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Abstract—Manufacturing enterprises can only stay profitable
if they manage to flexibly respond to changes in markets by
adapting their products, product variants, and product volumes.
To support such variety in products, we suggest a capability-
based approach for production planning and scheduling. Pro-
duction plans and machines are described in terms of required
capabilities and provided capabilities respectively. Additionally,
the topology of the factory is described. We propose to combine
these descriptions to automatically generate production schedules
that consider the material flow in the factory. For each production
plan, our approach generates a valid schedule for the currently
available machines in the factory without manually reconfiguring
the software. The evaluation of the approach on an industrial
production system used for educational purposes shows the
suitability of this approach.

I. INTRODUCTION

The manufacturing industry is currently under strong pres-
sure to swiftly and easily adapt to changes. Mass customization
is becoming the ideology of today’s manufacturing [1], [2].
This is coupled with dynamic requirements regarding lot
sizes, product variants, lead times, and costs which empha-
size the need for adaptable production systems. Simultaneous
production of different products is a main requirement for
economic usage and a better utilization of production equip-
ment. Increased adaptability while keeping setup times to a
minimum is the key feature of future manufacturing [3]. By
being adaptable, intelligent, and versatile, future manufacturing
systems can deal with the turbulent environment that they
face [4].

Today, production starts with a fixed production plan that
is optimized for a specific product. The plant configuration
is rarely changed once production is running. New products
can only be scheduled after production has been stopped
and some parts of it reprogrammed, reconfigured, or even
replaced. Current production plans are unable to cope with
the requirements of today’s industry [5].

Scheduling in general is NP-hard and manufacturing
scheduling is one of the most difficult to solve [6]. A lot
of available scheduling algorithms are either very specific
for a certain problem or too theoretical and therefore not
applicable in real-world manufacturing systems [6]. Current
planning and scheduling software requires a lot of manual
effort [7]. For each available resource in the factory, jobs
are assigned manually and the scheduling algorithm assumes
that the factory topology is fixed. Moreover, most scheduling
algorithms assume that the material will eventually arrive at

the machine that should perform the operation. Therefore, they
do not consider topology information during scheduling and
do not calculate material flows. Furthermore, they often lack
the flexibility to cope with future requirements. Approaches to
automatically generate schedules are tailored for static environ-
ments and cannot handle dynamic changes in the scheduling
problem [8].

In adaptable manufacturing systems, the setup of the fac-
tory describes which machines are currently used in the factory
as well as how and where these machines are placed within
the factory (e.g., which machines are connected to each other).
Future production planning software should be able to cope
with different factory setups. It should be possible to switch
between different setups without manually reconfiguring the
planning software every time a change occurs.

We suggest a capability-based planning approach to tackle
these problems. In this approach, production plans are modeled
independently of the current factory setup using capabilities. At
the same time, factory setups, including material flow informa-
tion and machine capabilities, are modeled as well. Capability-
based in this context means that the necessary information for
matching production steps and resources is described through
capabilities of resources and required capabilities in each
production step. Resources provide and implement capabilities
that are required for the production. The required capabilities
are described in production plans. The main contribution of
this paper is the combination of these different models to
calculate a production schedule that also considers the required
material flow. The benefits of this approach are demonstrated
on a modular production system. The approach allows the
generation of valid production schedules for different factory
setups without any manual effort in-between setup changes.

The paper is structured as follows: Section II evaluates
existing approaches and gives an overview of related work in
the field of planning for adaptable manufacturing systems. In
Section III, we describe the modeling of production plans, pro-
duction systems, and material flow information. The suggested
planning and scheduling approach is described in Section IV.
In Section V, the industrial setup is described and the approach
is evaluated. Finally, Section VI summarizes the paper and
outlines future work.

II. RELATED WORK

In the past years, much work has been done in the field
of scheduling in general and on adaptable manufacturing



in particular. The focus there is on optimizing scheduling
algorithms and using multiple objectives for scheduling. In
the artificial intelligence domain, a lot of work has been done
to improve planning. The goal in this case is to find a set of
actions and a sequence of these actions that leads to the goal
state [9]. However, the planned actions do not involve material
and therefore the material flow is not considered.

