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_Abstract—Transient stability analysis is a traditional yet sig- using the S-procedure and a V-s algorithm given by [10], a
nificant topic in power systems. In order to obtain the stabiity polynomial Lyapunov function method is proposed for power

domain of the post-fault equilibrium point, the Lyapunov method systems with single-variate Taylor polynomial (withoutngs
is proven to be effective and efficient once a Lyapunov funadin any remainder)

has been found. This paper proposes an approach to compute - . . B )
the largest estimate of the Region of Attraction (ROA) of an ~ However, existing work in transient stability analysis of

equilibrium point for power systems by using rational Lyapunov power systems uses quadratic Lyapunov functions or poly-
functions. This class of Lyapunov functions is more general nomial Lyapunov functions, which are rather conservative
than quadratic Lyapunov functions and polynomial Lyapunov  oomnared to rational Lyapunov functions. This paper extend

functions, thus embracing less-conservative results. Theentral h it of [13 d h
idea of this paper is to reconstruct the non-polynomial powe the result of [13] and proposes an approach to compute

systems to an uncertain differential algebraic systems vidhe the largest estimate of the ROA by using rational Lyapunov
multi-variate truncated Taylor expansion. An iteration pr ocedure functions. The following benefits can be provided for power
is proposed to compute the largest estimate of the ROA by gystems transient stability analysis: 1) This method can be
exploiting the Sum of Squares (SOS) technique and the Squate easily applied to any continuous-time power systems mod-
Matrix Representation (SMR). A classical power system with . . . . .

eled with analytic nonlinear functions; 2) a less-constvea

transfer conductances is studied to demonstrate the effégeness ! X ! ’ g
of the proposed approach. method is provided by using the optimal rational Lyapunov

Index Terms—Lyapunov methods, region of attraction, sum funct!on (ORLF)_ compared to_ the fixed ratlonal_ Lya}punov
of squares, power system transient stability, optimal rawnal function and variable polynomial Lyapunov functions; 3) an

Lyapunov function, multi-variate truncated Taylor expansion. efficient computation is carried out by exploiting the SMR
technique which opens a path for constructing a quasi-conve
|. INTRODUCTION optimization problem instead of a non-convex one.
Transient stability analysis of power systems has been
extensively investigated using the direct method [1]-[3]is Il. PRELIMINARIES

method is able to prevent the computationally demanding-tim Notations:N, R: natural and real number sef&:: positive
domain simulation for the post-fault power grid, and pr@&d (a5 number setf),,: origin of R™; RZ: R™\{0,}; |a|: sum
a Region of Attraction (ROA) in which the operating poiny g the elements of am-dimensional multi-indexa =
converges to the post-fault equilibrium point [4]. (a1, 0m) € N, e, Ja| = a1 + -+ + an; al: multi-

Amongst various kinds of the direct method, the exagt ox factorial ofa, i.e., ol = ayl ... al; 228 .. 2%, for
ROA can be obtained via th2ubov equation method and . - pr gndq ¢ N"; AT: transpose ofd; A > 0 (A"> 0):

the maximal Lyapunov function method [5]. Nevertheless, thegymmetric positive definite (semidefinite) mattik A © B:
solutions of Zubov equation and the maximal Lyapunov fungonecker product of matricest and B; ver(%): set of

tion are generally difficult to be found. Thetosest Unstable | artices of the polytope?; deg(f): degree of polynomial

Equilibrium Point (UEP) method andontrolling UEP method  ¢,ction f(z) in a; Vf: gradient of f(z), i.e., Vf =
are viable for some specific power systems, but they dema(nﬁj o ﬁ)T; (*)TAB in a form of SMR: BTAB. P:
for the stability establishment of equilibrium points orethtr?gset Ofag’aynomiaBPnXm: the set of matrix polynomial
stability boundary, and they are not immune to the secongi, gimensionn x m.

wing uprising [6].

