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Abstract— Robust synchronization problem is a key issue in identified as an effective tool for analyzing the exponéntia
chaotic circuits and nonlinear systems. This paper is coneceed  synchronization of complex networks [8], [9].
with robust synchronization problem of polynomial nonlinear However, real-world is overflowing with perturbations and

system affected by time-varying uncertainties on topologyi.e., disturbances. For a simple instance in electrical powed. ari
structured uncertain parameters constrained in a bounded- 9'StU . Implée 1 ! Ical powa, gri

rate polytope. Via partial contraction analysis, novel comitions, —the basic parameters of transmission lines, such as theszalu
both for robust exponential synchronization and for robust of resistance and capacitance, are vulnerable to changs und
asymptotical synchronization, are proposed by using paramter-  different temperature and air pressure, displaying uageies

dependent contraction matrices. In addition, for polynomal from time to time. Thus, numerous attentions have recent-

nonlinear system, this paper introduces a new class of cordc- Iv been paid to robust svnchronization of complex svstems
tion matrix, i.e., homogeneous parameter-dependent polyamial y pai u Yy 1zatl plex sy

contraction matrix (HPD-PCM), by which tractable conditons With uncertainties and time-varying topology [10]-[14p |
of linear matrix inequalities (LMIs) are provided via affine [10], by searching a Quadratic Lyapunov Functions (QLF),

space parametrizations. Furthermore, the variant rate magin  robust synchronization conditions are provided for uraiart
for robust asymptotical synchronization is, for the first time, system whose control gains are disturbed by square inte-

proposed and investigated via handling generalized eigealue . . - L
problems (GEVPS). A set of representative examples demomate grable bounded time-varying uncertainties. In [11], ingé

the effectiveness of proposed method. synchronization criteria is proposed for uncertain dyreahi
network where the network coupling functions are unknown
but bounded, under assumptions that both the intrinsic non-

I. INTRODUCTION linear function and the coupling nonlinear function satisf

In the past decade, synchronization problem of Chao{i_énschitz-like conditions. In [12], for fast-switching pology,

. local synchronization criteria is given at a sufficiendyge
systems and complex dynamical networks has been an acfive y g yd

topic due to its broad applications in widespread acaderrﬁ%tcgs'gg Late'sArllsot;Zr tl.cr)::_lasgghgo?c')zitl'gn' (t:gnadlm?gr?mate

fields since the pioneering work of Pecora and Carroll [1h ptim v 3/::1 ' tg | ! 13\/ B 9 inp Qr]\%[/r . pnpt X! ;

Indeed, complex networks have been testified as useful anﬁ €-varying topo ng[ ]'. y using contraction hyo
ynomial system with time-invariant uncertainty is con-

powerful tools for modeling a great deal of chaotic circaitsl po

other real-world systems which otherwise appear intrdetal?'dered wh_ere robust stability IS estabhshe_d via se:ag:laln
[2]. Another related and well-known issue of rnulti_agerEarameter—lndependent polynomial contraction matriq.[14

systems is the consensus problem, which, very intereyting% -irtm;:ier-mvarnyl?\g r:(l-ztwolrlgs Cf; allzo tl)g mOde”r?: b%li s;octrwasrt:c
shares common features with synchronization problem fiiching NEtworks [15]-{19]. [15], a connection grap

complex networks. Common examples exist in World Wid tf”‘bi.liw method, also proposed by [2.0]’ is.extended_ to a
Web, electrical power grid and biological Metabolism [} Im_kmg model_ of small-wqud netw_ork_m which bOth_ﬂXed i
o . . .~ 2K-nearest neighbor coupling and time-dependent on-off cou
Synchronization of coupled networks is extensively mves—”ng are considered. In [16], each agent is assumed to be
tigated for fixed topology by first Lyapunov method and ' '
Lvanunov exponents. Both methods can generate rigorc: Srandom walker and random changes of network can be
yapy b : g 9orUEscribed by the change of agents’ locations in the lattice
stability conditions where the former one needs to conlstruchere information can be transmitted only for agents in the
a suitable Lyapunov function, while the latter one, by local ) - .
. o . . ] same lattice. In [17], sufficient conditions are proposed fo
linearization and by block diagonalizing vector fields, theIobal synchronization with a fast and random switching
maximum Lyapunov exponents of complex system is intrg- . . .
duced to ensure the synchronization manifold to be IocalFetWOrk by using stochastic Lyapunov stability theory. 18],