One class of optimization algorithms for scheduling prob-
lems is based on genetic and evolutionary algorithms. Sched-
ules are optimized according to multiple objectives (for ex-
ample, see [10], [11]). While these algorithms are indeed
useful for optimizing schedules, the scheduling problem has
to be modeled manually by assigning each operation to a
defined machine. The manual modeling requires time and
effort. Also, the material flow is not modeled in the problem.
These approaches are therefore less suitable for a frequently
changing production environment.

There is plenty of work in the domain of agent-based
planning and scheduling. Most of these approaches focus on
defining a suitable platform for agents and the negotiation
aspect of agent-based planning. They also consider planning
strategies and reconfiguration (see, for example, [6], [12]–
[20]). Holonic manufacturing approaches also follow this line
of research (see, for example, [21]). In this work, the planning
focus is on allocating resources for the different jobs in a
distributed system. In agent-based planning, the material flow
is always considered implicitly by using transport agents that
negotiate possible material flows. However, these approaches
negotiate the schedule stepwise and therefore do not deter-
mine the whole schedule until it is already scheduled on the
machine. Hence, optimizing the generated schedule is not
possible, because it is not known beforehand. Nevertheless, a
lot of these approaches use an ontology to enable collaboration
between agents. These ontologies can be used as well, since
the definition of a vocabulary is one of the building blocks of
our approach.

Capability-based approaches are becoming more popular,
since they offer more flexibility. However, available approaches
mostly have a different focus. Ollinger et al., for example,
use a service-oriented description to ease integration of com-
ponents [22]. The advantage in this case is the ability to
reuse control programs. Järvenpää and Torvinen also follow
a capability-based approach, but use it to evaluate the impact
of changes in adaptable manufacturing systems [23]. Here, the
capability-based approach serves as an assessment function for
the effort needed to adapt to a change.

Zäh et al. propose a similar approach [5] to ours. They
also propose to describe production processes and resources in
terms of capabilities. However, they do not model the material
flow and the topology of the factory. Production plans are
optimized locally on a machine level. Additionally, they sug-
gest using Radio Frequency Identification (RFID) technology
to store production plans and plan and schedule according to
the information on the RFID transponders. However, RFID is
not always suitable for real-world setups due to interference
problems, read/write speed, and limited storage capacity [24].

In contrast to the presented approaches, our approach
aims at automatically generating a production schedule that
considers the material flow without having to manually model

the problem whenever a change occurs. It does not locally
optimize at the machine level but rather has a global view on
the production process. It can later be combined with genetic
and evolutionary approaches to further optimize production.

III. CAPABILITY-BASED MODELING OF PRODUCTION
SYSTEMS

In order to increase the flexibility of the planning process,
we propose to describe the scheduling problem in a machine-
independent way. This can be achieved by first describing the
required operations independently from the factory in a pro-
duction plan. Afterwards, each machine in the factory has to be
described using the same vocabulary that was used to describe
the production plans. In addition, we suggest modeling the
material flow. In this section, we give a brief introduction on
how to describe production plans, machines, and material flow
in the factory using a capability-based approach.

A. Defining the Description Vocabulary

In order to use such a capability-based approach, the
production plans as well as the factory models have to be
described using the same vocabulary. This is an essential
prerequisite. The same vocabulary does not necessarily only
mean the same words; the semantics behind the words have
to be considered as well. Two descriptions only match when
their semantics are the same. This can be achieved by using
an ontology to describe the domain. There are some efforts
to standardize descriptions of operations in the manufacturing
domain. An example for this is the German guideline VDI
2860, “assembly and handling”. The definition of ontologies
to describe all possible operations of a domain is outside the
scope of this paper and requires further research. Instead, a
simplified ontology is described here to illustrate the approach.

