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Abstract—Effective power management is an important design
concern for modern embedded systems. In this paper, we present
an effective framework to integrate both DVS and DPM to
optimize the overall energy consumption. We propose an online
algorithm to determine the optimal operating frequency and
mode transition of a processor based on the runtime workload.
Our algorithm runs in O(n) time, where n is the number of
the events stored in the system buffer. A feasibility analysis is
also presented, which serves as a criteria for setting the system
buffer as well as runtime schedulabilty check. The evaluations
with specifications of two commercial processors show that our
algorithm is more energy-efficient compared to existing schemes
in the literature.

I. INTRODUCTION

Energy efficiency has become one of the major goals in
embedded system design. Using appropriate power manage-
ment techniques, the lifetime for battery-operated systems
could be extended and the heat dissipation could be decreased,
lowering the requirement for expensive packaging and cooling
technology. Power consumption of processors mainly comes
from dynamic power consumption due to switching activity
and static power consumption due to the leakage current [12].
In micrometer CMOS technology, dynamic power dominates
power consumption of processors. As CMOS technologies are
shifting toward sub-micron domains, the static power increases
exponentially and becomes comparable or even greater than
dynamic power.
To reduce dynamic power and static power consumption,

two main mechanisms can be employed, i.e., Dynamic Voltage
Frequency Scaling (DVS) and Dynamic Power Management
(DPM), respectively. DVS reduces the dynamic power con-
sumption by dynamically adjusting voltage and frequency
of a processor. The disadvantage of this technique is the
lack of means to reduce static power consumption. On the
other hand, DPM reduces the static power by switching the
processor to a sleep mode with low static power consumption.
The limitations of the pure DPM are: (1) dynamic power
consumption is not considered when making the DPM-related
decisions; (2) mode-switching in processor causes additional
energy and latency penalty. Actually, it is worthwhile to switch
the processor to sleep mode only when the idle interval is
longer than a certain threshold called break-even time.

DVS and DPM outperform each other in different work-
load and architecture configurations [8]. Concerning DVS,
lower frequencies result in lower dynamic power consumption,
which however prolong the task execution time and shorten
idle intervals. Therefore, DVS techniques in general limit the
opportunities of reducing static power. On the other hand,
although running the system at higher frequencies can create
longer sleep intervals and reduce more static power, DPM
will cost more dynamic power and mode-switch overheads. In
principle, DVS and DPM counteract each other with respect
to energy reduction. The motivation of our work is to integrate
DVS and DPM and find the best trade-off to reduce the total
energy consumption.
This paper presents a framework that considers the trade-

off between DPM and DVS and minimizes the overall energy
consumption for hard real-time tasks. The core of the frame-
work is an online algorithm that dynamically determines the
optimal processor speed and activation time instants based on
the runtime workload. Our algorithm is in O(n) complexity
while it can take into account the break-even time and avail-
able frequency bounds of the processor. By considering the
integration of DVS and DPM, our framework yields significant
energy reduction compared to the related work in the literature,
using specifications from two commercial processor cores. We
also provide a schedulability analysis of our algorithm, which
serves as a criteria for setting the system buffer as well as
runtime schedulabilty check.
The rest of paper is organized as follows: Section II reviews

related work in the literature. Section III presents basic models
and the definition of studied problem. Section IV describes our
algorithm and the corresponding feasibility analysis. Power
management scheme based on our algorithm is depicted in
Section V. Experimental evaluation is presented in Section VI
and Section VII concludes the paper.

II. RELATED WORK

A lot of researchers have explored DVS or DPM on real-
time embedded system [1], [2], [9], [11], [22]. However, only
a few have considered the combination of both DPM and DVS.
Chen and Kuo [4] propose to execute tasks at a certain speed
and control the procrastination of real-time tasks. By accu-
mulating the execution of the procrastinated real-time tasks
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in a busy interval, the processor can switch into sleep mode
to reduce the energy. The work in [7] presents an algorithm
on the interplay DVS and DPM to optimize the system-wide
energy for frame-based real-time embedded applications. The
algorithm requires that the period of an application is equal
to its deadline. Based on the concept of device forbidden
regions(DFRs), an algorithm is proposed in [6] to determine
the optimal processor speed as well as switching decisions of a
system to reduce the system-wide energy for periodic real-time
tasks. Taking a set of well-known existing(DVS and DPM)
policies, authors in [3] employ machine-learning mechanisms
to adaptively determine a suitable policy according to the
runtime workload.
Most of the above research on integration of DVS and DPM

requires special patterns of event arrivals, such as periodic real-
time events [4], or frame-based events with a period equal
to its deadline [6], [7]. However, in practice, this precise
timing information of event arrivals might not be known in
advance, since the arrival time information depends on many
nonfunctional factors, e.g., environmental impacts. To model
the irregular events, Real-time Calculus (RTC) is proposed by
Thiele et al. [19]. In [16], Maxiaguine et al. apply Real-time
Calculus within DVS context and compute a safe frequency
at periodic intervals with a predefined length to prevent buffer
overflow of a system. Huang et al. [10] and Lampka et al. [13]
proposed online DPM by predicting a tighter trace bound with
different prediction algorithms, procrastinating the processing
of arrived events as late as possible. The schedulability for
online DVS algorithms is explored when the event arrivals are
constrained by a given upper arrive curve in [5], [17]. In this
paper, we propose a power management framework on the
interplay of DVS and DPM for event streams with irregular
arrival patterns. In this framework, a online algorithm, namely
Optimal Workload-Aware Algorithm (OWAA), is proposed to
determine an optimal point of switching the processor from
sleep mode to active mode with an optimal active frequency.
Arrival-curve model is adopted to predict the worst-case idle
interval to decide whether the processor is switched into sleep
mode.

