
Adaptive Dynamic Power Management for Hard

Real-time Pipelined Multiprocessor Systems

Gang Chen1, Kai Huang1,2, Alois Knoll1

1Insititute of Robotics and Embedded Systems, Technical University Munich, Germany
2School of Mobile Information Engineering, Sun Yat-sen University, China

{cheng,huangk,knoll}@in.tum.de

Abstract—Energy efficiency is a critical design concern for
embedded systems. Dynamic power management (DPM) schemes
in Multiprocessor System on Chips (MPSoCs) has been wildly
used to explore the idleness of processors and dynamically reduce
the energy consumption by putting idle processors to low-power
states. In this paper, we explore how to effectively apply dy-
namic power management in adaptive manner to reduce leakage
power consumption for coarse-grained pipelined systems under
hard real-time requirements. At each adaptive point, a system
transformation is proposed to model the pipeline system with
unfinished events as multi-stream system. By using extended pay-
burst-only-once principle, the service curves for corresponding
stream can be computed as a constraint for a minimal resource
demand and energy minimization problem can be formulated
with respect to the resource demands at each adaptive point. One
light-weight heuristic, called balance workload scheme (BWS),
is proposed in this paper to solve the minimization problem.
Simulation results using real-life applications are presented to
demonstrate the effectiveness of our approach.

I. INTRODUCTION

To achieve high performance and energy efficiency, multi-

core architectures are widespread in modern computer sys-

tems. When multi-core architectures are powered by batteries,

reducing the power consumption is one of the major design

goals, because an energy-efficient design enables slower de-

pletion of batteries and results in lower chip temperatures that

improve performance and reliability.

Among multi-core architectures, pipelined multiprocessor

architectures are believed to be one of promising comput-

ing paradigms for embedded system design, which can, in

principle, provide high throughput and low energy consump-

tion [2], [11], [12]. In pipelined multiprocessor architectures,

processors are connected in a pipelined fashion via shared

memory (e.g., FIFOs). A streaming application can be split

into a sequence of functional blocks that are computed by

a pipeline of processors where clock/power-gating techniques

can be applied to achieve energy efficiency.

Designing the scheduling policy for the pipeline stages

under the requirements of both energy efficiency and timing

guarantee is non-trivial due to the conflict objectives between

energy efficiency and timing guarantee. Most of the previous

work on this topic [26], [4], [12], [2] cannot be applied

to hard real-time system with non-deterministic workloads.

To deal with non-deterministic workloads, the current state-

of-the-art approach [3] computes periodic time-driven turn

on/off patterns for pipeline stages in offline to minimize the

leakage power consumption while guarantee the end-to-end

deadline. However, the off-line approach is not energy-efficient

compared to adaptive approach, because the slacks caused by

runtime variability of execution time and event arrivals cannot

be explored in the static approach.

This paper explores how to apply dynamic power manage-

ment in adaptive manner to reduce leakage power consumption

for coarse-grained pipelined systems under hard real-time

requirements. We consider a pipeline architecture, where each

processor have active, standby, and sleep modes with different

power consumptions, and a streaming application with end-to-

end deadline requirement. The streaming application can be

split into a sequence of coarse-grained functional blocks which

are mapped to a pipeline architecture for processing. The

workload of the streaming application is abstracted as an event

stream. The event arrivals of the stream are modeled as the

arrival curves in interval domain [15], [22]. At each adaptive

point, dynamic power management scheme should decide

when and which power state should be selected for a processor

to reduce the energy consumption of the system under the hard

real-time constraints. The decision is a challenging one due to

the following facts. First, at one time instant for scheduling

decision, scheduling decision need to guarantee the timing

requirement of the new events in the first stage, as well as the

on-going events stored in the system. Second, the time and

energy overheads are involved in a transition between active

mode and sleep mode. Third, the current decision should be

consistent with the decision made in the last point.

In this paper, we propose one integrated approach to resolve

these concerns. The integrated approach could adaptively

regulate the delay of the processors according to the workload

and the current state of the stages, and procrastinate the

events as late as possible. Comparing to the state-of-the-art

work in [3], the adaptive approach can efficiently explore

the slacks by using dynamic counter techniques [14] and

adaptively checking FIFO state, and can achieve significant

energy savings with respect to the off-line approach in [3].

The contributions of this paper are summarized as follows:

• We propose one system transformation to model the sys-

tem with event stored in FIFOs as multi-stream system,

which enables us to analysis the system timing efficiently.

• We extend the pay-burst-only-once principle for the trans-

formed multi-stream system and offer the proof for its

correction. By inversely using this extended the pay-



burst-only principle, the service curves for the corre-

sponding stream can be computed as a constraint for a

minimal resource demand.

• We derive a formulation of the minimization problem

based on the needed resource of individual stages of

the pipeline architecture at each adaptive time instant for

scheduling decision.

• We propose one light weight scheme, called balance

workload scheme, to find one optimal decision at each

adaptive point.

• We conduct simulation using the real-life application to

demonstrate the effectiveness of our approach.

The rest of the paper is organized as follows: Section II

reviews related work in the literature. Section III presents basic

models and the definition of the studied problem. Section IV

describes the motivation and the proposed approach. Experi-

mental evaluation is presented in Section V and Section VI

concludes the paper.

II. RELATED WORK

Pipelined computing is a promising paradigm for embedded

system design, which can in principle provide high perfor-

mance and low energy consumption. Pipelined multiprocessor

systems are wildly applied as a viable platform for high

performance implementation of multimedia applications [21],

[20]. Energy optimization for pipelined multiprocessor sys-

tems is an interesting topic where a number of techniques

have been proposed in the literature. Carta et al. [2] and

Alimonda et al. [1] proposed a feedback-control technique

for dynamic voltage/frequency scaling (DVFS) in a pipelined

MPSoC architecture with soft real-time constraints, aimed at

minimizing energy consumption with throughput guarantees.

