible with minimum effort. Plug & play provides the ca-
pability to connect and disconnect components at run-time.
Available components and their description are distributed over
the system and thus, components can be used at run-time
without further configuration. However, the infrastructure must
be designed to enable plug & play. Plug & play is a general
requirement for all middleware solutions that can offer recon-
figurability, which is necessary for adaptable manufacturing
systems [18]. Plug & play is also required on hardware/system
level to enable adding new hardware as well. This can be
achieved by modeling capabilities of resources as described
in previous work [14].

G. Dynamism

The infrastructure of IT and communication systems have
to be maintained over the life cycle of a manufacturing
system. The life cycle in adaptable manufacturing systems
is very dynamic. Dynamism is also triggered by changes in
demand, variety of products, and fast changing technologies.
Therefore, the infrastructure has to facilitate addition, removal,
and replacement of components without affecting the state of
the system. In contrast to plug & play, the changes here do
not have to occur while the factory is running. They can for
example take place during maintenance intervals as well.

V. DATA-CENTRIC COMMUNICATION

Current approaches for communication and IT infrastruc-
ture are very inflexible because the exchange of data is tightly
integrated with the control programs. Any change results in re-
programming the application control program, which involves
a lot of manual effort and high costs. To overcome all the
challenges and meet the requirements stated in Section IV, we
suggest a data-centric communication approach. In this section
we give an overview of the data-centric approach and the need
for common data semantics to make this approach feasible.
Finally, we provide an example of a data-centric middleware.

A. Data-centric Communication

The idea behind data-centric communication is that com-
ponents communicate with each other using only data as the
main means for interaction. The data is decoupled from senders
and receivers. Components express their interest in certain data
as well as which data they can provide. Based on this, the
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Fig. 1. Components interact with each other by publishing and subscribing
different topics.
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data is disseminated through the system to the corresponding
components. This means that the data flow between software
components is not defined explicitly, but is rather specified in
terms of publishing and subscribing components. Publishing
components of a certain data type provide this data type while
subscribing components of certain data types require this data
type. Data of the same data type is grouped in a topic. In
addition to the data types, publishers and subscribers can add
meta information to the data to further refine them. Examples
for meta information are time stamps, quality information like
accuracy of values, and location information. Meta information
is added to the data on demand depending on the configuration
of the infrastructure chosen by the user. All communication is
done through publications and subscriptions. Other interaction
mechanisms should be avoided due to safety reasons. An
example of data-centric communication is shown in Figure 1.

This approach abstracts from communication technologies
and can therefore be used with different protocols and com-
munication hardware. The only restriction is to implement the
support for the corresponding operating system running on
the hardware and the used communication protocol. Therefore,
this approach is suitable for heterogeneous platforms and can
always be extended to support new hardware and technologies.
Since it can be built on top of other communication systems, it
can be integrated in existing systems without further hardware
costs as well.

Interoperability is provided because the complete interac-
tion is based on the exchanged data. Nevertheless, it is impor-
tant to have common data semantics. When the components
share the same understanding of the data, applications can
interact correctly.

The scalability of the approach depends on how data is
disseminated through the system. The system works in the
same way regardless of the number of participating compo-
nents, which is a feature of classic systems as well. However,
if the number of components in the system is high, efficient
mechanisms for propagating the data and notifying compo-
nents about available data are necessary.

Dynamism is given when using data-centric communica-
tion because components are modular and have an encap-
sulated functionality. Whenever a component needs to be
replaced, the replacing component only has to implement
equivalent interfaces for publications and subscriptions. The
replacement in this case only affects the replaced component
and has no side effects on the whole system. Adding new
components is also possible without side effects because the



new communication channels can be automatically established
without manual adaptation of old ones. The same applies for
removal of components.

Plug & play requirements cannot be fully addressed with
data-centric approaches only. However, data-centric communi-
cation enables it by adding extra functionality to handle adding
and removing of components. Announcing new components
can be done in a data-centric manner and the system is then
configured accordingly.