III. MODELS AND PROBLEM
This section describes the system models used in this paper,

which is the basis of our work.

A. Power Model
The power model in [5] is adopted in this article. The power

consumption can be described as follows:
P (f) = Psta+H(Pind+Pd) = Psta+H(Pind+Ceff

γ) (1)
where Psta, Pind, and Pd represent static power, frequency-
independence power, and frequency-dependence power, re-
spectively. H is set to 1 and 0 when the processor is in
active and sleep modes. Thus, Psta can be seen as the sleep
power. Moreover, Cef and γ respectively refer to the switch
capacitance and the dynamic power exponent, which are
system-dependent constants. As the existence of Pind, there
is a critical frequency fcrit = γ

√
Pind

Cef (γ−1) , which indicates

that executing at frequency fcrit is more energy-efficient than
frequencies lower than fcrit.
Considering the overhead of switching the processor be-

tween active mode and sleep mode, the processor break-
even time TBET indicates the minimum time length that the
processor should stay at sleep mode. If the interval at which
the processor can stay at sleep mode is smaller than TBET ,
the mode-switch mode overheads are larger than the energy
saving. Therefore, mode-switch is not worthy. The break-even
time TBET can be defined as follows:

TBET = max (tsw,
Esw − Ps · tsw

Pi − Ps
) (2)

Where tsw and Esw denote the total state transition time and
energy overhead, respectively. Pi and Ps respectively represent
the idle power and sleep power.

B. Event Model
This paper considers events that could come irregu-

larly. To model such events, the concept of arrival curve,
which originated from Network Calculus [15] and Real-time
Calculus(RTC)[14], [19], is adopted. In this context, a cumu-
lative function R(s, t) is used to describe an event stream in
a system, which is defined as the number of events arriving in
the time interval [s, t). In any time interval of length Δ, event
stream R can be characterized by an arrival curve α(Δ):

R(t+Δ)−R(t) ≤ α(Δ), ∀ t,Δ ≥ 0 (3)
with α(Δ) = 0 for Δ ≤ 0.
Arbitrary event arrival patterns are specified by means of

arrival curves [19]. In this paper, we just consider one event
stream, assuming the events in stream have the same execution
time C at maximum frequency fmax and the same related
deadline D. Besides, at each time instant t, a trace of past
events could be used to predict a tight bound μ(Δ, t) for event
stream R. See [10], [13] for details.

C. Problem Statement
Given are a processor P , an event stream R characterized

by arrival curve α, and an energy model E. We are to design
a power management scheme, that should decide when to
conduct the system mode-switch (sleep, idle, or active) and
how to schedule the frequency, such that (a) all the events
can complete before their deadlines, (b) the frequencies pro-
duced by scheduler are within processors’ available frequency
bounds, and (c) the overall energy consumption of processors
is minimized.
Note that in this work, we focus on the processor whose

overhead for frequency scaling is small enough and can be
neglected compared to the worst case execution time C.
Therefore, we don’t consider the processor’s overhead for
frequency scaling.

IV. OUR ALGORITHM
In order to interplay DVS and DPM, a scheduler in general

has to compute: (a) the switching time instant and the active
frequency to turn the processor from sleep mode to active
mode, (b) the time instant and the value of the frequency to
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Fig. 1. Graphical View of Event Processing

scale the frequency when in active mode, and (c) when to
turn the processor back to sleep mode. Therefore, we have
to deal with activation decision, frequency scaling decision,
and deactivation decision. This section presents an online
algorithm that computes the activation decisions when the
processor is in sleep mode and frequency scaling decisions
when the processor is in active mode. System deactivation
is considered in Section V-A. Combining DVS and DPM,
our algorithm looks for the minimum energy consumption
based on the runtime workload. The algorithm is triggered
when the runtime workload is updated and it renews the
previous computed activation and frequency scaling decisions.
The algorithm determines an optimal execution frequency f

as well as an activation time instant ta by which the overall
energy consumption is minimized upon the current workload,
taking into account the maximum speed that the processor can
provide. Analysis is also presented to depict the feasibility and
complexity of the algorithm.

