7th IEEE International Symposium on Industrial Embedded Systems (SIES'12)

Shared Memory Protection for Spatial Separation in
Multicore Architectures

Anton Hattendorf
fortiss GmbH

Miinchen, Germany

hattendorf @fortiss.org

Abstract—The introduction of multicore architectures in em-
bedded systems allows system integrators to locate multiple
applications on the same chip. In the context of certification
separation of these applications is mandatory. Most current
multicore systems have a low core count and programmers
have a need for easily utilizable platforms. Therefore, most of
the current multicore systems use shared memory architectures
based on bus communication. In this paper we discuss several
possible architectures for shared memory protection using local
and shared MPUs and MMUs for architectures of this type.
This analysis includes typical use cases for multicore systems and
their compatibility to these architectures. It has a strong focus
on the platform’s suitability for mixed-critical workloads with
some cores executing safety-critical, hard-real-time applications.
This paper proposes a novel shared memory protection unit to
efficiently enforce spatial separation of the shared memory among
the cores. Preliminary synthesis results are provided along with
latency considerations relevant for hard-real-time application.

I. INTRODUCTION

In several embedded domains there is a trend to reduce
the number of electronic control units (ECU) by integrating
more functionality into single ECUs. This requires higher
performance from these ECUs. In the past, ever increasing
performance of computing platforms was provided by in-
creasing the clock speed and the amount of Instruction Level
Parallelism exploited. This is no longer the case, since this
development hit a point where the thermal power density
becomes infeasible (Power Wall). The only remaining option
for increasing the available computational power per chip
is to distribute processing elements over it. This gives raise
to an increased need to apply multicore architectures in all
segments of the market. Certification standards such as IEC
61508 [1] and its domain specific derivatives DO-178b [2]
or ISO 26262 [3] require that a failure in one application
cannot influence the behaviour of another. This becomes more
important in mixed-critical systems, where some applications
might have a higher failure probability then others and thus
might reduce the overall system integrity. Current interface
standards like ARINC 653 Part 1 [4] for avionics or AU-
TOSAR for automotive reflect this by demanding “freedom
of interference”, or “separation” of applications.

Since they are easy to program and have high-performance
most multicore platforms implement some sort of shared
memory architecture. For low core counts bus-based systems
provide the highest performance. Specifically in safety-critical
systems, multicore systems are only slowly employed and core
counts are very low. Therefore, we focus on such systems.

978-1-4673-2684-1/12/$31.00 ©2012 IEEE

Andreas Raabe
fortiss GmbH
Miinchen, Germany

raabe @fortiss.org

Alois Knoll
Institut fiir Informatik VI
Technische Universitdt Miinchen

While shared memory architectures are convenient to use,
shared resources constitute a problem, when it comes to sep-
aration. E.g., in shared-memory architectures with no protec-
tion, each application can access and manipulate other appli-
cations’ data. This allows erroneous applications to modify the
memory content and thus the behaviour of other applications.

In many single core systems CPUs have local memory
protection units (MPU) or memory management units (MMU)
that prevent processes from inferring with each other. MPUs
are used to restrict access to predefined memory regions, usu-
ally configured by the operating system. The MPU verifies that
the currently running process accesses only the address ranges
it is eligible to access. If a process context switch takes place,
this configuration is updated by the operating system. Instead
of MPUs, MMUs can be used. Here, each process has its
own virtual address space. When the process accesses a virtual
address, the MMU looks it up in the processes translation table
and translates it to a physical address. The MMU translation
tables are located in the memory. On a context switch, the
OS writes the address of the next processes translation table
into the MMU. MMUs use a translation lookaside buffer
(TLB) where table entries are cached to speed up address
translation. The TLB is usually emptied on a context switch.
A MMU can also be used to restrict access to some regions
of the memory, because not all physical pages have to be
made available to the virtual address range at the same time.
Because a MMU can provide all processes with an individual
virtual address space, applications don’t have to run in specific
memory locations. This results in more flexibility and speeds-
up memory accesses in comparison to a software implemented
memory management. The disadvantage of MMU utilization
is that their timing behaviour is generally unpredictable [5].