Javaid et al. [12] proposed a adaptive pipelined MPSoC

architecture and a run-time balancing approach based on

workload prediction to achieve energy efficiency. Authors

in [11] proposed a dynamic power management scheme for

the adaptive pipelined MPSoCs. In this work, the duration

of idle periods is determined based on the future workload

prediction and is used to select an appropriate power state for

the idle processor. However, above approaches are under the

soft real-time constraints. When coming to the hard real-time

systems, these approaches are not applicable.

There are also many works [5], [26], [27] for hard real-

time systems. Yang et al. [26] presents an integer linear

programming (ILP) formulation for the problem of frequency

assignment of a set of periodic independent tasks on hetero-

geneous multi-processor system. Zhang et al. [27] proposed

a two-phase framework that integrates task scheduling and

voltage selection to minimize the energy consumption of real-

time dependent tasks on MPSoCs. But these methods require

the precise timing information, such as periodical real-time

events. However, in practice, this precise timing information of

task arrivals might not be determined in advance. In the above

studies, there is no guarantee that a event will arrive in time.

Therefore, these approaches can not be applied to guarantee

the worst-case deadline in embedded systems where violating

deadlines could be disastrous. Unlike previous works, we focus

on improving energy-efficiency in hard real-time embedded

systems while guarantee the system satisfy the worst-case

deadline constraint.

To model irregular event arrivals, Real-Time Cacu-

lus (RTC) [22], which is based on Network Calculus [15],

can be applied to abstract task arrivals into time interval

domain. Considering the DVFS system, Maxiaguine et al. [17]

computed a safe frequency at periodical interval to prevent

buffer overflow of a system. By adopting RTC models,

Chen et al. [6] explored the schedulability for online DVFS

scheduling algorithms. Combining optimistic and pessimistic

DVFS Scheduling, Perathoner et al. [19] presented an adaptive

scheme for the scheduling of arbitrary event streams. When

only consider dynamic power management (DPM), Huang et

al. [10] presented a algorithm to find periodic time-driven

patterns to turn on/off processor for energy saving. On-line

algorithms are proposed in [9], [14] to adaptively control the

power mode of a system, procrastinating the processing of

arrived events as late as possible. In one algorithm in [9],

a bound of event arrivals is computed based on historical

information of event arrivals in the recent past. Instead of

using historical information, dynamic counter technique [14]

is used to predict the future workload. Unfortunately, above

approaches can only be applied to single processor. In the con-

text of multiple processors system, the authors in [3] recently

presented one off-line approach to compute a set of periodic

time-driven turn on/off patterns for the pipelined multiproces-

sor systems. However, the approach in [3] cannot explore slack

generated at runtime to reduce the energy consumption further.

Nevertheless, how to apply dynamic power management at

runtime is not yet clear. In this paper, we present an adaptive

approach to determine energy-efficient scheduling at runtime

with hard real-time constraints for pipelined multiprocessor

systems using the arrival curve model.

III. SYSTEM MODELS AND PROBLEM DEFINITION

A. Hardware Model

We consider the system with the pipeline architecture

showed in Fig. 1(a). Sub-tasks of a partitioned application

are mapped and executed in different processors, which are

connected via FIFOs. Each processor in the pipelined system

has three power consumption modes, namely active, standby,

and sleep modes, as shown in Fig. 1(b). To serve events, the

processor must be in the active mode with power consumption

Pa. When there is no event to process, the processor can switch

to sleep mode with lower power consumption Pσ. However,

mode-switching from sleep mode to active mode will cause

additional energy and latency penalty, respectively denoted as

Esw,on and tsw,on. To prevent the processor from frequent

mode switches, the processor can stay at standby mode with

power consumption Ps, which is less than Pa but more than

Pσ, i.e. Pa > Ps > Pσ. Moreover, the mode-switch from

active (standby) mode to sleep mode will cause energy and

time overhead, respectively denoted by Esw,sleep and tsw,sleep.



Consider the overhead of switching system from active

mode to sleep mode, the system break-even time TBET
denotes the minimum time length that the system stays at sleep

mode. If the interval that the system can stay at sleep mode

is smaller than TBET , the mode-switch mode overheads are

larger than the energy saving. Therefore, switching mode is

not worthwhile. Break-even time TBET can be defined as:

TBET = max(tsw,
Esw

Ps − Pσ
) (1)

where tsw = tsw,on+tsw,sleep and Esw = Esw,on+Esw,sleep.

Processor1

PD1 FIFO

Processor2

deQ FIFO

Processor3

IDCT FIFO

Processor4

MC

(a) H.263 decoder on pipeline hardware architecture

t

active (Pa)
sleep (Pσ)

standby

(Ps)

Ton Toff Ton

(b) Power model of a processor

Fig. 1. System model

B. Energy Model

The analytical processor energy model in [16], [25], [13] is

adopted in this paper, whose accuracy has been verified with

SPICE simulation. The dynamic power consumption of the

core on one voltage/frequency level (Vdd, f) can be given by:

Pdyn = Ceff · V
2
dd · f (2)

where Vdd is the supply voltage, f is the operating frequency

and Ceff is the effective switching capacitance. The cycle

length tcycle is given by a modified alpha power model.

tcycle =
Ld ·K6

(Vdd − Vth)α
(3)

where K6 is technology constant and Ld is estimated by the

average logic depth of all instructions critical path in the

processor. The threshold voltage Vth is given below.

Vth = Vth1 −K1 · Vdd −K2 · Vbs (4)

where Vth1, K1, K2 are technology constants and Vbs is the

body bias voltage.