A. Optimal Workload-Aware Algorithm

Fig. 1 illustrates the event processing. Assume at current
time instant t0, the set of unprocessed events, e1, e2, . . . , eN ,
is denoted as buffer(t0). Note that all events are sorted by
their arrival time in system buffer, and the event with earliest
arrival time is processed first. ai, D, and Ci are respectively
the arrival time, relative deadline, and remaining worst-case
execution time of event ei. C is the worst-case execution
time, thus Ci ≤ C. Ta(f) denotes the latest activation time
of the processor, under which all events in buffer(t0) are
guaranteed to satisfy their deadlines, using frequency f . Ii
represents the interval of processing event ei, which can be
computed by Ii = Ci

f , while TDi represents the absolute
deadline of ei. To guarantee all events in buffer(t0) can be
processed before their deadlines, the active time Ta(f) and
the frequency f should meet the following constraint:

Ta(f) +

∑i
j=1 Cj

f
≤ ai +D, ∀i ∈ N (4)

Thus the latest activation time Ta(f) can be calculated based
on buffer(t0) and frequency f :

Ta(f) = D +
N
min
i=1

(ai −

∑i
j=1 Cj

f
) (5)

The above equation shows that the time instant for activating
the processor and the operating frequency f are correlated. The
slower frequency at which the processor runs, the earlier the
processor needs to be turned on. For brevity, we define:
Def. 1: Ta(f, k) represents the activation time instant when

the processor runs at frequency f and ai −
∑i

j=1 Cj

f with i =
1, ..., N gets its minimum value at i = k. Then, Ta(f, k) =

D + (ak −
∑k

j=1 Cj

f ).
When the processor turns on at Ta(f, k) and runs at

frequency f , event ek completes right on its deadline.
According to the power model, the energy consumption of

processing all events in the system buffer is:

E(k, f) = P (f)

∑N
j=1 Cj

f
+ Psta/idle(Ta(f, k)− t0) (6)

where, at time instant t0, Psta/idle is set to sleep power Psta

when the processor is in sleep mode and idle power Pidle

when in active mode.
With Eqns. (1), (5), and (6), the energy consumption

E(k, f) can be computed as:

E(k, f) = (Psta + Pind + Ceff
γ)

∑N
j=1 Cj

f

+ Psta/idle(D + ak −

∑k
j=1 Cj

f
− t0)

= Cef

N∑
j=1

Cjf
γ−1 + ((Psta + Pind)

N∑
j=1

Cj

− Psta/idle

k∑
j=1

Cj)
1

f
+ Psta/idle(D + ak − t0)

For a specific event ek, Psta/idle(D+ ak − t0) can be seen
as a constant in E(k, f). As γ ≥ 1, frequency that minimizes
E(k, f) can be found by analyzing its first-order derivative.
Optimal frequency fopt(k) for event ek can be given as:

fopt(k) =
γ

√√√√ (Psta + Pind)
∑N

j=1 Cj − Psta/idle

∑k
j=1 Cj

Cef (γ − 1)
∑N

j=1 Cj

(7)
By analyzing its first-order derivative, the following prop-

erties hold for any ε ≥ 0.
Prop. 1: ∀f, f > fopt(k), E(k, fopt(k)) ≤ E(k, f) ≤

E(k, f + ε)

Prop. 2: ∀f, f < fopt(k), E(k, fopt(k)) ≤ E(k, f) ≤
E(k, f − ε)

Further more, we can proof that E(k, f) is strictly convex
to f only when γ ≥ 2 holds by analyzing its second-order
derivative.
For event ek, there is a corresponding accepted frequency

range [fl(k),fu(k)], which makes ai −
∑i

j=1 Cj

f get its min-
imum value at event ek. The accepted range for ek can be
determined as follows.

ak −

∑k
j=1 Cj

f
≤ ai −

∑i
j=1 Cj

f
, i �= k

For the case of i ≥ k + 1, there is ai ≥ ak, then

f ≥

∑i
j=1 Cj −

∑k
j=1 Cj

ai − ak
For the case of i ≤ k − 1, there is ai ≤ ak, then

f ≤

∑i
j=1 Cj −

∑k
j=1 Cj

ai − ak
To compute the accepted frequency range [fl(k), fu(k)] for

event ek, the accepted frequency function AF(ek,ei) between
ek and ei is defined as follows:
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Def. 2: AF (ek, ei) =

⎧⎪⎨
⎪⎩
+∞ ai = ak ∧ i > k

−∞ ai = ak ∧ i < k
∑i

j=1 Cj−
∑k

j=1 Cj

ai−ak
otherwise

Thus, with the frequency bounds [fmin, fmax] that proces-
sor can provide, the accepted range [f∗l (k), f

∗
u(k)] for event

ek can be calculated as:

f∗l (k) =

{
maxNi=k+1 AF (ek, ei) 1 ≤ k ≤ N − 1

fmin k = N
(8)

f∗u(k) =

{
mink−1

i=1 AF (ek, ei) 2 ≤ k ≤ N

fmax k = 1
(9)

When the processor turns on at Ta(f, k) and runs at
frequency f , event ek completes right on its deadline ak +D.
Consider the worst case of turning on system at current time
instant t0. To handle the worst case, the frequency f should
be no less than the gate frequency fg(t0, k).

fg(t0, k) =

∑k
j=1 Cj

ak +D − t0
(10)

Correspondingly, the accepted frequency bound
[fl(k), fu(k)] should be adjusted to:

fl(k) = max (f∗l (k), fg(t0, k), fmin) (11)
fu(k) = min (f∗u(k), fmax) (12)