In the context of this paper the term memory access control
units (MAU) will be used as a generalization of MPU and
MMU. MAU configuration is usually performed by operating
system tasks running in privileged mode. In some current
multicore architectures the cores are also equipped with indi-
vidual MAU. These are then managed by the local operating
system and ensure that all processes access their private data
exclusively. If on such a platforms two cores run different
operating systems (or two instances of the same OS), they have
to trust each other. Nothing ensures that their configuration is
correct in general.

These settings allow an OS running in privileged mode to
bypass memory protection. Thus, we argue that an additional

299

memory protection has to be established closer to the shared
memory. Therefore, we propose to employ an additional
(central) MAU to guard the shared memory. This module
receives all requests, checks the address ranges, and access
types.

We argue that the enforced spatial separation of shared
memory by an additional centralized MAU will greatly
simplify certification of multicore systems running multiple
safety-critical applications or even mixed-critical workloads.
In a first step, it has to be shown, that the separation of the
applications works and fulfils all requirements. Afterwards,
each application can be evaluated individually, because the
first step has shown that there are no influences by other parts
of the system.

There are also several combinations of local and shared
MAUSs conceivable. We discuss advantages and disadvantages
of these concepts to identify architectures suitable for mixed-
critical workloads with some cores executing safety-critical,
hard-real-time applications.

Although, it seems to be a simple problem at first glance,
to our knowledge we are the first to systematically discuss
variants of MAU application in multicore processors and their
impact on certification aspects.

In the following Section we introduce related work on this
area. In Section 3 we discuss the advantages and disadvantages
of various architectural concepts using local and/or shared
MAUESs. Section 4 gives a short overview of our preliminary
results. Section 5 concludes this paper and Section 6 gives
outlook to further work.

II. RELATED WORK

A lot of current operating systems provide virtualisation
features. These usually allow running multiple applications
on the same core as if they were running in isolation. The
applications are separated by the operating system. Usually the
operating system uses MMU or MPU to ensure this. Violations
to the separation are handled by the OS. The operating system
is a trusted resource in this case. There are no mechanisms that
handle consequences of a failing operating system. Samples of
operating systems with virtualisation are SYSGO PikeOS [6],
PharOS [7], Wind River Hypervisor [8], and Green Hills
INTEGRITY Multivisor [9].

[10] proposes a compiler approach introducing a timing
predictable form of paging, in which page-in and page-out
points are selected at compile-time.

Many architectures avoid the problem of separable shared
memory by avoiding shared memory altogether. One example
here is the commercially available XMOS architecture [11],
where cores communicate through crossbar switches.

In [12] a hardware/software system is presented which
enables restriction of memory accesses and control flow of
applications to protected domains within the address space
with minimal architectural extensions to the processor core. Its
applicability is also restricted to process separation in single
COre processors.

[13] uses an FPGA to monitor memory accesses. Erroneous
accesses are detected and reported to the operating system.
While effectively enabling fail-safe implementations, this ap-
proach does not provide separation and thus cannot be used
for fail-operational applications.

A dynamic memory management system using a shared
MMU is described in [14]. This approach focuses on sup-
porting the OS in dynamic memory management and can be
used for soft real time systems, while we target safety-critical,
hard-real-time applications.

There is a body of work on memory management in
networks-on-chip (NoCs). The focus of these works is in
general management of shared memory and does not focus on
applicability in hard-real-time systems or safety-issues. Due to
their assumption of NoC communication they focus on packet
transmission of data, not on separation of word accesses to the
memory. E.g. [15] proposes a network-on-chip based shared
memory architecture that uses a shared hardware MMU, while
[16] focuses on security issues in shared memory NoCs.

ARMs TrustZone allows to switch cores dynamically into
a secure mode. The TrustZone Address Space Controller
restricts the access to some parts of the memory to cores
in the secured mode. The solution focuses on security and
its use for safety is limited. Because TrustZones can only
separate between secure and normal mode[17] only one safety
critical application in the system is possible without support
of operating systems or virtualisation.