: . 9], a stochastically blinking system is considered where
transversal stable [6]. Then, under miscellaneous assongpt : . o :
ok - . ) topological parameters randomly switch within a discrede s
local synchronization conditions of linearizable systere a

) . . o : of values at a same time intervals.
provided based on wide variety of criteria [7]. As a differen The motivations of this paper rest with the facts that firstly

approach which casts special attention to the evolution of o o . o
. . ! ) hobust synchronization with time-varying uncertainty icesly
trajectories, the contraction theory has been brought é t . )
; . meets the demand of practical implements and has already
convergence analysis of nonlinear system and also has bgen . .
een successfully applied in wireless sensor networks and
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B). Furthermore, for adjacency matrix perturbed by undertawhere f is a nonlinear vector field and is a state vector in

parameters, traditional approaches like eigenvalue aisadye a subset ofR™. Under the assumption thdtis continuously

in an extremely difficulty to apply, while it can be suitablydifferentiable, one can obtain an exact differential elat

tacked with parameter-dependent contraction theory. haist )

not the least, even comparing with the prevailing approsche b = J(x,t)0z 2)

the QLFs method or parameter-dependent Lyapunov meth@ghere J(z,t) = 4. denotes the Jacobian of the vector field

the parameter-dependent contraction analysis maintans fi, and §z denotes an infinitesimal change evaluated along a

advantages in that it does not require an error dynamics§@herajectory.dz is also called "virtual displacement” pervasive in

construction needs additional assumptions or approxéms)j classical mechanics and formally considered as a linegetn

and in some circumstances makes the Lyapunov methodsggferential form with respect to time [8], [22].

special cases (See Subsection 1lI-A). Definition 1: (Contraction) System (1) is said to be con-
Based on the motivations aforementioned, and contragicting if there exists some > 0 such that for every

with the literatures, this paper considers robust expoakentwo solutionsz(t) = v(t,0,¢) and y(t) = v(t,0,¢) of

synchronization and robust asymptotical synchronizgtiah- System (1), starting from different initial conditions,merge

lems affected by time-varying topological uncertainty lwit exponentially to each other, ier(t) —y(t)| < e e — (|

bounded variation rate via parameter-dependent comractwheref(x,t) is called a contracting function.

analysis. The contributions of this paper are listed asvielo Pparalleling with above definition, another one is given here

(1) For the first time, to the best of our knowledge, the timgor global asymptotical contraction behavior.

varying topological uncertainty with bounded variatioteré&s  Definition 2: (Asymptotical Contraction) System (1) is said

considered in robust synchronization problem, making #sec to be asymptotically contracting if for every two solutions

with time-invariant uncertainty and the case with timeyiag x(t) = v(t,0,€) andy(t) = v(t,0,¢) of System (1), starting

polytopic uncertainty as special ones. (2) An approach fbm different initial conditions, converge asymptotigato

parameter-dependent contraction matrix is proposed byguskach other, i.elim;_, . |z(t) — y(t)] = 0 where f(z,t) is

a general infinitesimal length, which is less conservatiant called an asymptotically contracting function.

the cases using constant contraction matrix or Lyapuri@/-li  System (2) can be considered as a linear time-varying

approach. (3) Distinct with nonlinear inequalities pracby  differential equation: = J(t)dz where J(t) is a function

traditional methods, this paper provides tractable camstof of time. One can obtain an upper bound for the magnitude of

LMiIs for robust synchronization problem by employing SMRts solutions by the Coppel Inequality as follows [23],

and by parametrizing suitable affine spaces. (4) For robust

. ) . L. i (J(7))dr
asymptotical synchronization, the lower bound of variatiate |6]; < |dolefo (7)) 3)

margin is estimated via handling GEVPs. where u(J) is the matrix measure of the Jacobian matrix

of f. Following result displays an essential conclusion about
ll. PRELIMINARIES contracting systems which can be tracked down from miscel-
Notations:N, R: natural and real number set8;: origin |aneous technical assumptions [8], [24].
of R"; Rf: R™\{0,}; A”: transpose of4; A > 0 (4 > 0): Lemma 1:The system (1) is contracting if there exist some
symmetric positive definite (semidefinite) matelx 7,,: n xn  matrix measure;(J(x,t)) and a positive constaatsuch that
identity matrix; A ® B: Kronecker product of matriced and