The case fl(k) > fu(k) indicates that Ta(k, f) is not
acceptable for event ek. Let f(k) denote the frequency that
minimizes the energy consumption when Ta(k, f) is accepted
in event ek. From Prop. 1 and Prop. 2, f(k) can be determined
by considering three possible scenarios:

f(k) =

⎧⎪⎨
⎪⎩
fopt(k) if fl(k) ≤ fopt(k) ≤ fu(k)

fl(k) if fopt(k) ≤ fl(k) ≤ fu(k)

fu(k) if fl(k) ≤ fu(k) ≤ fopt(k)

(13)

The above derivation finds an optimal frequency f(k) for
each event ek in the unprocessed workload. f(k) is the local
optimal frequency when Ta(k, f) is accepted in event ek.
To determine the global optimal frequency, it is essential to
consider all the local optimal frequency for every acceptable
event currently stored in the system buffer and compare their
energy consumption to select a global optimal accepted event
eopt. Thus, at time instant t0, the global optimal frequency
fgopt and corresponding activation time ta can be calculated
as follows:

fgopt = f(eopt) (14)

ta = D + aeopt −

∑eopt
j=1 Cj

fgopt

(15)

where eopt = {k|E(k, f(k)) = minNi=1 E(i, f(i)), k =
1, , N}.
Algo. 1 traces the current workload and generates

an optimal decision (fgopt, ta) which minimizes the en-
ergy consumption. Algo. 1 is triggered when workload
is changed, i.e., at the arrival of every new event
(Lines 1–9) and completion of processing for every event
(Lines 10–14). The update_accepted_frequency rou-
tine (Line 6, Line 11) is used to refresh the accepted fre-
quency in Eqns. (11) and (12) for all events in the back-

Algorithm 1 Online Optimal Workload-Aware Algorithm.
procedure (fgopt,ta)=BUFFER-AWARE-ALGO(signal

s,buffer,event)
1: if s = event arrival then
2: if get buffer state = full then
3: throw execption
4: else
5: add event from buffer(buffer,event)
6: update accepted frequency(s,buffer)
7: (fgopt,ta)=select optimal frequency(buffer)
8: end if
9: end if
10: if s = event completion then
11: update accepted frequency(s,buffer)
12: remove event from buffer(buffer,event)
13: (fgopt,ta)=select optimal frequency(buffer)
14: end if

log. The select_optimal_frequency routine com-
putes the local optimal frequency f of each event using
Eqn. (13), then selects the optimum using Eqns. 14 and
15. The complexity of update_accepted_frequency
and select_optimal_frequency is O(N) (see Sec-
tion IV-C). In our approach, Algo. 1 is used to generate optimal
activation decisions when the processor is in sleep mode and
frequency scaling decisions when the processor is in active
mode.

B. Algorithm Feasibility Analysis
This section presents a schedulability analysis of our algo-

rithm. We prove that our algorithm can guarantee that (a) all
events in the system backlog can be processed within their
deadlines; (b) under certain condition, the chosen frequency
fgopt does not exceed the maximal available frequency fmax

and the activation time ta is no earlier than at current time
instant t0.
Lem. 1: Turning on the processor at time instant ta with

frequency fgopt computed by Algo. 1 will cause no deadline
violation of the unprocessed events in the system buffer.

Proof: With Eqns. (15) and (5), we can get:

ta = D +
N
min
i=1

(ai −

∑i
j=1 Cj

fgopt

) ≤ D + (ai −

∑i
j=1 Cj

fgopt

).

Thus

ta +

∑i
j=1 Cj

fgopt

≤ D + ai, ∀ei (16)

holds. The left side of Eqn. (16) is the completion time of ei
and the right side is the absolute deadline of ei. The inequality
shows that all events complete no later than their deadlines.

Algo. 1 is triggered only when the workload is changed,
i.e., at the time instant of the arrival and completion of an
event. Thus, the feasibility analysis can be divided into two
cases, i.e., new event arrival and event completion scenarios.
Consider the feasibility of the worst case of our algorithm, i.e.,
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all events in the system buffer can be completed within their
deadlines when the processor turns on at current time instant
t0 and executes at fmax. The feasibility of the worst case
can guarantee that, at any time instant when the scheduling
decision is re-computed, the resulted activation time will be
no earlier than the current time and the computed frequency
is no larger than fmax.

Lem. 2: At the time instant of event completion t0, Algo. 1
is feasible.

Proof: Let tp be the last updating time instant before t0
and fp be the updating frequency computed at tp. According
to Lem. 1, at time instant tp, all events in buffer(tp) can
be safely processed under fp. During the interval (tp, t0], the
workload is decreased due to event completion. It is apparent
that running system at fp and activating system at current
time instant t0 can guarantee the remaining events to complete
before their deadlines. As fmax ≥ fp, the worst case is also
feasible.

Lem. 3: Define buf(t) as the number of events stored in
the system buffer at time instant t and aN as the arrival time
instant of N th event. If buf(aN ) ≤

⌊
Dfmax

C

⌋
holds, Algo. 1

can find a feasible frequency and active time at updating time
instance aN .