In our case, we define a set of primitive operations that
are used in the discrete manufacturing domain and incorporate
these in our description. Primitive operations are operations
that describe a self-contained operation with all sensor readings
and actuator control to fulfill an atomic function. Examples are
drilling, transport, supply, testing, and assembling. Addition-
ally, the primitive operations can be combined to describe more
operations. These are called combined operations; a sorting
operation is one example. Sorting could, for example, be the
result of combining a conveyor belt with transport capabilities,
a color sensor that detects the color, and a module that can
change the direction of the products to sort them. However,
the decision whether operations are primitive or combined
depends on the definition and there is no standard yet. A
description of an operation can then be further refined to
include attributes like material, geometry of the material, and
further parameters that specify the operation in detail. This is
necessary because the same operation description might apply
to different materials, but the operation cannot be done with
the same tools for these materials (e.g., drilling plastic and
drilling steel). In order to distinguish between different cases,
the operations can be grouped in classes and later refined using
this attribute mechanism. Table I gives an example of possible
descriptions used in our setup.



TABLE I. PRIMITIVE AND COMBINED OPERATIONS USED FOR THE
DEMONSTRATION SCENARIO

Capability Description
Supply Supply material such as cases, boxes, sensors, covers, etc. The

material can be specified with attributes.
Test A class of capabilities that has to be refined to describe what

has to be tested (e.g., Test Height and Test Orientation).
Assemble Putting two materials together (e.g., a pick & place operation).

Detect A class of capabilities that has to be refined to describe what
has to be detected (e.g., Detect Workpiece and Detect Color).

Store Buffering a number of workpieces or products. Attributes can
be used to describe the capacity and type of the buffer.

Sort Sorting workpieces or products according to a sorting criterion.
The sorting criteria can be specified using attributes.

B. Capability-based Modeling of Production Plans

The first step in our approach is to describe the production
plan1 for each product that has to be produced. The production
plan decouples the production process from the factory setup.
The description is based on the previously defined capabilities.
In a first step, we determine all the capabilities that are required
for production. The second step adds all dependencies between
the required capabilities. The dependencies determine the order
in which the operations matching the capabilities have to be
scheduled to result in the correct product. An operation in this
context refers to the implementation of the capability or the
actual execution of the capability on a resource. Dependencies
can be described by defining either the predecessor or the
successor for each capability. Thus, each production plan
is represented as a directed graph P = (S,D) with a set
of vertices S and a set of directed edges D. Each vertex
s ∈ S represents a required production step. The details of
the production step are described through the properties of
the vertex. A directed edge d = (a, b) is an edge going from
vertex a to vertex b. It represents the dependency between two
production steps that are represented by their vertices. It means
that production step a has to finish before production step b
can start. Additionally, the edges indicate the required material
flow.

For vertex s, the incoming edges are represented by the set
inEdges = {d|d ∈ D ∧ ∃t ∈ S : d = (t, s)}. The outgoing
edges of s are represented by outEdges = {d|d ∈ D ∧ ∃t ∈
S : d = (s, t)}, respectively. The inEdges set represents
the predecessor information of an operation. Each operation
that is connected by an inEdge to the operation represented
by vertex s must be finished before s can start. Respectively,
the outEdges set represents the successor information of an
operation. Operations connected by an outEdge to vertex
s can only start as soon as s finishes. It is sufficient to
use only predecessor or successor information. Each vertex
can have zero, one, or more incoming and outgoing edges
(|inEdges| ≥ 0, |outEdges| ≥ 0) which represent the prede-
cessors and successors respectively. The dependencies between
steps are transitive, so they need to be specified only for
the immediate predecessor or successor. The sources of P
represent the initial steps in the production plan. Sources are
vertices vso with |inEdges(vso)| = 0. The last production step
is the sink vsi of P with |outEdges(vsi)| = 0. Currently, the
approach is limited to acyclic production plans. In future work,
adding cyclic dependencies should be possible. The structure

1For simplification, this paper discusses only the specification of the
production plan without errors. However, the suggested approach also allows
the specification of actions that should be performed in case of an error.
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Fig. 1. Different production plans: (a) A silver workpiece, (b) a black
thermometer, and (c) a red box.

of the production plan reveals information about the scheduling
problem such as the degree of parallelism, the critical path of
the production as well as the leeway in scheduling decisions for
independent operations with no defined order. Three simplified
examples are shown in Figure 1. Boxes represent the required
capabilities and arrows the dependencies between them.