B; A% J(A+AT), with A € R"™*"; co{ X, ..., X, }: convex pai(J(z,1)) < —ci (4)
hull of matricesXy,..., X, € R™*"; o' 21" 23 - - - 237, where the scalar; denotes the contraction rate of the system
x € R i€ N sq(0): (67,....07)" € R 0 € R*; (+)TAB  corresponding to vector norin |;.
in a form of SMR: B” AB. The matrix measurg; corresponding to the induced matrix
Given a vector norm - |; on Euclidean space {|), with & norms|- |1, || - |> and || - || can be calculated and given in
induced matrix normj| A[|; given by real domain [8], [25] and in complex domain [26]. However,
| A|; for a particular vector norm and its associated inducediratr

IA]l; = max

zi=1 |z|;

norm, it is in general a difficult task to obtain an explicit
expression [25]. From following Proposition, a clue will be
given on the relationship amongst different matrix measure
about contraction. At first, let us introduce following Leram
Lemma 2 ([27]): For any two positive real numbeys >

and the associated matrix measuteis defined as the one-
sided directional derivative df - ||; in the directionA, which
is denoted by

. ([T +€4); = 1) q > 0, considering a vector spacg with finite dimensionn
wi(4) = lim ~————~. ' . . .
=0 € respect to vector norms |, and| - |,,, a relationship can be
given by
A. Basics of Contraction Theory 2|, < |z|q < naYP) g, (5)

To introduce contraction theory, let us consider a determin
istic dynamical sysem of following time-dependent ordjnar

differential equation Proposition 1: (Equivalence on contraction) For positive

real numberg, ¢ with p > ¢ > 0, |- |, and| - |, are two
z = f(x,t), x(to) =0, to >0 (1) vector norms on¥’, System 1 is contracting for vector norm



||, with contraction rate,, i.e., which implies that it is also where z(t) = (z1()T,...,2x®)T)T and g(z(t)) =

contracting for vector norm- |, at the same contraction rate(f(x1(¢))7, ..., f(zn(t))T)T. Then, the robust synchroniza-
with a time-shifty = % ie., tion problems can be proposed as follows:
! Problem 1: To establish if the uncertain dynamical system
6]y < [Sope o0t ¥), (9) achieves robust global and exponential synchronizatio
Proof See Appendix A. o i.e. for anye there exist positive constanksandc such that
Considering the equivalence of contraction, we select EIi(t) —2; (1)l < &|2:(0) — z;(0)[le™" for all 2(0), x;(0),
clidean norm as [8] for ease of description and LM relaxatio ¢(¢) € € andi,j =1,..., N. _ _
Problem 2: To establish if the uncertain dynamical system
B. Problem Formulation (9) achieves robust global and asymptotical synchrominati

i;e. for anye there exist’(e) > 0 such that|z;(t)—z;(t)[ < e
&nd limy o ||z:(t) — z;(t)]| = 0 for all £ > T, z;(0), x;(0),
0(t)e Qandi,j=1,...,N.

In this paper, the uncertain multi-agent systems with tim
varying topological uncertainties is considered unddofoing
synchronization protocol

N IIl. M AIN RESULTS

#i(t) = fi(t) = b Liy(0@t)Tx;(t), 4,5=1,...,N In this section, the conception of parameter-dependent con

J=1 ©6) tractive matrix will be proposed and corresponding robust
wherez; € R" is the state of-th agent,N is the number of synchronlzatlon conditions WI|| be established via thetiphr
. . ) o . contraction and SMR technique.

agents,b is the coupling weightf(x;) € R™ is a nonlinear
function, I' = diag(y1,...,9m) € R™" is a diagonal A. Robust Synchronization Conditions
matrix where~; > 0 stands for the agents communicating i o
through theiri-th statesf(t) € R® denotes the time-varying AN €asy yet effective way to analyze synchronization

perturbations from environment to the network topologyt Levithout topological uncertainty via contraction theorytie
method of partial contraction, where an auxiliary system is