Proof:We divide the proof into two cases, i.e., new event
arrives before and after activation time ta. Lets call these
two cases sleep scenario and active scenario , respectively.
Let ta(t, f) denote the updated activation time at time instant
t. Fig. 2 shows that at time instant aN , the system buffer
contains N events with arrival time a1, ..., aN . Assume the
arrival of new event eN triggers the processor to update the
feasible frequency fN and new activation time ta(aN , fN ).
aN+1 denotes the arrival time instant for next new event.
Sleep scenario is the case of aN+1 < ta(aN , fN ) while
active scenario is the case of aN+1 ≥ ta(aN , fN ). What
we need to prove is that, for both cases, the condition of
buf(aN+1) ≤

⌊
Dfmax

C

⌋
can guarantee that Algo. 1 is feasible

at updating time instant aN+1.

• sleep scenario(aN+1 < ta(aN , fN )):

For all events ei (i = 1, ..., N ), assume ai −
∑i

j=1 Cj

fmax
gets

its minimal value at event ep. According to Eqn. (5) and fN ≤
fmax, we have:

ta(aN+1, fmax) = min(ta(aN , fmax), D+aN+1−

∑N+1
j=1 Cj

fmax
)

(17)

ta(aN , fmax) = D + ap −

∑p
j=1 Cj

fmax
≥ D + ap −

∑p
j=1 Cj

fN

≥ D +
N
min
k=1

(ak −

∑k
j=1 Cj

fN
) = ta(aN , fN )

> aN+1 (18)
As buf(aN+1) ≤

⌊
Dfmax

C

⌋
and Cj ≤ C hold, we can get:

D + aN+1 −

∑N+1
j=1 Cj

fmax
≥ D + aN+1 −

buf(aN+1)C

fmax
≥ aN+1

(19)
With Eqns. (17), (18), and (19), we have ta(aN+1, fmax) ≥

aN+1 which shows that at the next updating time instant aN+1,
we can always activate the processor not earlier than aN+1

when the processor runs at the maximal frequency.
• active scenario aN+1 ≥ ta(aN , fN ):
Let tp be the last updating time instant before aN+1. Thus,

buf(aN+1) = buf(tp) + 1. Assume fp is the updating fre-
quency at tp. According to Lem. 1, at time instant tp, all events
in buffer(tp) can be safely processed under fp. Consider the
worst case of active scenario, i.e., the processor turns on at
aN+1 and runs at fmax. Running processor at fp and activating
processor at current time instants aN+1 can guarantee the first
buf(tp) events in buffer(aN+1) to complete before their
deadlines. Notes that fp cannot guarantee the last event eN+1

to complete before its deadline. As fmax ≥ fp, the first
buf(tp) events can also be safely processed under under fmax.
For the last event eN+1 in buffer(aN+1), the com-

pletion time TC(eN+1) under fmax can be computed as

TC(eN+1) = aN+1 +
∑buf(aN+1)

j=1 Cj

fmax
≤ aN+1 +D with

buf(aN+1) ≤
⌊
Dfmax

C

⌋
. It shows that the worst case of active

scenario is feasible if buf(aN+1) ≤
⌊
Dfmax

C

⌋
holds.

From above cases, the lemma holds.
Lem. 3 shows that our algorithm can accumulate at most⌊

Dfmax

C

⌋
unprocessed events in the system buffer. It offers a

criterion for allocating the capacity of the system buffer. We
can set the capacity of the system buffer as

⌊
Dfmax

C

⌋
. If the

system buffer overflows, it indicates that our online algorithm
is not feasible. Otherwise, our algorithm is feasible. Based on
Lem. 3, we provide a general feasible analysis for arbitrary
arrival patterns.
Lem. 4: Given an event stream R characterized by α,

Algo. 1 is feasible when α(D) ≤
⌊
Dfmax

C

⌋
holds.

Proof: Assume at current time t0, N events with ar-
rival time a1, a2, ..., aN are stored in buffer(t0). Accord-
ing to deadline constraints, a1 + D ≥ t0 ≥ an. Thus,
buf(t0) = R(an) − R(a1) ≤ α(an − a1) ≤ α(D). With
α(D) ≤

⌊
Dfmax

C

⌋
and Lem. 3, we know Algo. 1 is feasible.

C. Algorithm Complexity Analysis
The computational overhead of Algo. 1 comes from (a)

refreshing the accepted frequency [fl(k), fu(k)] (Eqns. (11)
and (12)) and (b) computing the optimal decisions (Eqn. (14)
and (15)).
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The accepted frequency [fl(k), fu(k)] is refreshed at
the point of adding new events to the system buffer or
removing completed events from buffer. For brevity, let
[f∗l (n, k), f