C. Capability-based Modeling of Machines

Besides describing the production plans, the machines in
the factory have to be described as well. The description should
include all capabilities of a machine. Again, the description
is based on the previously defined capabilities with their
attributes, like material or duration. Machines are defined
as a combination of different modules that implement basic
independent operations that are described by capabilities. Each
module implements one or more of the predefined capabilities.
Additionally, combining modules can result in further capabil-
ities as mentioned before. Figure 2 depicts an example for
modeling a machine. For a detailed description of the factory
model, see [25].

D. Material Flow Modeling

Since we are looking at adaptable manufacturing systems,
modeling the material flow is a key step for automated
planning. Most common planning approaches assume that
the machines in a factory are fixed and therefore only map
operations to machines. This also implies that the material
will eventually arrive at the right time at the right station
for the target operation without having to consider this during
planning. For adaptable manufacturing systems, this assump-
tion does not hold anymore because the setup of the system
might change on a daily or even hourly basis. On the one
hand, machines that were available at planning time might not
be available anymore during production. On the other hand,
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Fig. 2. A capability-based machine model with four modules providing the
capabilities drill, test orientation, and transport.



new machines that were not considered in the initial planning
might be available during production. In addition, the topology
might change between different products. Multi-agent systems
and holonic approaches tackle this challenge by negotiating
scheduling decisions after each step [16]. This, however, leaves
little room for optimizing schedules since the schedule is only
known after actually performing all steps.

To overcome these problems, the material flow has to be
modeled for every factory setup as well. This is achieved
by describing input and output points of each machine in
addition to its capabilities. Machines can also have connection
points that are used as input as well as output points. We
call these connection points bidirectional. The material flow
is then modeled as connections between connection points
of machines. The connections are directed connections, with
their direction being determined by the connected points. The
resulting material flow of a factory setup can be represented
by a directed graph M = (R,F ) where R is the set of
vertices representing available machines and F is the set of
edges representing the material flow between the machines.
A directed edge f = (r1, r2) indicates that there is a valid
material flow from machine r1 to machine r2. If we, for
example, connect an input point of machine 1 with an output
point of machine 2, then the direction of the connection is
from machine 2 to machine 1. For bidirectional material flow,
two edges f1 = (x, y) and f2 = (y, x) are used to represent
that the material can flow in both directions. Vertices r with
|inEdge(r)| = 0 either have no input or are not connected on
their input. Vertices r with |outEdge(r)| = 0 either have no
output or are not connected on their output. When connecting
bidirectional points, the connection goes in both directions.

Figure 5 depicts examples of material flow models for
three different factory setups. The first setup does not include
bidirectional connections, whereas the other setups do. Since
it is not feasible to model all possible material flows during
layout planning, automated approaches are required. In earlier
work, we suggested a plug&produce approach for this purpose
(see [25]).

IV. PRODUCTION PLANNING AND SCHEDULING

The previously described capability models can be used
as a starting point for automatic generation of production
schedules. The production plan models and the capability-
based descriptions of machines in the factory can be combined
to determine a mapping from operations to machines. A simple
matching algorithm can be used to determine such a mapping.
The initial mapping can be refined to only consider possible
material flows and hence only generate schedules that match
the current factory setup. In this section, we introduce the
algorithm that we developed based on the workflow depicted
in Figure 3 that automatically generates production schedules
based on the different capability-based models. It starts with
a definition of the production plan for a specific product
illustrated in the upper left corner. Based on the required
capabilities and the factory setup (both shown in the lower
left corner), a resource mapping can be calculated as seen in
the upper right corner. This can be extended to only include
solutions with valid material flow. The best schedule is then
used to control the production.

A. Automated Generation of Production Schedules

Production planning consists of routing, scheduling, dis-
patching, inspection and coordination, control of materials,
machines, tools, and operating times [26]. Initially, the produc-
tion schedule has to address specific key elements in advance
to ensure an uninterrupted flow of work. These elements
are material ordering, equipment acquisition, bottlenecks, and
human resource acquisition and training. The choice of the
manufacturing process is affected by factors such as volume,
variety, capacity of the plant, lead time, flexibility, and effi-
ciency. We focus on the scheduling of the production since it
plays an important role in the efficiency of the process and the
cost and is necessary for allocating resources for the jobs [27].
Since the manufacturing constraints can change during the
product life cycle, scheduling approaches have to be dynamic
and capable of adapting to these changes in an efficient
manner [28]. Hence, having an efficient way of scheduling
will reduce the cost and make rescheduling less problematic
and enable a more flexible and adaptable manufacturing sys-
tem. This can be achieved through automatically generating
production schedules that consider the current factory setup
and the required efficiency criteria.