Alternatively, thanks to the recent development of rea| problem Formulation
algebraic geometry and the Sum of Squares (SOS) technique, . . .
efficient methods are proposed for estimating the ROA base§n this paper, let us cc.)n3|der.power_systems. depicted by an
on Lyapunov function methods and polynomial approxime?_utonomous set of nonlinear differential equations:
tions [7]-[10]. In [9], the state space is recast into an exieal i=f(z), €D (1)
one by replacing the nonlinear terms in the system dynamic
with new variables. Using this method, Anghel, etc. proposeherez(t) € R™ denotes the state vector afid R™ — R” is
an algorithm to construct polynomial Lyapunov functions foa nonlinear function satisfying the locally Lipschitz catiwh,
power systems with transfer conductances [11]. In [12], by(0) = zinis € R™ is the initial state,D C R™ is the domain.



For brevity, the dependence of functions on timand state satisfying (3)-(6) whose level séb(cs) is larger thanV; (c1),

x(t) will be omitted whenever reasonable. and in the end, find the ORLF*(x) whose level seV*(c*)
In this paper, we are interested in estimating the ROA f the largest inner-estimate &.

the post-fault equilibrium point. Without loss of genetglive

set the origin as the equilibrium-point of interest. Fifst,us

introduce the definition of the ROA of the origin, i.e., uf - - T
R = {xinit ceR": t£+moox(t;:cinit) = On}, (2) . : ; :
where x (t; zinit) denotes the solution of system (1) at time Uy ror
starting from the initial stater;,;;. Since rational Lyapunov ) ! !
functions are more general than quadratic and polynomic =3 ’ Cr
ones, we aim to enlarge the sublevel set of a rational Lyapuna £ [ S I
function to inner-approximat®. Specifically, letV (z) be a 3 R 1
rational function of system (1) 1 ) TN
B R YA A
Vnum(x) NI N ~ ! NAA
V ) = 3 AU S N /i A W Ya ey \ A\ \\
(z) Vien () (3) T S N AN O N B AN WY
. | R Y A\ /\\ N NN N N /\\ A\ N )
whereVoum € P and Ve, € P satisfy -l N L ) N
-4 -2 0 2 4
VeeD, lim V(x)= oo, d [rad]
]| —o0 @)
Vo € D/{0n}, Vium(z) >0, and Vium(0,) = 0, Fig. 1. lllustration example: The solid red line indicatbs £xact ROA of the
Vo € D, Vgen(z) >0, origin; the solid yellow line and the dashed blue line inticthe boundaries

of the sublevel set¥ (c1) and Va2 (c2), respectively.
andD is defined in (1). The sublevel set df(z) is

Vie)={z eR": V(z) < 5 -
(c) ={z (2) <c} ©) B. Basics of Sum of Squares (S0S)
wherec € R*. The fqn_ctif)nv(x) is a Lyapunov function of 5 polynomial p(z) € P is nonnegative ifp(z) > 0 for
system (1) for the origin if all z € R™. A powerful tool for checking whethep(x)

V(z) <0, Yz € D/{0,}. (6) s nonnegative consists -of checkingk wheth€r) can be
_ . expressed as an SOS, i.e(x) = > ., pi(z)* for some

We propose the main problem: Find the ORLE) whose p, ... p, € P. We denote the set of SOS polynomials as
sublevel set is the largest under-estimate of the ROA, i.250S |f j(z) e PSOS becomes) only for z = 0,, and p(z)
solving is without monomials of degree 0 and 1, we calk) local

p=sup p(V(c) SOS which is denoted byP$S,

'(3) = (6) hold (7 Consider a polynomiap, (z) € PFOS of degreedeg(p1),
8.t. V() C D define d(p,) as the smallest integer not less thg-‘ﬁg(—pl),

Ld(pr) = [28:@)] The SMR i is:
where p is a pre-definable measure ®f¢). An illustration & d(py) = [T55] © expression gh (v) is
example of a Single-Machine-Infinite-Bus model is provided pi(z) = ()T (Pr + Li(7))p(n, d(p1)) 9
below for easy understanding. ,

TAB is short for BTAB, P, denotes the SMR

Example 1: The classical power system considered fo¥here (+) : _
illustration is given by matrix of p; (), n is the number of variablesg(n, d(p1)) €

i Rh is called the power vector containing all monomials of
{ d=w degree less or equal W(p;) but without degred, L,(v) is

W= i(p — PMsin(0) + Dw) ®) a parameterization of the affine space
My™ ¢
. : L = {Li(y) e RN Ly(y) = LT (y)
where ¢ is the generator rotor angle and is the angular ’ 10
g g d ()T L1 (7)(n, d(p1)) = 0}, (10)

velocity. Set up the inertial constadt/ = 0.026 [s?/rad],

the damping coefficienD to be 0.11[s/rad], the mechanical in which v is a vector of free parameters.
power inputP,,, = 1.0 per unit and the electrical power output
PM = 1.35 per unit.