(0(t),0(t)) € @ ={(0(¢),0(t)) : 6(t) € Aa, 6(t) €E} (7) introduced and the desired convergence behaviour is éblat
in which A, is a simplex ancE is a polytope given by from the overall system dynamics [9]. _ _
u Lemma 3 ([9]): Consider a continuously differentiable
{ é“ - {g(q R 3l 0i(t) =1, 6i(t) = 0} (8) nonlinear system of the form = f(x,z,t) and there exists
= = cof{d, ...d"} an auxiliary systemy = f(y,x,t) which is contracting with
for some given vectorsd®,...d® € R® such that respecttoy. If a particular solution of the auxiliary-system
Z?fldv('j) =0,Vj =1,.,vand0, € = where0, is a Verifies a smooth specific property, then all trajectories of
column vector with alla entries being zero. The model (7)the originalz-system verify this property exponentially. The
has been introduced by [28] and is developed as an extens#iginal system is said to be partially contracting.
of models adopted in previous works [29], [30], including ©One can observe that the virtual systeyrsystem) has two
various famous models as special cases(6(t)) is the ij- particular so_lutlon_s, |.ey(7_f) = z(t) sharing the specmc_prop-
th entry of the uncertain Laplacian matrix(¢(t)) € RVxN  erty. Ifall trajectories of \_/lrtu_al system converge expmm_ally
given by L;;(0(t)) = —Gy(0(t)) for all i # j and by to q_speC|f|c trajectory, it directly implies(t) exponentially
Li(0(t)) = — ZN_1 ” Li;(0(1)). verifies these properties. _ o .
Remark 1:Sy|21?:h’r(])nization protocol (6) is a general and Example 1:Let us consider a synchronization problem via

applicable form. It generalises some typical models, e_él_ging pa_rtial contraction. Given a pair of unidirectionale
synchronization protocol with time-invariant uncertgirgp- P/€d oscillators as follows:

plied in voltage analysis of chaotic circuits [2]. As a non- 21 = f(x1,1)
autonomous system with time-varying input, it implies that 2o = f(xa,t) +ul(z) — ul(xs)
merely moving equilibrium point is considered, but bounde\;‘;herel_1 25 € R are state vectorsf(z;, t) is the dynam-

mi"f°|di|§i.per'0d'c ?rtz;t t(')r ChaOt'C oscnlgtotr_. ; ics of uncoupled oscillators and(x;) — u(x2) denotes the
emark 2:Linear pertubation in communication network., ,ing force. We can select a virtual system

is widely adopted in literatures [10]. In this paper, we also
assume(,;(0(t)) is a linear function thus the uncertain v =fy.t) —u(y) +u(zy).
Laplacian matrix can be expressed as

(10)

It is obvious thatz;(t) = z2(t) is a particular solution. On

a the condition thatf —u is contracting, synchronization can be

LO(t)) = Lo+ Y 6i(t) L. achieved exponentially.

=1 Definition 3: Let y = h(y,0,t) be the auxiliary system
Nonlinear coupling with nonlinear perturbations will albe of (6), M(y, ) is defined to be garameter-dependent con-
discussed in Section Ill. traction matrix (PD-CM) which is symmetric and uniformly

Let us introduce the uncertain multi-agent dynamical systepositive definite such that
(6) in compact form as onT OM . OM
(2 '

#(t) = g(x(t)) — b(L(O(1)) @ T)a(t) 9) Ty Mt gl t a—yy) s—yM (D)



wherey is a strictly positive scalar. Similarly/(y, 0) is called Sinceg(y(t)) —b(L(6(t)) ®@T")y(¢) is contracting, one has that

parameter-dependent asymptotical contraction mattinch is  there exists a matrid/ () such that
symmetric and uniformly positive definite such that

JORT L OM OM N » 2 M+ G0+ 559
( o0 T 90 T oy ) < (12) = 2% M) = B((LE) @ T)TM)
. . . +(8_M9)<+(8_M)s
where~ is a strictly positive scalar. 90 oy Y
Lemma 4 ([31]): Let A € RV*YN be a symmetric matrix. < —M.