We suggest using a complete search with branch-and-bound
and backtracking to generate schedules. Since the number of
machines that have to be considered in each step is much
smaller than the number of operations, the search space is
small. Typically, machines are not used for all operations.
Therefore, branches can be pruned quickly and the number
of branches that reach the last level in the search tree is rarely
exponential in practice. Thus, the search space is also not
exponential. Using a complete search in this case results in the
best solution. The solution space that is explored by the search
is the automatically generated factory model as described in
our previous work [25]. This is the previously described graph
M . The factory model contains topology information of the
current setup as well as a description of each machine in the
factory with its capabilities as depicted in Figure 3 in the lower
left box. The first step of the scheduling procedure results
in a mapping of required capabilities to available machines.
For each capability in the production plan graph P , a list
of possible machines that provide the capability is generated.
By iterating over all available machines in M and using a
simple matching algorithm, such a list can be provided for
each step in the production plan. As an example, the matching
algorithm would assign machine “Pick&Place Temperature”
and machine “Pick&Place Cover” from setup (a) in Figure 5
for capability “Assemble” in production plan (c) in Figure 1.
The resource mapping is the starting point for the material flow
calculation in the following step. Since the factory can have
different topologies, the resource mapping is not sufficient.
It is also necessary to check whether the material can flow
between the chosen resources. This is achieved by generating
schedules based on the resource mapping and the factory
topology information. In order to maintain precedence relations
between operations, the schedule is generated backwards, i.e.,
the last step of the production plan is inserted in the schedule
first. However, it is inserted at the end of the schedule. The
operations that are scheduled after are inserted at the beginning
of the schedule. Thus, the starting point is the sink in graph
P . This ensures that no operation is scheduled before its
predecessors are finished.
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Fig. 3. Workflow for automatically generating production schedules.

Algorithm 1 describes the implementation of the approach.
Operation reverse graph (line 4) reverses the direction of each
edge in the graph. Operation topological sort (line 5) returns
a linear ordering of the nodes such that for every edge (u, v),
node u is before node v in the ordering. Operation at(i)
returns the data from the vector at index i. Variable nextOp
stores the reference to the following production step based on
the production plan. Variable stepNumber counts how many
operations have already been scheduled to determine whether
the search is finished or not. Variable c stores the current
capability that should be scheduled next and variable m the
machine that provides this capability. In line 22 operations
nextTask.machine and data.machine return the machine
that the next task and current task are scheduled on.

The search starts with the last operation o of the production
plan (the sink of graph P ). Operation o is scheduled on one of
the machines that provide the capability. Each element in the
branches set B = {m ∈ R|∃c ∈ C : c = o}, where C is the
set of capabilities of m and R the set of available resources,
serves as a starting point for a branch of the search. Next,
we try to schedule one of the predecessors of the scheduled
operation. The available predecessors are represented by the set
N = {s ∈ S|∃d ∈ D : d = (s, o)}. We again choose one of
the machines that provide the capability and try to schedule the
operation on it. Besides providing the capability, the material
must be able to flow from the current machine to the previously
scheduled machine. If the operations are scheduled on the
same machines, this is given. In all other cases we can check
this using a breadth-first-search on the material flow model M
(line 25). The search determines whether the material flow is
possible or not and in the first case provides a list of all inter-
mediate machines that have to transport the material so that it
arrives at the right destination. For example if the “Pick&Place
Cover” was chosen for the “Assemble” capability instead of the
“Pick&Place Temperature”, an additional transport operation
has to be scheduled on the “Pick&Place Temperature” for
the schedule to work correctly on setup (a) in Figure 5. The
reason for this is that the previous capability “Supply Red
Case” can only be assigned to machine “Supply RBS” which
is not directly connected to machine “Pick&Place Cover”.