The static power is mainly contributed by the subthreshold

leakage current Isubn, the reverse bias junction current Ij and

the number of devices in the circuit Lg . It can be presented

by:

Psta = Lg · (Vdd · Isubn + |Vbs| · Ij) (5)

where the reverse bias junction current Ij is approximated as

a constant and the subthreshold leakage current Isubn can be

determined as:

Isubn = K3 · e
K4Vdd · eK5Vbs (6)

where K3, K4 and K5 are technology constants. To avoid

junction leakage power overriding the gain in lowering Isubn,

Vbs should be constrained between 0 and -1V. Thus, the power

consumption at active mode and at stand-by mode, i.e., Pa and

Ps, under one voltage/frequency (Vdd, f) can be respectively

computed as:

Pa = Pdyn + Psta + Pon (7)

Ps = Psta + Pon (8)

where Pon is an inherent power needed for keeping the

processor on.

C. Event Model

This paper considers streaming applications that can be

split into a sequence of tasks. As shown in Fig. 1(a), a

H.263 decoder is represented as four tasks (i.e., PD1, deQ,

IDCT, MC) implemented in a pipeline fashion [18]. To model

the workload of the application, the concept of arrival curve

α(∆) = [αu(∆), αl(∆)], originated from Network Calcu-

lus [15], is adopted. αu(∆) and αl(∆) provides the upper and

lower bounds on the number of arrival events for the stream S

in any time interval ∆. Many other traditional timing models

of event streams can be unified in the concept of arrival curves.

For example, a periodic event stream can be modeled by a set

of step functions where ᾱu(∆) = ⌊∆
p
⌋+1 and ᾱl(∆) = ⌊∆

p
⌋.

For a sporadic event stream with minimal inter arrival distance

p and maximal inter arrival distance p′, the upper and lower

arrival curve is ᾱu(∆) = ⌊∆
p
⌋+1, ᾱl(∆) = ⌊∆

p′
⌋, respectively.

Moreover, a widely used model to specify an arrival curve

is the PJD model, where the arrival curve is characterized

by period p, jitter j, and minimal inter arrival distance d.

In PJD model, the upper arrival curve can be determined as

ᾱu(∆) = min{⌈∆+j
p
⌉, ⌈∆

d
⌉}. Fig. 2 depicts arrival curves for

the above cases.

Analogous to arrival curves that provide an abstract event

stream model, a tuple β(∆) = [βu(∆), βl(∆)] defines an

abstract resource model which provides an upper and lower

bounds on the available resources in any time interval ∆.

Further details are referred to [22]. Note that arrival curves

are event-based which specifies the number of the events of

the steam in one interval time, while service curves are based

on the amount of computation time. Therefore, service curve

β has to be transformed to β̄ to indicate the number of the

events of the stream that processor can processed in specified

interval time. Suppose that the execution time of an event

is c, the transformation of the service curves can be done by

β̄l = ⌊β
l

c
⌋ and β̄u = ⌊β

u

c
⌋. With these definitions, a processor

with lower service curve β̄Gl(∆) is said to satisfy the deadline

D for the event stream specified by αu(∆), if the following

condition holds.

β̄Gl(∆) ≥ αu(∆−D), ∀∆ ≥ 0 (9)

D. Problem Statement

This paper explores how to use dynamic power management

in runtime manner to effectively minimize the energy con-

sumption for coarse-grained pipelined multiprocessor systems

under hard real-time requirement. Intuitively, energy saving

can be achieved by (a) tuning as many as possible processors

in the pipeline to sleep mode, and (b) keeping each processor

staying at sleep mode as long as possible. However, according

to the definition of break-even time TBET , switching from/to
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Fig. 2. Examples for arrival curves, where (a) periodic events with period p, (b) events with minimal inter-arrival distance p and maximal inter-arrival distance
p′ = 1.3p, and (c) events with period p, jitter j = p, and minimal inter-arrival distance d = 0.75p.

the sleep mode is not worthwhile when the sleeping interval

is shorter than TBET . On the other hand, prolonging the sleep

mode might cause the current or future events violate their

timing constraints. Thus, we need to make decisions for: (a)

which processors in the pipeline should be selected to switch to

the sleep mode, and (b) when to turn them back to the active

mode to serve events to guarantee the deadline constraints.

Thus, the problem studied in this paper is defined as follows.

Given pipelined platform with m stages, an event

stream S processed by this pipeline, and an end-to-

end deadline requirement D, we are to compute a

adaptive dynamic power management at each time

instant to minimize the energy consumption, which

decides (a) which processors in the pipeline should

be selected to switch to the sleep mode, and (b) when

to turn on and off the processors. At the same time,

the computed dynamic power management should

guarantee that the worst-case end-to-end delay of

any event trace constrained by the given event

stream S does not exceed D.

IV. PROPOSED APPROACH

This section presents one adaptive approach to reduce

leakage power of pipelined multiprocessor systems, which

lies in an inverse use of the extended pay-burst-only-once

principle. At one time instant for scheduling decisions (i.e.,

turn on or turn off the processors), scheduling decision should

guarantee the timing requirement of the event trace in future

as well as on-going events stored in system. To effectively

model the system that contains unfinished events, we propose

a novel system transformation, by which the whole system can

be transferred as the multi-stream system where one stream is

used to maintain the event trace in the first stage and the other

streams are used to model the unfinished events in system.

Based on this system transformation, we can compute one

service curve for the corresponding stream as a constraint for

the minimal resource demand by using the extended pay-burst-

only-once principle. The energy minimization problem is then

formulated with respect to the resource demands for individual

pipeline stages. We propose one light-weight heuristic, called

balanced workload scheme (BWS), to solve this minimization

problem. In this paper, balanced workload scheme (BWS) is

implemented in periodic manner to regulate the delay of the

stages. Finally, we discuss how to determine the size of FIFOs

between processors.

A. Motivation

In contrast to the work in [3], which computes a set of

periodic power management for each processor in off-line,

we propose one on-line approach to minimize the energy

consumption, which could adaptively switch power state of

the processor in pipelined multiprocessor systems according

to the current workload and the state of the stages. Compared

to static approach presented in [3], our approach could achieve

energy savings by the following facts.