We transform the state space such that the equilibrium point
moves from (0.749,0) to the origin. By selecting a polyndmia In this section, we first sketch the main steps of our
Lyapunov functionV; (z) = 16z + 822 + 42222 + 22, the approach. Then, each step will be explained in detail.
sublevel sed’; (¢1) is shown in Fig. 1 to approximat® with This approach provides a way to compute the largest esti-
¢1 = 1. Our goal is to find a rational Lyapunov functidd(x) mate with a fixed Lyapunov function. Then, iteratively, atbet

IIl. OPTIMAL RATIONAL LYAPUNOV FUNCTION
APPROACH



[T}H/ ot and_L-, T; € R 1=1,...,r. Please refer to_ [13] for the case
of single-variate trauncated Taylor expansion.
Step 1: System reformu]aition via Taylor expansion gep 2: Enlargi ng ESI mate \Nlth a leed Lyapu.nov FunCtion .
— ‘ - In order to solve the problem (7), one important step is
! to search the largest estimate of the ROA with a selected
Step 2: Enlarging estimate with a fixed Lyapunov function Lypa.unov fUI’lCtIOH, |e, Comput|ng

|

le——

N

Step 3: Quasi-convex optimization via SMR‘ C* =Ssup ¢ (14)
! with a ratioinal functionV'(x) such that (3)-(6) hold for all
Step 4: Searching for the ORLF‘ & € E,and foralli =1,...,r. This step provides a possible

solution for this problem by using thkcal SOS cone [13]
and thereal Positivstellensatz [7], [8]. In specific, the lower
bound ofc* in (14) can be obtained by handling the remainder
of the Taylor expansion in a robust fashion:
¢k is a lower bound ot* if there exists a polynomial(z) €
SOS
P /L'[ - } Py~> wherec, can be computed by

Modification

Ckr =supc
c, s

Fig. 2. Algorithm flowchart of the proposed approach. { —(x,c,5(x),€) € pOSOS (15)
s.t.8 Ve V(e)\ {0}
V¢ everE), i=1,...,m,
Lyapunov function is sought and subsequently the estimfate,

il which & is the truncation degree in (12),
the ROAV(c) is enlarged. The iteration procedure is shown ¢ (12)

in Fig. 2.
Step 1. System Reformulation by Using the Truncated Multi- () = Vaen () VVium — Vaium () VVien (16)
Variate Taylor Expansion r

The main idea of this reformulation is to separate the r(z) = U(:c)<h(a?) +Zgi(5€)m(:r)> (7)
polynomial functions and the non-polynomial ones, then use i=1

the truncated multi-variate Taylor expansion to approténa N _ f
the non-polynomial functions. Specifically, let us equirdly 6i(z) = o():(2) Z B! (18)
rewrite the system (1) as 18 "k“T
) 4(@) = (1(@), ., ()) (19)
() = h(z®) + Y gi@)G(a®), €D (A1) gz e s@)E) = r(z)+q(@)Te 0
1=1

+5(2)(cVien(®) — Vaum (),
whereh(z(t)), g(z(t)) € 7;” are vector polynomial function_s, and ve(Z) is the set of vertices GE.
(1(50(_15)), e Gr(z() R — Rdenote the non-polynomlal Step 3: Quasi-Convex Optimization via SMR
functions. We assume that, i = 1,...,r, are analylic —gpqarve that solving (15) is not simple for the reason

functions withinD. Let us introduce the multi-index notations;[hat there is no existing method for local SOS programming
laf = a1+ tan, al = alianl, 2% =@yt afn g o MATLAB toolboxes YALMIP, SOSOPT and SOSTOOLS