The only way to transport the material from “Supply RBS”
to “Pick&Place Cover” is through “Pick&Place Temperature”.
Other graph search algorithms such as Dijkstra’s algorithm
are also possible here. Which algorithm to use depends on
the criteria that are used to find a suitable path from one
machine to the next. The steps to schedule an operation are
repeated for all operations until a valid schedule is found. We
can stop the search in case no machine exists that provides the
capability or there is no material flow between the scheduled
machines (line 28). In both cases we backtrack to the next
unexplored branch (lines 14 - 16) and continue the search
from there. When backtracking, the variable stepNumber is
reset to the backtracking point. If there are no backtracking
points left, there is no valid schedule for the production plan
with the current setup. In some cases, multiple valid production
schedules might exist. In this case we choose the schedule with
the shortest schedule duration. The duration can be calculated
as the sum of the durations of each operation obtained from
the machine models. Other efficiency criteria can be used to
choose between different schedules. Possible criteria are, for
example, makespan, utilization rate, energy efficiency, delivery
time, or combinations of these. However, optimizing schedules
is a very challenging task and is computationally hard. A lot
of research is ongoing in this area and the topic is beyond the
scope of this paper.

B. Production Control

The last step of our approach is automated control of
the production. After a valid schedule is generated for each
product that should be produced, the production can be started
automatically. Each machine maintains a list of the operations
that are scheduled on it. The lists are a result of splitting
the generated schedule according to machines. When the
system is ready, the central control system sends a “start
production” signal to all machines. The machines start with
the first operation in their list. Whenever a machine finishes
an operation, it informs the supervisory control system which
starts the next operation if there are operations left in the list.
The production is finished when all operations are done.



1 Algorithm: Production Scheduling
input: Production plan as a precedence graph P

2 int stepNumber = 0;
3 Schedule result; Stack st;
4 P = reverse graph of P ;
5 Vector V = topological sort of P ;
6 Capability c = V.at(0) ;
7 foreach machine m with capability c do
8 currentData.data = (m, c);
9 currentData.depth = 0; st.push(currentData);

10 end
11 while !st.empty() do
12 data = st.pop();
13 if backtracking necessary then
14 backtrack and start next branch;
15 end
16 currentStep = V.at(stepNumber);
17 data.nextOp = P .successor(currentStep);
18 if stepNumber = 0 then
19 result.pushBack(data);
20 else
21 nextTask = find data.nextOp in result;
22 if nextTask.machine = data.machine then
23 result.pushBack(data);
24 else
25 if ∃ materialFlow from nextTask.machine

to data.machine then
26 Schedule Transport operation for all

intermediate machines;
result.pushBack(data);

27 else
28 No feasible solution for this branch,

backtracking necessary;
29 end
30 end
31 end
32 if stepNumber = V .size() then
33 return result;
34 else
35 o = V.at(stepNumber + 1);
36 foreach machine m with capability c do
37 currentData.data = (m, c);
38 stepNumber = stepNumber]1 ;
39 st.push(currentData);
40 end
41 end
42 end

Algorithm 1: Production scheduling algorithm

V. APPLICATION EXAMPLE

In this section, we describe the experimental setup that
was used to evaluate the approach. Additionally, we present
the results of the experiments that were conducted.

A. Experimental Setup

To illustrate the approach, we use a simplified production
system designed for educational purposes. It is a Festo modular
production system shown in Figure 4.

The setup consists of different stations, a conveyor belt,

Fig. 4. One possible setup used for demonstrating the approach.

and a mobile robot that can be combined to form the desired
manufacturing system. Stations can be arbitrarily combined.
However, some combinations do not result in valid setups.
Figure 5 illustrates three of the possible factory setups. The
manufacturing system can produce temperature sensors in
three different colors: black, red, and silver. It can also produce
red boxes. Transporting raw material, like black, red, and silver
cases and red cans, within the manufacturing system is also
possible. Not all factory setups support all production plans.
The different steps of the production processes include dis-
tributing of material, testing, processing, assembling, storing,
and delivering.