Firstly, the execution slack usually occurs due to difference

between worst-case assumptions made in the offline analysis

and the actual online behavior of the system. The off-line

approach is based on the assumption that each job executes for

its worst-case execution time (WCET). However, due to the

inherent variability of execution time, most of the jobs in a

real scenario finish their execution earlier than their WCET cw,

thus generate execution slack cw − c (c denotes the execution

time in a real scenario).

Secondly, the real-time system is analyzed by the off-line

approach with the assumption that the task arrives in worst-

case pattern, i.e., the upper bound αu(∆) and lower bound

αl(∆) on the number of arrival tasks for the stream S in any

time interval ∆. However, this worst-case arrival pattern rarely

happens in hard real-time systems. Jobs are released with a

variable delay bounded by the arrival curve α(∆). For brevity,

the slack generated due to this variable delays is termed as

dynamic slack.

The slacks mentioned above can be explored and managed

explicitly in our approach, leading to significant energy sav-

ings with respect to the off-line approach in [3]. By adaptively

monitoring the filling level of FIFOs between processors, our

approach can explicitly identify the execution slack. On the

other hand, by using the dynamic counter techniques [14], our

approach can adaptively predict the event arrival in future.

This adaptive prediction scheme, which efficiently explores

and manages dynamic slack, procrastinates the events as late

as possible without violating the timing constraints.

B. Real-time Calculus Routines

1) Service Curve: Without loss of generality, a pipelined

system with m heterogeneous stages (m ≥ 2) is considered.

Fig. 3 presents 3-stage pipeline as example. At one adaptive

time instant, we are to regulate the delay τi adaptively ac-

cording to the workload to reduce leakage power consump-

tion for pipelined multiprocessor system under hard real-time

constraints. For each stage, the service curve at each adaptive



point can be modeled as a bounded delay function, which can

be defined as follows.

βGli (∆) = max(0, (∆− τi)) (10)

The transformed service curve β̄Gli can be approximated as:

β̄Gli (∆) =
⌊βGli (∆)

ci

⌋

≥
1

ci
(∆− τi − ci) (11)

Fig. 3. 3-stage pipeline.

2) Demand Curve for Unfinished Events Stored in System:

We denote the set of unfinished events at time t as Ei(t). Note

that although the absolute deadline Di,j for event ei,j ∈ Ei(t)
does not change, the relative deadline is not Di anymore. It

varies according to the relative distance from t. Suppose that

events in Ei(t) are indexed as ei,1, ei,2, ..., ei,|Ei(t)| from the

earliest deadline to the latest. The demand curve αFi (∆, t) for

Ei(t) can be defined as:

αFi (∆, t) =

{

j, Di, j − t < ∆ ≤ Di, j+1 − t,

|Ei(t)|, ∆ > Di, |Ei(t)| − t,
(12)

3) Future Prediction: To explore the dynamic slack effi-

ciently, we use dynamic counter technique presented in [14] to

conservatively bound the future workload. According to [14],

the number of events arriving in the time interval [t, t + ∆]
can be bounded tight by µ(∆, t), which is determined by

dynamic counters. Due to the simplicity of the dynamic

counter, dynamic counters can be easily implemented as part

of the hardware with negligible overhead [8], [14].

C. System Transformation

In this paper, we are to find one adaptive power management

scheme to reduce leakage power consumption for pipelined

multiprocessor system under hard real-time constraints. How-

ever, it is not a easy task to determine adaptive power manage-

ment for each adaptive time instant to guarantee hard real-time

constraints for the pipeline. We take 3-stage pipeline system

as an example, as shown in Fig. 3. At each time instant, there

might be some unfinished events stored in system waiting for

process. At the same time, the system also needs to process the

new event entering to the first stage. Thus, power management

decision at each time instant should guarantee the timing

requirement of the new event trace in the first stage as well

as unfinished events stored in system. In addition, unfinished

events stored in system prevent us to adopt pay burst only

once principle directly. According to [15], [3], the approach

without using pay-burst-only-once principle will suffer from

pessimistic result as well as costly computation.

In this section, we propose one novel system transformation,

which enables us to analyze the system timing efficiently. The

main idea is that the whole system is transferred as one multi-

stream system where one stream is used to maintain the event

trace in the first stage and the other streams are used to model

the workload for the unfinished events. For m−stage system,

unfinished events in stage pi (2 ≤ i ≤ m) can be represented

by one special leaky-bucket stream Si with α(∆) = bi+ri ·∆,

where the burst bi is the number of the unfinished events

(i.e., the events stored in FIFOi and the event processing

on stage pi), denoted by Qi + 1 in Fig. 4, and leaky rate ri
is 0. The stream S1 in the first stage can be represented as

the predicted arrival curve µ(∆, t) pulsed with the one burst

Q1+1 represented by unfinished events in stage p1. As shown

in Fig. 4, at each adaptive time instant, the 3-stage pipeline

system can be transferred as the system with 3 streams (i.e.,

S1, S2, and S3). With this system transformation, we can

compute one service curve for the corresponding stream as

a constraint for the minimal resource demand by using the

extended pay-burst-only-once principle (See Section IV-D).

Fig. 4. System transformation.

D. Problem Formulation

After system transformation, the pipeline at each adaptive

point can be represented as an aggregate scheduling system.

Then, a new extended pay-burst-only-once principle is pro-

posed to compute the end-to-end service curve for stream Si
in an aggregate scheduling system. Based on this new extended

pay-burst-only-once principle, the energy minimization prob-

lem is then formulated with respect to the resource demands

for individual pipeline stages at each adaptive point.