For safety-critical real time systems not only spatial sep-
aration is needed. Since multiple cores are competitively
accessing the memory, temporal separation is needed to ensure
real-time properties. Temporal separation needs to be taken
care of in practically all parts of the hardware system and a
large body of work exists. [18] proposes a fully deterministic
architecture with repeatable timing. The propeller architecture
is a commercially available multicore processor implement-
ing a round robin arbitration scheme on the bus connecting
shared resources to cores [19]. In [20] a superscalar in-order
processor is enhanced to provide hard real time capability. For
temporally separated multicore systems, NoC approaches are
often utilized. E.g. in [21] a statically scheduled time-triggered
Ethernet is employed. [22] uses a very similar approach, while
[23] utilizes globally synchronized frames to provide QoS
guarantees. Another approach is arbitrating shared memory
buses in a predictable fashion (e.g. [24]).

III. ARCHITECTURAL CONCEPTS

As already discussed in Sec. I there are two basic concepts
providing hardware support for memory protection: The very
lightweight MPU on the one hand and the MMU which
additionally supports memory virtualisation on the other hand.

In a shared memory multicore architecture these MAU com-
ponents can be placed either locally in the processing elements
or centralized at the shared memory. Also combinations of
both provide an added value and exhibit new properties.

This results in eight different architectural variants depicted
in Fig. 1. All of these concepts provide some sort of memory

300

CPU | MPU Ls CPU | MMU Ls

Shared
RAM

Shared
RAM

CPU | MPU Ls

CPU | MMU LS

CPU | MPU Ls CPU | MMU Ls
Shared Shared
MPU RAM MPU RAM
CPU | MPU Ls CPU | MMU Ls
(e) ®

(€3] ()

Fig. 1. Architectural Concepts (LS = Local Storage)

protection. Nevertheless, varying capabilities favouring utiliza-
tion in different scenarios result from the design choices made
here. These are discussed in the following.

A. Local MAU

Local MAU implementations as depicted in Fig. 1(a), 1(b),
1(e) - 1(h) allow protection of private memory (local storage -
LS) such as scratch pads. Operating systems can use them to
control access of their processes to the private memory. These
concepts are interesting for systems where multiple processes
run on the same core managed by an operating system.

Concepts with local MAUs only (Fig. 1(a), 1(b)) will also
provide protection of memory regions of other applications
to a certain degree. Nevertheless, the instance configuring the
MPUs (usually an operating system instance running on the
core) will have to be trusted not to interfere with memory
locations not assigned to this core. In this case it can be
assumed that the memory protection is always configured
correctly. This obviously constitutes a safety leak in general.

B. Shared MAU

A shared MAU as displayed in Fig. 1(c) - 1(h) can enforce
spatial separation between cores in hardware. If configured
accordingly, no core can access other cores’ memory locations
(unless this is explicitly enabled). Since the cores are separated
by a dedicated unit, systems using these architectures can
in principal be certified modularly. Once it is proven, that
the separation is guaranteed, each core can be evaluated
individually. These concepts also provide security features. A
core that has been compromised by an intruder cannot access
the private data of other cores, if the configuration of the
shared MAU forbids this.

301

Architectures with only shared MAU (Fig. 1(c), 1(d)) are
not able to protect memory which is local to the core and
private to a process running on this core from unauthorized
access by other processes running on the same core.

Nevertheless, they are a resource saving alternative for
systems that don’t need memory protection within one core.
E.g. systems with no operating system, where each core runs
only one application on bare metal.

C. Local and shared MAU

Systems providing both, local and shared MAU (Fig. 1(e) -
1(h)) are very flexible and can be used in most applications.
The local MAU of each core protects the private memory
and can be used to protect the tasks of one core from each
other. Separation of the cores is done with the shared MAU. It
ensures that the OS and tasks of each core do not access other
core’s memory, unless it is intended by the system integrator.
In cases where not all of these units are needed they can
remain unused. Typical use cases for such architectures are
systems running multiple applications on the same processor.
Each core can have a different operating system and use the
local protection unit for their tasks.