B. Results

For each of the setups we tested the approach on three
different products. For setup (a) in Figure 5, a simple black
thermometer, a red box, and a silver workpiece were produced.
The production plan for each of the products is displayed
in Figure 1. The same products were tested for setup (c).
Since setup (b) offers the least product variability and is a
production line similar to setup (a), the results are omitted
here. Table II illustrates the duration in time units for each
of the operations on the different machines. For the sake of
simplicity, we assume that the robot always requires the same
amount of time for transporting material from one machine to
another.

After calculating a valid material flow for each of the
products, the different products are scheduled using a least
slack time strategy. The deadline for all products is assumed
to be 100s. The execution time e of one schedule for a product
can then be calculated as the sum of execution times of all
operations. The slack time can be calculated according to the
formula (d− t)−e, where d is the deadline, t the current time
step, and e the execution time. The results obtained for setup
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TABLE II. THE DURATION OF OPERATIONS ON DIFFERENT MACHINES
IN TIME UNITS.

Machine Operation Duration
Supply RBS Supply Case 9s
Pick&Place Temperature Supply Sensor 1s
Pick&Place Cover Supply Cover 1s
Pick&Place Temperature Assemble 6s
Pick&Place Cover Assemble 8s
Pick&Place Temperature Transport 5s
Pick&Place Cover Transport 5s
Sorting Sort 5s
Robot Transport 7s

(a) are illustrated in Figure 6. This also represents the optimal
solution for this problem.

In setup (c), a robot is used for all transport operations. We
again use a least slack time strategy, but without intertwining
different products on a resource. Since the same algorithm as
for assembly lines is used, all products must be scheduled
sequentially and products cannot overtake each other during
production. This means that each resource finishes all the steps
for one product before it starts with the next product. The
resulting schedule is shown in Figure 7 in the upper chart. It is
not as efficient as the optimal one, which is shown in the lower
part of Figure 7. Using cell production rather than an assembly
line allows for mixing products and does not require sequential
execution; the optimal solution takes advantage of this, while
the generated schedule does not. This can be addressed by
using a better scheduling strategy that fills the idle gaps for
the robot and allows different products to be intertwined.

C. Evaluation

With this demonstration setup, we showed that we can
automatically generate production schedules without repro-
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Fig. 6. Result of the scheduling using least slack time for an assembly line.
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Fig. 7. Scheduling result using least slack time (top chart) and optimal
schedule (bottom chart).

gramming or manually reconfiguring the control software. The
same algorithm can be applied for different factory setups and
different production plans. This is achieved by considering
the topology of the factory in the planning and calculating
different possible material flows that result in a valid schedule.
Without further interaction with operators, the schedule can be
generated based on the production plans, the capability-based
models of the machines as well as the material flow model. The
generated schedule is optimal in case of an assembly line. For
cell manufacturing with a robot for the transport operation, the
generated schedule is valid but not optimal. Additional criteria
need to be defined in order to make this schedule optimal.
Using the capability-based approach to model production plans
decouples the workflow from the factory setup and enables
automated planning for different factory setups. For small-
sized problems with six machines and production plans that
include up to ten steps, the planning algorithm can generate
schedules for different products within seconds and start the
production. This is especially useful for adaptable factories
where the setup is changed more frequently. This approach
still has to be evaluated on larger problems to determine how
it scales for industrial setups.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a capability-based planning and
scheduling approach for adaptable manufacturing systems. Be-
sides describing the production process in terms of capabilities,
this approach considers topology information during planning
to calculate schedules with valid material flow. This enables
automatic generation of schedules for different factory layouts
without manual intervention, which is especially beneficial
for adaptable manufacturing where the factory setup changes
frequently. We used a simplified industrial setup to show
how our approach can be applied. The setup demonstrates
that we can generate schedules for different production plans
and different factory layouts – and automatically execute the
production process according to such a schedule – without any
manual changes to the plant control software.

The next step in our work involves evaluating the approach
on larger scheduling problems. Additionally, we intend to
include the state of machines for scheduling decisions. This
is especially interesting when there are shared resources and
duplicate machines. We also plan to look at optimizing the
order of production schedules according to user-defined crite-
ria. The idea is to find a scheduling strategy that works well
for both assembly lines and production cells with inter-logistic
problems.
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