In [7], the extended pay-burst-only-once principle has been

extended to compute the end-to-end service curve for stream

Si in an aggregate scheduling only for the case with FIFO

service curve elements and single leaky bucket constrained

arrival curve. However, the original arrival curve bound α(∆)
and the predicted arrival curve µ(∆, t) at the adaptive time

instant t may not be constrained as the form of leaky bucket

in the real world. In addition, the events are scheduled as non-

preemptive first-come-first-serve manner in this system, not

with FIFO service curve. Thus, the approach presented in [7]

cannot be applied. In this paper, a new extended pay-burst-

only-once principle is proposed to derive end-to-end service

curve for stream Si for the transferred multi-stream system.

Lem. 1: At one adaptive time instant, the adaptive m-stage

system can be represented as m-stream system. The end-to-

end service curve βi(∆) for stream Si (i = 1, ...,m) with

service curve elements with the rate-latency format βR,T and

arrival curves α(∆), can be computed by:

βi(∆) =
m

min
j=i

(Rj) · (∆−

m
∑

j=i

Tj −

m
∑

j=i+1

Qj + 1
m

min
k=j

(Rk)
) (13)



where Qj is the number of the stored events of FIFOj at the

one adaptive time instant.

Proof: According to the derivations in [7], we obtain (14) for

the stream Si for the time pairs tj+1−tj ≥ 0 in general sense.

Rm+1
i (tm+1)−R

1
i (t1) ≥

∑

j∈i

βRj ,Tj (tj+1 − tj)−

∑

k∈κi

∑

j∈i,k

(Rj+1
k (tj+1)−R

j
k(tj))

(14)

where R
j
i denotes the arrival function of stream Si on the stage

j (the case of j = m + 1 indicates the output of the stream),

i denotes the stage set that the stream Si goes through (i.e.,

the path of the stream Si), κi denotes the interference stream

set that uses the complete path or some part of the path of the

stream Si, ,and i,k denotes all stages of a sub-path that are

passed by both stream Si and stream Sk (k > i ≥ 1).

According to system transformation and non-preemptive

first-come-first-serve schedule, the stream Si is interferenced

by the stream Sj when j ≥ i+ 1 holds. Thus, we have (15).

κi = {Si+1, · · · , Sm} (15)

In addition, according to system transformation, the stream Si
goes through from the ith stage pi to the final stage pm. Thus,

we can obtain (16) and (17).

i = {pi, · · · , pm} (16)

i,k = {pk, · · · , pm} (17)

At one adaptive point, the stage may have already fetched one

event from its FIFO and started to process this event. Consider

this case, we can derive (18) with (17) and k ≥ i+ 1.
∑

j∈i,k

R
j+1
k (tj+1)−R

j
k(tj) = Rm+1

k (tm+1)−R
k
k(tk)

≤ Qk + 1 (18)

Similar to the derivation in [7], with (15), (16) and (18), the

inf(tj+1−tj>0)|j∈i of (14) can be derived to the form that is

given in (13). ⊔⊓

By using the approximated lower bound of (11), we can

state below theorem with Lem. 1.

Thm. 1: At each adaptive time instant t, assume demand

curve for future events arrival and unfinished events stored

in stage pi in m stage pipeline system under end-to-end

deadline D constraint can be defined as µ(∆ − D, t) and

αFi (∆, t), respectively. The pipelined system satisfies an end-

to-end deadline D, if the following condition holds for each

stream Si (1 ≤ i ≤ m).
m

min
j=i

(
1

cj
) · (∆−

m
∑

j=i

(τj + cj)−
m
∑

j=i+1

Qi + 1
m

min
k=j

( 1
ck
)
) ≥ αDSi

(∆, t)

(19)

where αDSi
(∆) is the demand curve for Si, which can be

defined as:

αDSi
(∆, t) =

{

µ(∆−D, t) + αFi (∆, t), i = 1,

αFi (∆, t), i ≥ 2,
(20)

Proof: By using the approximated lower bound of (11), the

lower bound of end-to-end service curve βGli (∆) for stream

Si (i = 1, ...,m) can be derived as the form of the right hand

side of (19) according to Lem. 1. For each stream, (19) can

guarantee the end-to-end deadlines of the future events as well

as the stored events are no more than D. ⊔⊓

For each stream Si, (19) needs to be satisfied to guarantee

the deadline of both the future events and the stored events.

The lower bound of end-to-end service curve βGli (∆) for the

stream Si (i.e., the left hand side of the inequality (19)) can

be considered as a bounded-delay function bdfi(∆, ρi, bi) =
max(0, ρi(∆−bi)) with slope ρi = minmj=i(

1
cj
) and bounded-

delay bi =
m
∑

j=i

(τj + cj) +
m
∑

j=i+1

Qi+1
m

min
k=j

( 1
ck

)
. To satisfy the in-

equality (19), the maximum bounded-delay can be determined

as follows.

bmaxSi
= sup {b : bdfi(∆, ρi, b) ≥ α

D
Si
(∆, t), ∀∆ ≥ 0} (21)

Thus, the end-to-end deadline constraints can be formulated

as (22). The constraint set (22) can be organized as form of

triangle. For stream Si, the constraint has m+1− i variables

in the left hand of (22).

∀Si :

m
∑

j=i

τj ≤ b
max
Si
−

m
∑

j=i

cj −

m
∑

j=i+1

Qi + 1
m

min
k=j

( 1
ck
)

(22)

The right hand side of (22) is constant. For brevity, for the rest

of the paper, the right hand side of (22) is denoted as λ(Si).
The deadline constraint set (22) with triangle form can

guarantee the deadline requirements for the pipeline. In next

step, one decision should be made to decide which processor

can switch to sleep state and which cannot. Due to the

definition of the break even time TBET , the current state of

the processors should be taken into account to make such

decision. If the processor currently stays at the active or idle

state, the processor can be selected to enter sleep state only

when τ ≥ TBET holds. If the processor currently stays at

sleep state, the processor can stay at sleep state without any

constraints. Therefore, we need to consider the current state

of stages to make the decision.