∗
u(n, k)] be the accepted frequency bound deter-

mined by Eqns. (8) and (9) when buffer contains n events.
For the case of adding new event en+1 to buffer, [f∗l (n +
1, k), f∗u(n + 1, k)] can be refreshed by the following itera-
tions:

f∗l (n+ 1, k) =

{
max(f∗l (n, k), AF (ek, en+1)) 1 ≤ k ≤ n

fmin k = n+ 1

(20)

f∗u(n+ 1, k) =

{
f∗u(n, k) 1 ≤ k ≤ n

minni=1 AF (ei, en+1) k = n+ 1
(21)

s∗u(n+ 1, k) =

{
s∗u(n, k) 1 ≤ k ≤ n

sminni=1AF (ei, en+1) k = n+ 1
(22)

Note that smin is the operation for getting the second
minimum value in a group of numbers and s∗u(n, k) is used
in case of removing completed event from the system buffer.
smin can be executed integrated with min. Considering
the gate frequency fg and the processor frequency bound
[fmin, fmax], the adjusted frequency could be determined
by Eqns. (11) and (12). There are at most n iterations
in update_accepted_frequency routine when a new
event is added into the system buffer.For the case of removing
completed events, update_accepted_frequency rou-
tine also needs at most n iterations. [f∗l (n−1, k), f∗u(n−1, k)]
could be similarly determined by the following iterations:
f∗l (n− 1, k − 1) = f∗l (n, k) k ≥ 2 (23)

f∗u(n− 1, k − 1) =

⎧⎪⎨
⎪⎩
s∗u(n, k) fu(n, k) = AF (ek, e1)&k ≥ 3

f∗u(n, k) fu(n, k) �= AF (ek, e1)&k ≥ 3

fmax k = 2

(24)
From above analysis, it can be concluded that the com-

plexity of update accepted frequency is O(n), where n is the
number of events stored in the system buffer.
From Eqns. (14) and (15), assuming there are n accepted

events in the system buffer, computing the optimal frequency
fopt and activation time ta also need O(n) operations.

V. POWER MANAGEMENT STRATEGY
A power management strategy involves solving the follow-

ing two problems to save energy: (a) determine the activation
time and the activation frequency when the processor is in

sleep mode, and (b) determine the running frequency and
the time to turn the processor back to sleep mode when
the processor is in active mode. Meanwhile, the scheduler
decisions must guarantee the real-time constraints and meet
the frequency bounds.

A. System Deactivation

There are two scenarios that the system could switch to
sleep mode, i.e., when the system buffer is empty and when
the idle time interval ta − t0 computed by Algo. 1 is longer
than TBET . In the following, we consider these two scenarios
individually.
Empty system buffer: Here we use an online DPM system
deactivation scheme based on the dynamic counter technique
proposed in [13]. To satisfy the required deadline D and
prevent system buffer with capacity Q from overflow, the
minimum service demand can be computed as follows:

β(Δ, t) = max (μ(Δ, t)−Q,μ(Δ−D, t)) (25)
where μ(Δ, t) is the predicted bound of arrive curve deter-
mined by the dynamic counter. Then, the largest period τ that
the processor can stay in sleep mode with predictive active
frequency fa can be computed as:

fa(Δ− τ) ≥ Cβ(Δ, t) (26)
If τ is larger than the break-even time TBET , the processor

should turn to sleep mode. Otherwise, the processor enters
the idle mode. An interesting problem in this prediction is
how to set the predictive frequency fa. If fa is set to the
maximum frequency fmax, processor can greedily explore the
opportunity for energy saving, but a higher speed is required
when the processor turns back to active mode. Moreover, in
some scenarios, e.g., when the idle power of the processor
is relative small and close to the sleep power, energy saving
obtained by switching the system into sleep mode might be
very limited. This method would produce pessimistic results,
as the dynamic power consumption is the dominating part.
In our approach, the critical speed fcrit is selected as the
predictive frequency to compute τ . The choice generates better
results for both processors used in our experiment.
Idle time interval ta − t0 ≥ TBET : Assume that at current
updating time t0, (fgopt,ta) is the newly computed optimal
frequency and mode-switch point. The workload at time in-
stant t0 is denoted as w(t0). Consider any interval [t0, t0+Δ),
the number of events arrived in this interval is upper-bounded
by μ(Δ, t0). The future event eμ(Δ,t0)+1 arrives later than the
time instant t0 + Δ, i.e., aμ(Δ,t0)+1 ≥ t0 +Δ. Let ta(t, f)
denote the active time with active frequency f at updating time
instant t. To guarantee that the sleep time is larger than TBET

with arrival curve μ(Δ, t0), ta(aμ(Δ,t0)+1, fgopt) should be
no less than t0 + TBET . According to Eqn. (5), the following
constraint should be met for future event eμ(Δ,t0)+1.

inf
Δ≤TBET

(D+aμ(Δ,t0)+1−
w(t0) + (μ(Δ, t0) + 1)C

fgopt
) ≥ t0 + TBET

(27)
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With aμ(Δ,t0)+1 ≥ t0 +Δ, we have:

fgopt(Δ+D−
w(t0)

fgopt
−TBET ) ≥ (μ(Δ, t0) + 1)C Δ ≤ TBET

(28)
If Eqn. (28) holds, the processor can turn to sleep mode.

Otherwise, the processor enters idle mode.