Product matrixiV} = (1 - 1) ® A is positive semidefinite o N o . N
if and only if A > 0, wherely is a column vector with all Sincelis diagonal positive semidefinite aft{#) is a positive

entries being one. semidefinite matrix, one has th&t . (6)* > 0 by Lemma 4.
Theorem 1:Consider an uncertain system (9), an auxiliaryhus, the Riemanian manifold of general infinitesimal léngt
system can be obtained as for the auxiliary system (13) can be expressed by
g(t) = gy(t)) —b(L(O(t)) @T)y(t) d s, 71706015
WO+ W@ Y g v MO
hereW ) .(0) = (1x-15)® (P(#)-T) and P(#) € R™*™ i - téyTM(ay)géy
whereWpp(0) = (In-1y) ® -I') an c R""is . T( (00hT 77\S | (OMA\S |, (98 -\
a positive definite matrix for alld(¢), 6(t)) € Q. Furthermore, = (2 v ]\?) + (G 0) + ( dy y)~)5y
robust global exponential synchronization can be achigked = dy” 2(3& M)® —2b((L(0)) @ )T M)®
there exists a parameter-dependent contraction maiix, 6) B N TS L (OMANS | (9N -\
such thatg(y(t)) — b(L(6(t)) @ I")y(t) is contracting. 2((WPF£9~) M)"+ (g 0) + ( % y) )5y
Proof By introducing a positive semidefinite matrix(9), for = oyt (2(%M)S —2b((L(0)) @ T)T M)
,7=1,...,N, (6) can be equivalently expressed as s 7 T ~
. © q . Y +(9E0) + (224)")ay — oy ((WL(6)" 1T ) oy
Bi(t) = Sa(0) = b3 Lig 02T 1 oy (SW L)) 5y
—PO)Y Tz + P(O) S Tx;j. oo s
( )ijl xJ ( )ijl x] S 5y 92 %yM) —2b((L(0))®F)TM)
Then one can obtain a compact form similarly from (9) such s o s
that +(Gr0) + (5yv) Jov
o(t) = g(a(t)) —b(L(O()) @ T)x(t) < =8y M(0.y)dy.

_Wgr (0)x(t) + ng (0)x(t).
Therefore, the auxiliary system is contracting which costgs

Thus, by consideringV 2 (6)z(t) as the system inputs, thethis proof. O

auxiliary system (13) can be obtained that a particulartsmiu

of robust synchronization ig* = 1 - Where . .
y 5 N®Y A result can also be obtained for robust asymptotical

N synchronization by using parameter-dependent asymatotic
Joo(t) = f(Yoo) =N PTyse+P(0) > Tx;, i,j=1,....N. contraction matrix as follows:

=1 Theorem 2:Consider an uncertain system (9), an auxiliary
Considering Lemma 3, the robust synchronization of systesystem can be obtained as (13). Furthermore, robust astimpto
(9) for all (6(t),6(t)) € Q can be achieved and the propertgal synchronization can be achieved if there exists a paeame
x1 = ... = xy can be verified exponentially if system (13) igdlependent asymptotical contraction mathik(y, ¢) such that
contracting. Thus, (13) is an auxiliary system for systei (9¢(y(t)) — b(L(0(t)) ® I')y(¢t) is asymptotical contracting.

Next, we will show that the auxiliary system (13) is conProof Similar lines can be displayed in proof of Theoreni1.

tracting if there exists a parameter-dependent contractia-
trix. A concise proof of exponential convergence of trajeiets Remark 3:For Theorem 1 and Theorem 2, note that
for contracting system is given in [32] for an uncertaintge
case. Lety, andy; be two different points and 1€Y' (y, 0, t)
be the associated flow of the auxiliary system (13). If there
exists a parameter-dependent contraction matfiy, ¢) given
by Definition 3, then by the Theorem 2 of [32] one can obtain

« The virtual quantity of matrixP(0) is to construct the
auxiliary system (13), satisfyindW 2. (0)TM1)" > 0.
Note that it has no influence on the actual systems, neither
on the specific robust synchronization manifold nor on
the robust synchronization rate. Moreover, matfxd)

Dar(Y(yo,0,), Y(y1,0,1)) < e=DDas(yo, 11), in the auxiliary system is not unique.

) o . e From Lemma 1, a more general case can be derived
whereD,, is the geodesic distance corresponding to the metric . ysing non-Euclidean norms and defining a general

M(y,0). Here mappingY is a strict contraction. Then, ac- parameter-dependent contraction matrix such that
cording to Contraction Mapping Theorem, the fl&Wy, 0, ¢)
verifies a specific manifolg..(¢t) exponentially [33]. M(y,0) = M(y,0)T > 0,v0 € Q.