B. Common Interpretation of Data

To enable full interoperability with data-centric commu-
nication, a global understanding of the exchanged data is
necessary. A uniform syntax and semantics of the data has
to be available. This can be achieved by describing data in-
dependent of specific applications using common descriptions
within a domain. A domain-specific data model is necessary to
allow interaction between different applications that have no
previous knowledge of each other. Currently, developers only
specify data required in their application independent from
others. This can lead to incorrect applications when systems
interact. For example, if two applications need a temperature
value, but the format of the data is different, then they are
not compatible. The same applies if one application expects
the outside temperature, but the other application provides
the room temperature. To avoid this, a global domain-specific
data model is useful. The global data model can later be
modified to also include data models from other domains.
This will help achieve the vision of cyber-physical systems
where components from different domains can interact with
each other easily as well.

C. CHROMOSOME

XME [11] is an open source middleware and platform in-
dependent run-time environment. The middleware is developed
for distributed embedded systems and PCs. It provides an in-
frastructure for data-centric communication by implementing a
publish/subscribe mechanism. The middleware is independent
of the application. It allows the user to focus on developing
application logic rather than implementing the infrastructure
for it. Based on the definition of publications and subscriptions
in the application, the system can configure corresponding
communication channels. It has a modular architecture with
some core components that have to be available in all con-
figurations. Other components can be added and removed as
desired by the user. The architecture of XME is depicted in
Figure 2.

XME offers the following features that meet the require-
ments of Section IV [19]: space, time, and flow decoupling of
components is achieved due to the data-centric communication
paradigm. It offers flexibility, self-adaptability, and plug & play
capability. Different platforms are supported due to the plat-
form independent run-time environment based on a platform
abstraction layer.

To enable plug & play, modularity and encapsulation of
functionality is necessary. In XME, functionality is encapsu-
lated in software components. Components provide a specific
function and interact with other components through defined
interfaces (ports). Ports are either publishing or subscribing
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Fig. 2. Architecture of XME [11].

ports that are used to send and receive data respectively. These
components can later be reused or replaced without much
effort. XME offers a Plug & Play Manager that coordinates
plug & play processes. This process is divided into a plug-
phase and a play-phase. In the plug-phase new components
can be plugged into the system. The Plug & Play Manager
calculates a valid configuration to integrate the new compo-
nents while the system is running. Once a valid configura-
tion is found, new communication channels are configured
accordingly and the system can run with the new components.
XME also offers a log-in mechanism to enable adding and
removing new devices to and from the system without having
to reconfigure the middleware. Each device has a Login Client
to be able to log into the system. The Login Client establishes
the communication to the Login Manager which is part of the
XME ecosystem and enables the plug & play process.

To ensure platform independency and support heteroge-
neous networks and devices, waypoints are used in XME.
Waypoints are used for marshaling and demarshaling of data
(i.e., converting data to common byte data and back) as well
as adding checksums for error detection. There are predefined
rules to select suitable waypoints in XME.

Furthermore, XME is designed with a focus on extra-
functional requirements (e.g., timing guarantees). All config-
urations must meet the respective requirements. New compo-
nents are only integrated into the system if they do not violate
the requirements.

In XME, the common interpretation of data is achieved
through dictionaries. The dictionaries are specific to a domain
and contain a description of all the data that is exchanged with
their syntax and semantics. Each of these data descriptions
is a topic. Components can then publish and/or subscribe
topics. This is necessary to achieve interoperability. Figure 1
illustrates the communication based on topics. To fully achieve
interoperability, users from one domain have to agree on
required data and their format to specify a usable dictionary for
this domain. This can only be achieved if there is collaboration
between different users and a standardization of data and
dictionaries.
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VI. APPLICATION AREAS OF DATA-CENTRIC
COMMUNICATION

Data-centric communication can be used on many lev-
els within a manufacturing system. On the one hand, it is
suitable for integrating business applications on the manage-
ment level with field-devices on the shop floor level (vertical
communication). On the other hand, it is also suitable for
communication between devices of the same level (horizontal
communication). Since the same communication mechanisms
can be used throughout the manufacturing system, the effort
to setup and maintain the communication infrastructure can be
reduced using the data-centric paradigm. Another advantage of
using data-centric communication is that the data can also be
sent to visualizing and simulating components without having
to add other interfaces and change the configuration. In this
section, we give a few examples on how to apply data-centric
communication in manufacturing systems.