n _ T n i
wherex € R™ anda = (ai,...,a,)" € N"is ann-  cann0t handle this problem directly. To overcome theseeissu
d;n:ﬁnswna_ll mult|-LrJ1dex. Th@'”:j order of m'X%?‘aqe”Va]E'Ves the class of SMR for local SOS will be introduced, and a quasi-
at the origin can be expressed B¢ = z=r o for  onvex optimization problem will be formulated instead lvé t
some|a| = k. Thus,¢; in (11) could be rewritten by the | Jo onvex problem (15).
multi-variate Taylor expansion evaluated at the origin: Let us introduce the SMR expressions(z) =

b ()7 Sh(n,d(q)), ¥(z.c5(2).6) = (x)7(¥(c,8,€) +
G@) =m@)+ > Eiﬁ (12)  L(v))- ¢(n,d(v)), and polynomials
|Bl=k+1
where¢; € R is a bounded parametet, denotes the trunca ue) = w(e) +ux(o) @)
7 ’ = _ _ _ T

tion degree andy;(z) is the k-th order Taylor polynomial: w(w) = T({) q(2)" ¢+ 5(@)Voum (@) - (22)
mi(x) = Yaj<k DG(@)],_, % We use the parameters uz(z) = s(z)V(2) (23)
&; to over-approximate the Taylor remaindgr— n;, where V() = Vien(®) + MWaum (24)

€= (&,...,&)T isin the orthotope B _
where R(€), W(S), Ux(S) and V are the SMR matrix of
(

E=[ry,T1] X - X [T, Tr) (13) —r(z) — q(2)T&, $(2)Vaum (z), us(z) andV(z) respectively.



For a selected truncation degrieeconsider a positive scalar

A € RT and a rational functio/(z) : R® — R satisfying
(3)-(4), ¢, in (15) can be computed by
e
= — 25
kT TIG (25) @
whereé is the solution of the following GEVP
e= inf e
e, S, vy
S >0 (26)
s.t.¢ eUsz(S) > —R(&) —W(S) — L(v)
V¢ € ver(E)
For more details of GEVP, please refer to [14]. Fig. 3. Double-machine versus infinite bus power system.

Sep 4: Searching for the ORLF
In this step, we will explain how to find the ORLF. First,

let us uses the following way to obtain the initial rational IV. CASE STUDY
Lyapunov functionlg(z): Select Consider a double-machine versus infinite bus power system
Vo + Vi with transfer conductances, which is shown in Fig. 3 [4]]{11
Vo(z) = (%/d (27) It can be expressed by

fulfilling (4) whereV;(x) is a quadratic Lyapunov function for e

the linearized system of (1), arid is an auxiliary polynomial 2 = 33.5849 — 1.8868cos(z1 — x3) — 5.2830cos(x1)
function which can be simply selected @s ) - (z7 Pz). We — 59.6226sin(x1) — 16.9811sin(z1 — z3) — 1.8868x,
aim to find the ORLF by enlarging a selected geometric shapg, — ,,

within V(c) [10]. In specific, consider G4 = 48.4810 + 11.3924sin(x, — x3) — 3.2278cos(x3)

fi = sup ¢ —99.3761sin(x3) — 1.2658cos(x1 — x3) — 1.2658x4
V’fg(e) C V(o) wherez; andzs denote the generator phase angilesandxzy
ot (3)—?6) hold (28) denote the angular velocities. A stable equilibrium poiat ¢

be found at (04680,0, 0.4630, O) Let= (yl,yg, y3,y4)T =
(1 —0.4680, 22, v3 —0.4630, 24)T, we reformulate the above
where S(e) = {z € R" : Z(x) < ¢} and #(z) is a system in the format of system (11)

selected polynomial, e.g., choos#(z) = |z|?, then the
corresponding sublevel sets 8f¢) are in a spherical shape.
Similar to (15), we propose the following optimization totge

&LeZ, Vi=1,...,r

U1 = Y2
i — 33.5849 — 1.8868ys — 1.88687; — 5.28301

a lower bound ofp(V(c)): — 59.622673 — 16.9811n4
_ U3 = Ya
L= sup € .
Ves o §a = 48.4810 — 1.2658y4 — 1.2658, + 11.39247,
SEPT™,s€Ps — 3.22787; — 99.3761
¢ (cxVaen — Vaum) — 8(e — ) € PSOS (29) 115 1 .