Lastly it will be shown that there exists a parameter- { d M (y, 0)3y]s < —c»|R/.I( 0)5yl;
dependent contraction matri¥ such that (13) is contracting. de 1Y POl = TGlMRY B0yl



B. Homogenous Parameter-dependent Polynomial Contrac-Lemma 5 ([35]): The function H(0) : R* — R"*™ is a
tion Matrix symmetric matrix consisted of homogenous polynomials with
Establishing conditions of Theorem 1 and Theorem 2 is §f9reeds in a scalar variables. Then,

great difficulties in that they are nonlinear inequality Ipro HO)> 00 € A . a

o . - . . o <= H(sq(# 0 Ve € R.
lems with time-varying uncertainties. However, via suigab (6) > < (sa(6)) > € %o
parametrizations of affine spaces, SMR technique gives an
effective way to solve these problems which amounts to | emma 6:Robust exponential synchronization of (6) can be

tackling with an LMI feasibility test. Indeed, by introdug achieved under Assumption 1 if there exists a positive scala
a new class of contraction matrix, i.e., HPD-PCM, robust and a HPD-PCMM (y, §) such that

synchronization conditions can be provided via solving an 3
LMI feasibility test. { 0 < M(y,sq(0)) Yy € Rf, V0 € Rf

In this paper, we are interested in investigating the robust | 0 > R(y,sq(0),0,7) Vy € Ry, V(0,0) € Q.
synchronization problems of polynomial nonlinear Systemy . This result can be obtained directly from Definition 3,
Thus before proceeding, let us introduce the following agsu Theorem 1 and Lemma 5. 0
tion on f(x).

Assumption 1:The functionf(z;) in (6) is polynomial.
Remark 4:An one-side global Lipschitz condition (or
QUAD condition) is assumed in an overwhelming number o
existing approaches for global synchronization such a$. [34

However, the QUAD condition is not satisfied for simplgynere

nonlinearities such as quadratic and cubic functions ebrt - ~

Assumption 1 includes such nonlinearities, and also iregud ¥ (M, dy, dp, ) = ()7 M (¢pol(y, dy) @ dnom (0, do) @ I),
important systems such as Lorenz-like system, Hamiltonian Lot (fody) L
systems, Guckenheimer system anis&er system. pol(y,dy) € R'e¥™%) is a power vector containing all

Then, let us introduce the definition of homogeneodglono(T('ia!S,Of degree less or equa'l &9 ¢h°m(9’d9),e
parameter-dependent polynomial as follows: Remla:¢6) js g power vector containing all monomial of
degreedy, and

(16)

By the technique of SMRM (y,sq(#)) can be expressed

M(y,SC(@)) = W(Madyad%ﬁ) (17)

m(y,0) = Cqryl0”, 15 .
(y,0) . §q><2d qrY (15) l (ﬁd):(n+dy)! ; (ad):(a—i—dg—l)!
TEN{;, iill ;’i_:dey pol{Tt, Gy TNL'dU' 5 thom\d, &g (a — 1)'d9' .
where Cqr € R is the coefficients of monomiajqé”, dg of Symmetric matrix\M be|0ngs to the set
m(y, 8) is the degree i scalar variable9, 2d, of m(y,0) _ _ _ )
is the degree im scalar variableg) and7i = Nn. Thus, a M ={MT =M : ¥(M,dy,dy,71) only contains
set of homogeneous parameter-dependent polynomial can be monomialsg® with even poweri}.

given as = {m(y, ) : (15) holds}. Then, the definition of
HPD-PCM can be provided as
Definition 4: M (y,6) is aHPD-PCMif it is a PD-CM and o(i,dy,dg) =
every entry ofM (y, #) satisfies L0(Ipol (72, dy ) hom (@, do) (Alpor (7L, dy) lhom (@, dg) + 1)
—(n 4+ 1)(lhom(a, 2dp) — lhom(a, dg))lpor (12, 2d
Moi(y.6) € . Vij =1, (R -+ 1) (lhon(a, 2d5) = lhom (@, d))per (7, 2d,))

Proof See Appendix B. O

Lemma 7:The set# is a linear space of dimension

Similarly, homogeneous parameter-dependent polynomjﬁI]