A. Example Setup

To illustrate the approach, we use a simplified example
from the automation domain used for educational purposes,
which is a Festo modular production system. The setup con-
sists of different machines that can be arbitrarily combined
to form the desired manufacturing system. However, some
combinations do not result in valid setups. The manufactur-
ing system can produce black, red, and silver thermometers
as well as red boxes. Transporting raw material within the
system is also possible. Not all factory setups support all
products. The different steps required for such productions
include distributing of material, testing, processing, assembly,
storage, and delivery. Each of the machines is controlled
by a programmable logic controller (PLC) that performs its
production steps.

The communication infrastructure is provided by XME.
The architecture of the example setup is depicted in Figure 3.
The middleware is used to abstract from different components
used in the setup. The communication between the shop floor
and the management level is done in a data-centric manner.

B. Vertical Integration

Vertical integration involves the integration of sensors and
actuators, field devices like PLCs, supervisory control and
data acquisition (SCADA) systems, manufacturing execution

Horizontal and vertical communication between loosely coupled components using a middleware.

systems (MES), as well as business applications like enter-
prise resource planning (ERP) systems. These components
have different computational capacities and communication
requirements. In current systems, the communication between
different levels within manufacturing systems is not possible
with the same technologies that are used within each level.
Current systems on management level, like MES, also face
challenges in adapting to the dynamic and complex shop
floor [20]. When data-centric communication is used, the
different communication requirements of the different levels
like data volume, data rates or timing constraints can be
specified and met by the system [8].

We use a data-centric approach to gather information
about available resources in the factory to create a model
of the factory. Furthermore, information about the topology
of the factory is gathered. The topology information is the
information about which resources are connected to each other.
To create the factory model, the devices on the shop floor
level send a signal to the MES containing information about
their unique identification and topology information. The MES
generates a factory model at run-time and uses it to plan
and schedule the production on the respective resources. For
this we model each resource that can be part of the factory
beforehand using the Eclipse Modeling Framework (EMF).
Using a data-centric communication between the resources
and the MES we can then generate a model @ run-time of the
factory out of the previously modeled resources. Whenever
a change in the factory occurs, a notification is sent via the
established communication channels and the run-time model
can be updated accordingly. In this case each resource in the
system publishes to a topic Add Resource. The MES sub-
scribes the topic and corresponding communication channels
between the different resources and the MES are configured
by the system. Resources can also send production statuses
to the manufacturing system indicating for example whether
a production step is finished or problems have occurred. The
vertical communication is also used to control the production.
The MES sends commands to the resources to start and stop
the production. It can send parameters for the production as
well.

C. Horizontal Integration

In manufacturing systems, components within one level are
very heterogeneous and have to be integrated. This horizontal
integration requires a lot of manual effort. Using a data-centric



paradigm can ease the whole setup effort for a manufacturing
system. Different data can be exchanged through the defined
topics. If a new device is added, only the new device must be
programmed to implement the publications and subscriptions
to topics. The other devices in the system remain unchanged.
For example, in our setup we exchange signals between dif-
ferent resources to gather topology information. The graphical
user interface (GUI) and the planning component of the
MES also exchange data through the topics Start Planning,
Schedule Generated, and Production Finished. The planning
component is responsible for selecting resources for a specific
production order and generating a valid schedule for this
production order. It also monitors the production progress to
tell resources when to start with new orders. The planning
is triggered by the user after an order has been placed. A
signal is then sent through the Start Planning topic to inform
the MES about the products to be produced and to trigger
the planning. After finishing the planning, the MES informs
the GUI about the generated schedules through the Schedule
Generated topic and the GUI can then visualize them. Through
the Production Finished topic, the MES can inform the GUI
that the current product has been produced so that the GUI
can be updated accordingly. The planning component has no
real-time requirements; however the resources in the factory
are real-time systems. Therefore, the communication between
the resources in the factory must fulfill real-time requirements,
whereas the communication between the GUI and the MES is
only soft real-time. Different requirements on communication
can be specified through quality of service requirements for
communication relationships.

D. Visualization

Using the same topics as for controlling the real manu-
facturing system, data from the shop floor can be used to
visualize the plant as well as its state. The gathered information
about available resources and their topology are sent to the
visualization component if it subscribes to the topic and can
be used to show the different resources. This mechanism can
also be used to validate generated plans and schedules on
the simulated resources instead of directly evaluating them
on the real hardware. Since the interfaces and communication
technologies in the simulated and visualized systems are the
same as the real system, there is no manual effort to switch
between the two. The automatically generated visualization of
our setup is shown in Figure 4. The CIROS Studio tool?® is
used for the visualization. It contains CAD-models of the used
machines. The visualization component just subscribes to the
Add Resource topic and automatically receives the same data
as the MES.