B. Sytem Activation
Once the processor enters sleep mode, it should go back to

active mode with an appropriate frequency at a later moment
for event processing. Further analysis is needed to find the
optimal operating frequency and switching moment. On the
one hand, it is beneficial to turn on processor as late as possible
for the sake of static power reduction. The side-effect is
however a higher execution frequency later in the active mode.
On the other hand, an early wake-up would require a lower
operating frequency and therefore reduce the dynamic power
consumption. To resolve this contradiction, Algo. 1 is used to
find the optimal switching point and operating frequency for
the current workload. Algo. 1 works in an workload-triggered
manner. Optimal decision is re-calculated when the workload
is updated, e.g., at new event arrival and event completion.
In sleep mode, the decision is also updated on arrival of new
events.
Based on the switching point and active frequency deter-

mined by Algo. 1, a further concern is that the processor
should stay in sleep mode long enough to achieve power
reduction (i.e., the sleep time exceeds the break-even time
TBET ). As a result, Eqn. (10) should be adjusted as follows:

fg(t0, k) =

∑k
j=1 Cj

ak +D −max(t0, toff + TBET )
(29)

where toff is the time instant of turning off the processor.
Consider the scenario that a new event arrives at t0, Algo. 1

generates the switch moment ta and operating frequency f . If
no further event arrives before ta, processor is turned on at
ta with frequency f . Otherwise, the switching moment and
execution frequency are updated at the time instant of the
new event arrival. The feasibility of this activation strategy
is already analyzed in Section IV-B (see Lem. 3).

C. Frequency Selection On Active Mode
When the processor enters active mode, Algo. 1 is used

to compute the optimal frequency fopt and active time ta
to process the current workload. Here Algo. 1 works in
a workload-triggered manner. The frequency is updated at
the point of new event arrival and event completion. When
ta − t0 ≥ TBET holds, a mode-switching decision is made.
Otherwise, fopt is applied immediately to process the events.
When the system buffer is empty, the approach in Section V-A
is applied to decide whether to switch the processor into sleep
mode.

VI. EVALUATION
This section provides experimental evaluations for the pro-

posed framework. We implement our algorithms in MATLAB
and evaluate the performance by comparing with three existing
on-line algorithms in literature [5], [13].
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Fig. 4. Completion Time and Deadline

S1 S2 S3 S4 S5 S6
P 198 102 283 239 148 114
J 387 70 269 222 91 13
d 48 45 58 65 78 0
C 35 11 45 38 20 15

TABLE I
PARAMETERS FOR SIX EVENT STREAMS IN [MS]

A. Experimental Setup

We adopt the PJD arrive pattern defined by parameters
period p, maximum jitter j, and minimum event inter-arrival
time d. The arrival curve for such models can be represented
as α(Δ) = min(

⌈
Δ+j
p

⌉
,
⌈
Δ
d

⌉
). The specification of six event

streams adopted in [17] is listed in Tab. I. The RTC/RTS-
toolbox [20] is used to generate the traces with different
patterns. The worst-case execution time (WCET) at frequency
fmax required for processing an event is also given in Tab. I.
The WCETs for lower frequencies are normalized w.r.t the
ratio to the fmax. The relative deadline is set to the period
times a deadline factor η.
We use the hardware parameters from Marvell PXA270 [18]

and Intel XScale [21] in our experiments. The voltage-
frequency levels supported by PXA270 and Intel XScale are
listed in Tab. II. From those discrete operating points, we
use the least square curve fitting to obtain the frequency-
power function in the form of afγ + b for each processor.
In this case, the active power function of PXA270 and
XScale can be written as Pa(f) = 35.09 + 891.24f1.26 and
Pa(f) = 63.58 + 1543.28f2.87, respectively. The results are
also depicted in Fig. 3. The idle power Pidle, sleep power Psta,
mode-switch energy overhead Esw, mode-switch transition
time overhead tsw, and the critical speed fcrit of the two
processors are listed in Tab. III.
To evaluate the performance of our framework, we com-

PXA270
V (V ) 1.55 1.45 1.35 1.25 1.15 0.9 0.85
f (MHz) 624 520 416 312 208 104 13
P (mW ) 925 747 570 390 279 116 44.2

XScale
V (V ) 1.8 1.6 1.3 1.0 0.75
f (MHz) 1000 800 600 400 150
P (mW ) 1600 900 400 170 80

TABLE II
ACTIVE POWER CONSUMPTION FOR PROCESSORS PXA270 AND XSCALE
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Pidle Psta Esw tsw fcir
(mW ) (mW ) (mJ) (ms)

PXA270 15.4 0.163 0.24 69.575 0.2211
XSale 40 0.8 0.5 85 0.2633

TABLE III
POWER PARAMETERS FOR PXA270 AND XSCALE
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Fig. 5. Frequency Schedules and Energy Consumption

pared the energy consumption with the following algorithms:
•DPM-DNC: A latest online DPM algorithm for aperiodic

tasks proposed in [13] which minimizes the energy consump-
tion with workload prediction using dynamic counters.
•DVS-AVR: The frequency decisions are performed by

max (fmin,
∑

ei:ai≤t≤di

C
D ), where ai and di are respectively

the arrival time and absolute deadline of the event ei, and
C and D are the worst-case execution time and the relative
deadline [5].
•DVS-OPT: It makes the scheduling decision at time t

by processing the event with the earliest deadline at speed
max (fmin,max

ej

∑
ei:ai≤t,di≤dj

Ci(t)
dj−t ), where the event ei is

associated with arrival time ai and absolute deadline di, and
Ci(t) is the remaining execution time at time t [5].
•OWAA: Power management scheme base on the optimal

workload-aware algorithm (OWAA) proposed in Section V.