At one adaptive time instant, the stage can be divided into

active set Φa and sleep set Φs according to the current state

that the stages are in. Active set Φa and sleep set Φs denote

the stage set that stay at active state (or idle state) and the stage

set that stay at sleep state, respectively. Let binary variable ei
denote the state switch decision for active stage set Φa in the

adaptive time instant: ei = 1 if the stage pi (pi ∈ Φa) switch

from active state to sleep state and 0 otherwise. The binary

variable ei depends on the break even time constraints: (a)

TBET ≤ τi ⇒ ei = 1; (b) TBET > τi ⇒ ei = 0. The sleep

interval of the active stage can be formulated as τ̄i = ei · τi,
which is a quadratic item. For brevity, we call these constraints

as active set constraints

For the sleep set Φs, the on-going sleep interval τ0i , i.e., the

duration from the point of entering sleep state to current point,

may not be greater than TBET . Thus, to make the current

decision be consistent to the former decision, processors need

to stay at sleep mode for more than max(TBET − τ0i , 0).
We call this additional sleep interval consistency interval

CIi = max(TBET − τ
0
i , 0). The consistency constraints can



be defined as:

∀ pi ∈ Φs : τi ≥ CIi (23)

At each adaptive time instant, we are to greedily maximize

the total sleep interval of all processors. The objective function

can be formulated as:
∑

pi∈Φa

τ̄i +
∑

pi∈Φs

τi (24)

Up to now, the adaptive power management problem can be

formulated as a set of optimization problem at different time

instant, which maximizes the objective (24) with respect to

deadline constraints, active set constraints, and consistency

constraints.

Above optimization problem contains quadratic item τ̄i =
ei · τi and integer variables. Solving such a mixed inte-

ger quadratic programming (MIQP) problem is quite time-

consuming. To address this issue, one light weight scheme,

called balance workload scheme (BWS), is presented in Sec-

tion IV-E to maximize the total sleep interval of all processors

while guaranteeing the hard real-time constraints.

E. Proposed Heuristic

In this section, we present one fast heuristic, called balance

workload scheme (BWS), to find sub-optimal solution at each

adaptive time instant. At each adaptive time instant, balance

workload scheme (BWS) tries to find the first-step decision to

turn as many as possible processors into sleep mode. Based

on the first-step decision, we make the second-step decision

to keep the processor sleeping as long as possible.

1) Determine Sleep Stages: For the stage in active set Φa in

current point, we need to determine which stage will enter into

sleep stage and which stage will stay at active state, i.e., active

set constraints. For the stage in sleep set Φs, sleep interval

should be more than CIi to make the current decision be

consistent to the former decision, i.e., consistency constraints.

As the first-step decision, we are to determine which stages in

Φa should switch to sleep mode. This decision tries to switch

as many as possible processors to sleep mode to balance the

workload among processors.

The pseudo code of the algorithm is depicted in Algo. 1,

which determines sleep stages set πs and active stages set πa.

To satisfy constraints for sleep set Φs in (23), sleep intervals

τsi for stages in Φs are initially assigned to CIi and later

on might be prolonged by Algo. 2. Thus, we assign sleep

decision variable ei as 1 and put sleep set Φs into πs at this

moment (Line 2–Line 5 in Algo. 1). Then, (22) can be updated

as (25).

∀Si :
∑

pj∈Φa∩i

τj ≤ λ(Si)−
∑

pj∈Φs∩i

τj (25)

Note that, for multiple inequality (25) with the same variables

(i.e., the same set Φa ∩ i), the constants in the right hand

of different inequality (25) can be merged by min operation.

With this operation, multiple inequality (25) with the same

variables can be merged as one inequality. Similar to (22), the

constraint set (25) can also be organized as form of triangle

(Line 7 in Algo. 1). We denote λ̄(Φa, i) as the constant in

the the right hand of i variables inequality (25) and Φa,i as

the corresponding stage subset with i variables. For example,

assume 4-stage pipeline with Φa = {p1, p3, p4} and Φs =
{p2}, the constraint set (25) is organized as form of triangle

and is represented as follow.

τ4 ≤ λ̄(Φa, 1) = λ(S4)

τ3 + τ4 ≤ λ̄(Φa, 2) = min(λ(S3), λ(S2)− CI2)

τ1 + τ3 + τ4 ≤ λ̄(Φa, 3) = λ(S1)− CI2
For the constraint (25) with i variables, the number of the

processor we can turn off can be bounded as (26). We denote

this ith bound as ψ(Φa, i).
∑

pj∈Φa,i

ej ≤ min(

⌊

λ̄(Φa, i)

TBET

⌋

, i) (26)

According to the triangle form constraint set (26), we first

find the minimum bound ψm(Φa) and the corresponding index

Im(ψm) (Line 8 in Algo. 1). Then, active set Φa can be

divided into two part Φa,Im(ψm) and Φa − Φa,Im(ψm). For

stages in Φa,Im(ψm), we need to select ψ(Φa, Im(ψm)) stages

to turn off. To balance the workload between stages, the

backlog Qi is considered as the priority to select the stage

to turn off. The smaller Qi is, the higher priority to turn off

the stage has. With this criterion, we select ψ(Φa, Im(ψm))
stages ΦH

a,Im(ψm) with higher priority to put into πs and the

remaining part Φa,Im(ψm) −ΦH
a,Im(ψm) with lower priority to

put into πa. (Line 9 and Line 10 in Algo. 1). Note that the

constraints (26) with less than Im(ψm) variables are always

satisfied due to ψi≥Im(ψm)(Φa, i) ≥ ψ(Φa, Im(ψm)).