E. Integration of Legacy Systems

In order to integrate legacy systems a gateway can be
implemented to connect the legacy system to the data-centric
system. The gateway implements communication protocols of
the legacy system and at the same time communicates in a
data-centric manner with the rest of the system. Because of
the large number of available technologies, a trade-off between
the functionality and the universality of the gateway has to be
made [21].

2CIROS: http://www.ciros-engineering.com/home/

Fig. 4. An automatically generated visualization of the system.
VII. DISCUSSION

In this section we evaluate the data-centric approach for
adaptable manufacturing systems.

A. Benefits

The data-centric communication seems to be suitable
for increasing the adaptability of manufacturing systems. It
provides a loose coupling of components. The data-centric
paradigm has received a lot of attention in the past years also
in large scale applications over the Internet and is providing a
necessary decoupling for the distributed applications there. It
is suitable for heterogeneous platforms where different types
of devices have to be integrated. Legacy systems can also be
supported because the paradigm can be implemented on top
of available infrastructures. For proprietary systems, gateways
can be implemented. Adding and removing components over
the life cycle of the manufacturing system is easier than
before because new components only have to specify the data
they are interested in and the communication channels are
automatically configured accordingly. The same applies for
replacement of components. This meets the requirement of
being dynamic.

Another benefit of the data-centric approach is the support
of vertical and horizontal integration of devices in the man-
ufacturing system. The business logic gets closer to the shop
floor. This also helps to establish the manufacturing system as
one whole system and not as a collection of isolated solutions.

The communication paradigm can be easily extended to
support plug & play. CHROMOSOME is one example of a
middleware that uses a data-centric communication paradigm
while enabling plug & play.

Since the data-centric approach is not restricted to one
domain, it is also useful to connect other domains to the
manufacturing domain to achieve the vision of the factory
of the future [12]. The same communication paradigm can
be used to connect the factory directly to the retailers where
customers can directly order their products and send the
desired requirements to the shop floor. Another application
scenario for the future would connect manufacturing systems
to smart grids to manage energy more efficiently.



B. Issues

To achieve interoperability with this approach there is a
strong need to standardize interfaces and data models. Without
standardization a full adaptability on software level is not
possible [2]. Extending standardization efforts to include other
domains can result in defining global dictionaries with sub-
dictionaries for each domain.

There are few frameworks and middlewares available that
are based on a data-centric approach and are suitable for the
manufacturing domain. The most famous standard from the
IT domain is DDS. There are some implementations based
on the DDS standard. However, available frameworks have
to be adapted to meet the requirements of manufacturing
systems. There is a need to evaluate different implementations
of the data-centric paradigm to find a suitable solution for the
automation industry.

Data-centric communication is still not often used within
manufacturing systems and there is still some work that
needs to be done to make it usable in real industrial setups.
Nevertheless, the experimental setup showed that the approach
is feasible and that further improvements have the potential to
make it usable in industrial setups as well.

VIII. CONCLUSION

In this paper, we explained the requirements of future
manufacturing systems which have to be adaptable to face
turbulent markets. The key features of future manufacturing
systems to increase adaptability are decoupling of components,
support of heterogeneous platforms, scalability, Plug & Play,
and dynamism. Additionally, standardized interfaces are nec-
essary which are closely related to having interoperability. We
proposed to use a data-centric communication approach to
address these challenges. This approach results in a decoupled
system that involves heterogeneous devices because the com-
munication paradigm is not restricted to certain devices and
technologies. It is also very dynamic because components only
specify their communication needs in form of publications and
subscriptions of data. This makes it quite easy to add, remove,
and replace components along the life-cycle of a manufac-
turing system. Plug & Play can be added to the data-centric
approach as showcased by the CHROMOSOME middleware.
It is used in the simplified industrial setup that was used to
evaluate the approach. The example setup confirmed that a
data-centric communication paradigm meets the requirements
of adaptable manufacturing systems and helps decoupling
components in time, space, and flow. However, there is still the
need to evaluate different implementations of the data-centric
approach and further specify constraints to find a suitable
framework for manufacturing systems.
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