D. Memory management units

While both types of MAU provide hardware support for
memory protection, memory virtualisation is not supported by
MPUs. For this MMUs need to be utilized.

A local MMU (Fig. 1(b), 1(f), 1(h)) enables the system not
only to protect the private memory, but also to virtualise the
private memory to the processes [25]. It translates a virtual
address of the application either to a shared memory address
or a private memory address, depending on where the data is
located. This simplifies the implementation of local buffering
techniques and increases the applications performance. The
operating system in such scenarios needs to copy the data
between the shared and the private memory. It also configures
the processes translation table with respect to the current data
location. A software cache can also benefit from local MMU,
because the address translation will be performed in hardware.
Within a core, a MMU is usually tightly coupled to the core’s
internal architecture to perform better.

A shared MMU as shown in Fig. 1(d), 1(g), 1(h) can be used
in systems with no need for virtualisation of local storage.

The total size of the translation lookaside buffer (TLB) and
the translation tables will remain the same for both, shared
and local MMU. A reduced size of the TLB will reduce the
systems performance. If temporal separation is needed, the
TLB has to be separated into regions for each core. Otherwise
one core will overwrite other cores’ entries and thus prolong
their memory access time. Local MMUs can be handled
by current operating systems, which reduces implementation
effort and the update mechanisms are known.

The use of a MPU instead of a MMU has the advantage,
that MPUs have constant latency enabling WCET analysis.
MMU translation tables are stored in the memory, therefore
the latency of a MMU translation depends on the status of the

translation lookaside buffer (TLB) and the access latency of
the memory [5], [26].

Placing a MMU in both, the processing element and the
shared RAM (Fig. 1(h)) does not provide benefit with respect
to flexibility. The translation tables of both MMUSs can be
combined into a single table located in the local MMU of each
core. Combining the translation table has the advantage that
the address translation is done by only one MMU. This reduces
the latency for the memory access and saves the resources of
one of these MMU. Thus, the concepts of Fig. 1(h) and 1(f)
provide identical features. Therefore we reject the application
of shared MMUs.

IV. PRELIMINARY RESULTS

We have implemented a first prototype of a shared MPU
separating memory accesses of Altera Nios II Cores on a
Stratix III FPGA Development Board.

Here, it utilizes 6796 combinational logic cells. 30 % of
them are used to check the addresses of accesses, 20 % are
used for the bus handling. The remainder is used for control
registers and interrupt generation and handling.

To drive it at 125 MHz frequency one register bank is
needed. Thus, the latency introduced by the MPU is one clock
cycle. It supports burst and pipelined accesses. Therefore the
influence on the throughput of the system will be negligible.

V. CONCLUSION

We presented an overview on the use of memory protection
techniques in bus-based, shared-memory systems.

From the previous discussion, we conclude that a central
MPU is a lightweight solution providing spatial separation
between cores. It allows WCET analysis to result in tight time-
bounds for hard-real-time applications, since it introduces only
a constant delay. We therefore chose this variant for implemen-
tation. This choice does not come at any disadvantage, as cores
which implement functionality not requiring WCET analysis,
but will benefit from memory virtualisation, can be extended
with MMUs. When connected by a time separating bus system
this enables execution of highly-critical tasks requiring WCET
analysis on some cores concurrently to less critical tasks with
full benefit of memory virtualisation on others.

VI. FURTHER WORK

Currently we are optimizing the central MPU implemen-
tation with respect to size. Subsequently, we will provide an
implementation of a shared MMU as a reference system for
size, throughput, latency and energy comparison. In the future
we will also investigate in configuration and reconfiguration
schemes and modules of those shared memory access control
units (MAU). The integration of shared MAU configuration
into operating system and tool chains will be an important
part of our work. In a latter step configurations for MAUSs
will be inferred from application models.

Caches also influence the behaviour of such a system. A
cache in front off the shared MAU can delay the detection
of a violation. Cache snooping protocols might even forward

unchecked data to other cores. We will focus on this and
provide solutions for this problem.