Algorithm 1 Determine Sleep Stages

Input: Active Set Φa, Sleep Set Φs, Consistency Constant

Set CI , Deadline Constant Set λ

Output: Sleep Stages πs, Active Stages πa
1: πs ← φ ; πa ← φ;

2: for Stage pi ∈ Φs do

3: τi ← CIi;

4: πs ← {πs, pi};
5: end for

6: while Φa 6= φ do

7: Update constant set λ̄(Φa, i) and ψ(Φa, i) according

to (25) and (26);

8: Find ψm(Φa) =
|Φa|

min
i=1

(ψ(Φa, i)) and the corresponding

index Im(ψm);
9: πs ← {πs,Φ

H
a,Im(ψm)};

10: πa ← {πa,Φa,Im(ψm) − ΦH
a,Im(ψm)};

11: Update Φa ← Φa − Φa,Im(ψm) ;

12: end while

2) Prolong Sleep Interval: In the next step, we need to

determine the sleep interval for each stages based on the

decision {πa, πs} obtained from Algo. 1. For the stages in πa,

we assign the delay τi as 0 directly (Line 2 in Algo. 2). For the

stages in πs, the delay τi is represented as τi = τ0i +τ
e
i , where

τ0i denotes the initial delay values to guarantee the feasibility

of the constraints, which can be determined by the routine

in Algo. 2 (i.e., Line 4 to Line 10), and τei denotes the extended



delay. The constraints (22) can be updated as (27).

∀Si :
∑

pj∈πs∩i

τej ≤ λ(Si)−
∑

pj∈πs∩i

τ0j (27)

Similar to (25), the constraint set (27) can also be organized

as form of triangle. We denote λ̄e(πs, i) as the constant in

the the right hand of i variables inequality (27) and πs,i as

the corresponding stage subset with i variables. Using the

similar scheme in Algo. 1, we firstly find the minimum con-

stant λ̄em(πs) and the corresponding index Im(λ̄em) (Line 13

in Algo. 2). Then, stage set πs can be divided into two part

πs,Im(λ̄e
m) and πs − πs,Im(λ̄e

m). For stages in πs,Im(λ̄e
m), the

total delay λ̄em(πs) is assigned equally among τej .

Algorithm 2 Prolong Sleep Interval

Input: Active Set Φa, Sleep Set Φs, Consistency Constant

Set CI , Deadline Constant Set λ, Sleep Stages πs, Active

Stages πa
Output: Sleep Interval Set τ

1: for Stage pi ∈ πa do

2: τi ← 0;

3: end for

4: for Stage pi ∈ πs do

5: if pi ∈ Φa then

6: τ0i ← TBET ;

7: else

8: τ0i ← CIi;

9: end if

10: end for

11: while πs 6= φ do

12: Update constant set λ̄e(πs, i) according to (27);

13: Find λ̄em(πs) =
|πs|

min
i=1

(λ̄e(πs, i)) and the corresponding

index Im(λ̄em);
14: Assign delay λ̄e(πs, i) equally to τej among stages in

πs,Im(λ̄e
m);

15: πs = πs − πs,Im(λ̄e
m);

16: end while

3) Put It All Together: Based on Algo. 1 and Algo. 2,

balanced workload scheme (BWS) can be represented as

Algo. 3. At one adaptive time instant, balanced workload

scheme (BWS) can make the decision, which can make as

many as possible stages enter sleep state and make them

stay at sleep state as long as possible. The feasibility of the

decision made by balanced workload scheme (BWS) at each

adaptive instance can be guaranteed by Lem. 2. For simplicity,

we implement balanced workload scheme (BWS) in periodic

manner in this paper. Note that balanced workload scheme can

also be easily extended to be executed in other manners, e.g.,

event-triggered manner.

Lem. 2: At one adaptive time instant, sleep interval τ

obtained from Algo. 3 is feasible.

Proof: The solution obtained from Algo. 1 conforms to the

triangle form constraints (26). Thus, the solution obtained from

Algo. 1 is feasible. In Algo. 2, the initial delay value τ0i can

guarantee the feasibility of the sleep decision obtained from

Algorithm 3 Balanced Workload Scheme (BWS)

Input: Active Set Φa, Sleep Set Φs, Consistency Constant

Set CI , Deadline Constant Set λ

Output: Sleep Interval Set τ

1: Obtain the sleep decision πs and πa according to Algo. 1;

2: Obtain sleep interval τ according to Algo. 2;

TABLE I
CONSTANTS FOR 70NM TECHNOLOGY [16], [25].

Const Value Const Value Const Value

K1 0.063 K6 5.26× 10
−12 Vth1 0.244

K2 0.153 K7 -0.144 Ij 4.8× 10
−10

K3 5.38× 10
−7 Vdd [0.5,1] Ceff 0.43× 10

−9

K4 1.83 Vbs [-1,0] Ld 37

K5 4.19 α 1.5 Lg 4× 10
6

Algo. 1, i.e., consistence constraint and break-even constraint.

The while loop (Line 11 to Line 16 in Algo. 2) can guarantee

the extended delay τei conforms to end-to-end deadline (22)

accoding to the definition of (27). ⊔⊓

F. Worst Case FIFOs Size Analysis

To prevent the FIFO overflow during the implementation

of the proposed dynamic power management, we need to

analyze the worst case FIFO size requirement in off-line. This

information could guild us to assign share memory between

stages before the balance workload scheme is implemented

in run-time and avoid the FIFO overflow. For ith stage in

m stages pipeline system, the worst case FIFO size can be

obtained by turning on the other stages all the time and

procrastinating ith stage as late as possible. According to (21),

the maximum bounded-delay can be determined and then the

service curve of ith stage can also be determined. Using the

analysis approach in [24], the worst-case FIFOs size can be

determined.

V. EXPERIMENTAL EVALUATIONS

This section provides simulation results for the proposed

adaptive dynamic power management scheme. The pipeline

simulator is implemented in MATLAB using RTC-toolbox

from [23]. We implement balanced workload scheme (BWS)

in periodic manner and set the activation period as 5ms.

A. Simulation Setup

The experiments are conducted based on classical energy

model of 70nm technology processor in [16], [25], [13], whose

accuracy has been verified with SPICE simulation. Tab. I lists

the energy parameter under 70nm technology [16], [25], [13].