B. Simulation Result
Qualitative evaluation: We conduct the qualitative examina-
tions on XScale processor for stream S1. The experiment runs
for five seconds. Fig. 4 shows the event completion time and
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Fig. 7. Energy Consumption of Different Deadline Settings Combining DVS
and DPM

its deadline. The solid line TF and dashed line TD show the
event completion curve and its deadline curve, respectively. As
it can be seen, all events are completed before their deadlines.
Fig. 5 depicts frequency schedule and the resulting accu-

mulative energy consumption produced by our scheme and
DVS-OPT scheme where the prefix F- and E- represent the
frequency schedule and the accumulative energy consumption
of the schemes. As it can be seen, using the DVS-OPT scheme,
the processor turns from idle state to active mode right after
the new event arrives and runs with a low frequency. As the
counterpart, our scheme first performs an appropriate delay
to reduce the energy consumption and then selects a higher
frequency to execute the tasks. From the accumulative energy
consumption curves of both schemes (Fig. 5(a)), one can find
out that our scheme exhibits better power efficiency than the
DVS-OPT scheme during the entire time span.
Fig. 5(b) compares our scheme and the DPM-DNC scheme.

Using DPM-DNC, the processor executes at the maximum
speed to shorten the execution time and greedily explore
the idle interval to switch the processor into sleep mode.
However, the accumulative energy consumption curves in
Fig. 5(b) show that doing this is actually suboptimal from
the system point of view, due to the high dynamic power
consumption. Unlike DPM-DNC, our scheme considers the
trade-offs between dynamic and static power consumptions
and controls the processor to run at an appropriate lower
frequency according to the current workload, resulting in a
lower overall power consumption.
Quantitative comparison: First, we consider the overall en-
ergy consumption and compare the proposed scheme with the
three existing schemes. We run the simulation for 20 seconds
and set the deadline factor to η = 1.6. Fig. 6 shows the energy
savings w.r.t DPM-DNC1 on PXA270 and XScale processors
for streams listed in Tab. I. As depicted in Fig. 6, the proposed
OWAA scheme outperforms the other three schemes in both
devices. On average, for the PXA270 processor, our scheme

1energy savings of x policy w.r.t y policy: EnergySaving = PC(y)-PC(x),
where PC(x) is power consumption of x
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achieves 462.3 mJ and 45.9 mJ energy savings w.r.t DPM-
DNC and DVS-OPT respectively. For the XScale processor,
our scheme saved 3559.8 mJ and 290.2 mJ respectively w.r.t
DPM-DNC and DVS-OPT.
In the next set of experiments, we compares the overall

power consumption of the four schemes running on both
devices with varying deadline factor η. The simulation time
is again 20s and stream S1 is used as the input. Fig. 7
shows the results. As it can be seen, our online scheme that
combines both DVS and DPM achieves the best results. For a
small deadline factor (η ≤ 1), the number of unprocessed
events that our algorithm can aggregate is limited and the
opportunity for DPM is low. In this case, the contribution
of energy savings mainly comes from the dynamic frequency
scaling. We can see from Fig. 7 that OWAA can still exhibit
higher energy gain compared to the other three schemes.
With increasing deadline factor, OWAA can achieve further
static power saving by combining the advantages of DVS and
DPM. When the deadline factor η is large enough, power
consumption curves of all schemes become flat. The energy
consumption on PXA270 stays constantly at 2.72J , 2.75J ,
2.77 J , and 3.31J , using OWAA, DVS-OPT, DVS-AVR, and
DPM-DNC scheme, respectively. One observation from Fig. 7
is that the performance gap between DPM-DNC and the other
three algorithms is relatively small for the case of PXA270.
The main reason is that the power consumption function
of PXA270 is almost linear to the frequency (recall that
γ = 1.26) and the trade-off between DVS and DPM is not
significant. For the case of XScale, the power consumptions
figures are 1.33J , 1.55 J , 1.58 J , and 5.75J for OWAA, DVS-
OPT, DVS-AVR, and DPM-DNC schemes respectively. Our
OWAA scheme saves about 14.19% power consumption w.r.t
DVS-OPT on XScale.

VII. CONCLUSION

This paper presents an efficient framework for online energy
optimization that considers the interplay of DVS and DPM.
The core of the framework is an online algorithm that dy-
namically determines the optimal processor speed and mode
transitions based on the runtime workload. Our algorithm
is in O(n) complexity and it takes into account the break-
even time and available frequency bounds of the processor.We
also provides a guideline for configuring the system buffer
size based on a feasibility analysis.Experimental results with
specifications from two commercial processors show that our
framework outperforms existing online power management
approaches in the literature.
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