Concurrently, we are also investigating in temporal sep-
aration schemes and WCET estimation techniques for ar-
chitectures with shared SDRAM. These techniques will be
combined with the spatial separation approaches into a bus-
based, shared-memory platform for mixed-critical systems.

ACKNOWLEDGMENT

This work was partially funded within the ARTEMIS
project grant RECOMP under the BMBF research grant with
funding ID 011S10001K.

REFERENCES

[1] IEC 61508 Functional safety of electrical/electronic/programmable elec-
tronic safety-related systems, IEC Std.

[2] DO-178B Software Considerations in Airborne Systems and Equipment
Certification, Radio Technical Commission for Aeronautics Std.

[3] ISO 26262 Road vehicles — Functional safety, 1SO Std.

[4] ARINC 653-2 Avionics Application Software Standard Interface Part 1
- Required Services, Aeronautical Radio, Inc. Std., December 2005.

[5] X. Zhou and P. Petrov, “The interval page table: virtual memory support
in real-time and memory-constrained embedded systems,” in SBCCI ’07.
New York: ACM, 2007.

[6] “SYSGO PikeOS.”

[7]1 C. Aussagues et al., “PharOS, a multicore OS ready for safety-related
automotive systems: results and future prospects,” in Embedded Real
Time Software and Systems 2010, May 2010.

[8] “Wind River Hypervisor.”

[9] “Green Hills INTEGRITY Multivisor.”

[10] I. Puaut and D. Hardy, Predictable paging in real-time systems: a

compiler approach, 2007.

“XMOS.” [Online]. Available: http://www.xmos.com/

R. Kumar et al., “A system for coarse grained memory protection in

tiny embedded processors,” in DAC '07. New York: ACM, 2007.

N. Ho and A.-V. Dinh-Duc, “MemMON: run-time off-chip detection for

memory access violation in embedded systems,” in SoICT ’10. New

York: ACM, 2010.

M. Shalan and 1. Mooney, V. J., “Hardware support for real-time

embedded multiprocessor system-on-a-chip memory management,” in

CODES 2002, 2002.

M. Monchiero et al., “Exploration of Distributed Shared Memory

Architecturesfor NoC-based Multiprocessors,” in SAMOS 2006, 2006.

L. Fiorin et al., “Secure memory accesses on networks-on-chip,” IEEE

Trans. Comput., 2008.

ARM, “ARM Security Technology - Building a Secure System using

TrustZone Technology,” White Paper.

B. Lickly et al., “Predictable programming on a precision timed archi-

tecture,” in CASES ’08. New York, NY, USA: ACM, 2008.

“Propeller.” [Online]. Available: http://www.parallax.com/propeller/

J. Mische et al., “How to Enhance a Superscalar Processor to Provide
Hard Real-Time Capable In-Order SMT,” ARCS 2010, 2010.

R. Obermaisser and B. Huber, “The GENESYS Architecture: A Con-
ceptual Model for Component-Based Distributed Real-Time Systems,”
in SEUS ’09. Berlin, Heidelberg: Springer-Verlag, 2009.

A. Jantsch, “Models of Computation for Networks on Chip,” in ACSD

’06. Washington, DC, USA: IEEE Computer Society, 2006.

J. W. Lee, M. C. Ng, and K. Asanovic, “Globally-Synchronized Frames
for Guaranteed Quality-of-Service in On-Chip Networks,” in ISCA ’08.
Washington, DC, USA: IEEE Computer Society, 2008.

H. Shah, A. Raabe, and A. Knoll, “Bounding wcet of applications using

sdram with priority based budget scheduling in mpsocs,” in DATE 2012,

2012.

H. Cho et al., “Dynamic data scratchpad memory management for a
memory subsystem with an MMU,” in LCTES ’07. New York, NY,
USA: ACM, 2007.

M. D. Bennett and N. C. Audsley, Predictable and Efficient Virtual
Addressing for Safety-Critical Real-Time Systems, Washington, 2001.

[11]
[12]

[13]

[14]

[15]
[16]
[17]
(18]

(19]
[20]
[21]

(22]

[23]

[24]

[25]

[26]

302