According to [13], executing at Vdd = 0.7V is more energy

efficient than executing at lower voltages levels. To achieve

the minimize the overall energy consumption of the system,

we assume that the processor runs at this critical frequency

level when the processor is in the active state. From [25],

[13], body bias voltage Vbs is obtained as −0.7V . From [13],

Pon related to idle power can be obtained as 100mW and



TABLE II
POWER PARAMETERS

Vdd Pa Ps Pσ Esw tsw
0.7V 656mW 390mW 50µW 483µJ 10ms

the power consumption in sleep mode Pσ is set as 50µW .

According to energy model in Section III-B, we can calculate

the corresponding active power Pa and stand-by power Ps
under voltage level Vdd = 0.7V . In [13], we can obtain

energy overhead Esw of state transition as 483µJ . We set

time overhead tsw of state transition as 10ms. Tab. II lists all

the power parameters used in the experiment.

The H.263 decoder shown in Fig. 1(a) is used as the test

application. The execution time of each subtask in H.263

decoder application can refer from [18]. An event stream

is specified by the PJD model with period p, jitter j, and

minimal inter-arrival distance d. The period p and the jitter

j of the H.263 decoder application are respectively set as

100ms and 150ms with varying the end-to-end deadline. The

relative deadline D of the stream is defined as D = γ · p
and varies according to the deadline factor γ. To compare the

impact of different algorithms, we simulate traces with a 10sec

time span. The traces are generated by the RTC tools [23]

and conformed to the arrival curve specifications. It is worthy

noting that a worst-case execution time cw is associated with

the transformed service curve, as stated in Section III-C. To

model the variability of execution time of the tasks, the actual

execution time ca are randomly selected from [cb, cw], where

the best-case execution time cb is defined as cb = α · cw and

varies according to the execution time factor α.
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Fig. 5. Overall power consumption under different end-to-end deadline
constraint .

B. Results

Firstly, we show the effectiveness of the proposed adaptive

power management scheme (BWS) comparing to the periodic

power management scheme (PPM) in [3] under different

end-to-end deadline constraint. Cases of 2-stage and 3-stage

pipeline architectures with homogeneous 70-nm processors

are evaluated. To demonstrate how the proposed scheme can

effectively explore dynamic slacks, we firstly remove the

variability of the execution time of the tasks by setting the

factor α as 1. We vary the deadline factor γ from 1 to 2

with step 0.1. The simulation results are shown in Fig. 5.

From Fig. 5, we can make the following observations: (1)

The overall power consumptions of both scheme decrease as

the end-to-end deadline increases. This is expected because

the loose end-to-end deadline requirement could create more

opportunities of entering the sleep state and longer sleep time.

(2) Adaptive power management scheme (BWS) outperforms

periodic power management scheme (PPM) on both pipeline

architectures. In case of no execution slack, adaptive power

management scheme (BWS) can on average achieve 50% and

35% energy savings on 2-stage pipeline and 3-stage pipeline,

respectively. This indicates our approach can efficiently ex-

plore dynamic slack to achieve energy savings comparing to

periodic power management scheme (PPM).
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Fig. 6. Overall power consumption with the variability of execution time.

Next, we show how the proposed power management

scheme can efficiently explore execution slack. H.263 appli-

cation with deadline factor γ = 1 is evaluated in 2-satge

and 3-stage pipeline architectures with homogeneous 70-nm

processors. We vary execution time factor α from 0.1 to 1 with

step 0.1. The smaller α is, the more variable the execution time

of task is. We randomly generate different actual execution

time for each event and then put them into simulator. Fig. 6

shows how the overall power consumption changes when

execution time factor α varies. As shown in Fig. 6, power

consumption of the proposed approach (BWS) react with the

variability of execution time of the tasks. The increment of

α, which indicates the variability spaces of execution time

of the tasks decrease, will result in the increment of overall

power consumption of the proposed approach. This is caused

by the fact that the filling level of FIFOs among processors

could response to this variability of execution time of tasks.

By adaptively monitoring the filling level of FIFOs (See

(19) in Thm. 1), our approach can explicitly identify the

executionn slack to achieve the energy savings. Comparing

to the case α = 1, the proposed approach can achieve 21%
and 13% energy savings at α = 0.5 for 2-stage and 3-stage

pipeline, respectively. In addition, we can observe periodic

power management scheme (PPM) fails to response to the

variability of execution time in both architectures. Comparing

to the case α = 1, PPM can only achieve 3% and 1%
energy savings at α = 0.5 for 2-stage and 3-stage pipeline,

respectively.

Finally, we demonstrate the efficiency of the proposed

schemes by reporting overall power consumption and the com-
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putation time for different pipeline architectures. We test our

approaches by up to 10-stage heterogeneous pipeline by using

obove stream setting and collect the maximum computation

time for each architecture. The worst case execution time

of subtasks mapped on each stage are randomly generated

between 20ms and 40ms. We set the execution time factor

α as 0.5. The end-to-end deadline for the test case with

different stage number is determined by n · 60, where n is

the stage number. Fig. 7 shows the power consumption and

the maximum computation time on different architectures. We

can see that the proposed approach (BWS) outperforms PPM

approach. In addition, as shown in the figure, the proposed

approach (BWS) require a small computation time (less than

0.75ms), which makes our algorithms applicable online.

VI. CONCLUSION

This paper presents one adaptive power management

approach to reduce the leakage power consumption for

pipelined systems. Targeting the streaming application with

non-deterministic workload arrivals under hard real-time con-

straints, the proposed approach adaptively regulates the delay

of the processors according to the workload while guarantee

the end-to-end deadline requirement. In addition, the proposed

approach can efficiently explore the slacks generated at run-

time to achieve energy savings. Simulation results demonstrate

the effectiveness of our approaches.
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