SN —y(a, en, s(x), £) € PEOS wheren; = cos(y1 —y3+0.005), n2 = cos(y1), 13 = sin(y1),

Ve e ver(B), Vi=1,...,r n4 = sin(y1 — y3 + 0.005), 75 = cos(y3), andns = sin(ys).

Let us select the initial rational Lyapunov function via 2&
The above problem is non-convex, and only suboptimal so-

lution can be obtained. To solve (29), a GEVP can also be V;(y) = vitys by it yilz_ y%yg + y§‘,‘27 (30)
derived by using SMR technique (similar to (26)). Due to L+ 2y1 +y2 — 2y3 + 8yp +4ys +4y;
limited space, we omit here. and set the truncation degrée= 5, the shape polynomial
Note that 1) If one cannot find ®(cx), a step of modi- .7 = y? +y2 +y2+0.5y1y3 + 3, the degreedeg(s) = 6 and
fication is needed, i.e., increase the truncation degremd deg(3) = 4. We display the computation results in Tab. | with
the degrees of, 3, Vgon and Vium. Also, set up a suitable different degree combinations of rational Lyapunov funicsi.
iteration numberm;; 2) this approach only involves matrixLet the ORLF withdeg(Vium) = 4 and deg(Vgen) = 2 be
inequalities consisting of GEVPs and LMIs. In addition, SMR/;5(y), and we compare this approach with the method of
decomposition is applied only once for the whole procedurnding an optimal polynomial Lyapunov functios (y) with
making this method more efficient than straightforwardlyngs degree 4 [13]. The result shows a comparatively larger eséim
SOS. one can obtain by using the proposed approach (see Fig. 4).




This means that by using the ORLF approach, a better estimagdect high-order auxiliary functions and large-scale @ow
of ROA can be obtained for the post-fault power system. Dgystem. Thus, a reasonable extension of this work is to

to the limited space, the expressionsiéfly) and V5(y) are
omitted here.

TABLE |

find an optimal decomposition strategy for large-scale powe
systems considering the interactions between subsysteras,
the pioneer work in [15]. Extra efforts would be devoted te th
synthesis problem [13], the comparison with the reachgbili

THE VALUES OF ¢, AND € FOR SOME DEGREES OEYAPUNOV FUNCTION
AND THE CORRESPONDING COMPUTATIONAL TIME ..

deg(Vaum) deg(Vien) Ck € nig tels]
2 0 0.073  0.029 4 18.528
2 2 1.074  0.673 6 53.871 o
4 2 1.653  1.038 8 183735
[3]
2 [4]
[5]
1.
[6]
N (7]
>
[8]
_1_ V~
[9]
Va(y)=0.096  Vi(y)=0.251
2 -1 0 1 2

[10]

Fig. 4. The computational results shown in the angel space= y4 = [11]

0.85: The solid blue line and green line indicate the specific lauies of
the sublevel sets by usingi (y) and V2 (y), respectively; the solid red line
indicates the boundary of the largest estimate of ROA bygugie ORLF

Vs (y). [12]

V. CONCLUSION AND FUTURE WORK [13]

This paper provides an approach to compute the largest
estimate of ROA of power systems by searching the ORLFE4]
The multi-variate truncated Taylor expansion is exploited
reformulate the nonlinear dynamics of power system injgs
an uncertain algebraic systems with parametric unceraint
constrained in a bounded orthotope. Then, we propose an
approach to establish the estimate of the ROA by using logg4
SOS conditions. Based on this, a quasi-convex optimization
consisting of a GEVP is constructed via SMR techniqu =
Moreover, a strategy to compute the largest estimate of the
ROA is provided for searching the ORLF. Verified by a
classical power system, it is shown that a larger estimate of
the ROA can be obtained by the proposed method.

Like other approaches using SOS relaxation, this method
also suffers from the high numerical complexity when we

analysis [16], and the robust stability problem [17].
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