. . . . us, one can obtain a complete parametrization of the affine
asymptotical contraction matrix (HPD-PACM) can be defined i .
by using condition (12). LetR(y,6,0,~) be a matrix of space# for HPD-PCM of (17). Now let us consider the SMR

 vhomial as of R(y,6,6,~). Note that the degree of polynomialy) is d,,
poly . in y and define that
R(y,0,0,7)

u 9eT s .
- 2(;@) (%M) —2b((L(9)®F)TM) and 2d, = even.(d,) (i.e., 2d, = d, if d, is even, and

a 2, 0M7T s 4 OMT s 2d, = d, + 1 if d, is odd). It follows that,
+(;9i) (W ) ’ (2-;9) (a—yg) R(y,0,0,v) = U(B(M,6,7) + N,d,,dg +1,7)  (19)
_b(aM

8—y(L(9) ®F)y) +7(29¢) M. where B(M. 0,7) is a multilinear function in} and, i.e.,
i=1 it is linear in M for fixed 6 and fixed~, and is also linear

Thus, condition (11) can be expressed in a homogeneous fafm for fixed A/ and fixedy, and N is a symmetric matrix

of degreedy + 1 in ¢ since}; , 6; = 1 for all @ € Q. The belonging to the set

condition thatd € A, can be relaxed to the conditighe R§ -

by the following lemma. N ={NT =N:U(N,d,,dg+1,7) = 0}.

d, = max(dy — 1+ 2d,,2d, — 1 +dg,2d,), (18)



Lemma 8:.4" is a linear space whose dimension is and

o, deydg+1) = LA(l(al +1) ] i) 0eT s s
— (A4 lnom(a, 2dp + 2)lpel(7, 24,)) = 2(X20) (5-m) —2((LO) o 1)" M)
, Y
~ 1=1

wherel = lpol(’fl, dr)lhom(a, do + 1). a 2, 0MT s a OMT s
- Proof Similar to the proof of Lemma 7 and we omit it here. +<; 91‘) ( 90 9) + (; gi) ( dy g)

oM s

—b(a—y(L(G) ® r)y) .

For more details of SMR and complete parametrization of
affine spaces, interested readers can refer [35], [36] and it Remark 5:1t is useful to note that
developments in robust consensus and robust synchramzati , considering the synchronization protocol
[37]-[39]. The following result gives a sufficient conditio
which is a convex problem of LMIs feasibility test.

Theorem 3:The robust exponential synchronization of (6)
can be achieved under Assumption 1 if there exist matrices
M (a), N(B) and a positive scalay such that,

N
T; = f(l‘z,@) + Z’U,ij(.ﬁj — Jz,@),V’L =1,...,N,
=1

where function f is a polynomial inz; and 0, and

u;j(x; — z;,0) is also a polynomial in(z; — x;) and

{ 0 < M(o_z) ‘ ‘ (20) 0. For this general case, an approach of polynomial
0 > B(M(a),d,y)+N(B7), Vj=1,...,v. parameter-dependent polynomial contraction matrix can

_ . o . be provided, while (17) can be presented similarly as
where M («) and N(B) are linear parametrizations of affine

spaces# and./ respectively, andy, 3/ are corresponding U(M,dy,dg, 1) = (*)TM(%M("J’dy)®¢pol(9ad9)®lﬁ)-
free parameters whose dimensions are given by Lemma 7 angd Theorem 3 and Corollary 1 provide tractable conditions

Lemma 8, for allj = 1,...,v. for robust synchronization. However, it is admitted that
Proof Let us consider the first inequality in (20)¢ € R, the conservatism arises between Theorem 1 and Theorem

by pre- and post-multiplyingép,o1 (y, dy ) @ Ghom (0, do) @ I )" 3 because of the gap between positive polynomials and

and (¢pol (¥, dy) @ Pnom (0, do) @ I5), one can obtain Sum-of-Square polynomials which relates to the Hilbert's

17th problem [40].
0 < M(y,5(0)). problem [40]

Similarly, from the second inequality in (20yy € }Rg and IV. 'ROBUST SYNCHRONIZATION PERFORMANCE

¥(6,6) € Q, by pre- and post-multiplyingé,o(y,d.) @  Section Il provides conditions on which the robust ex-

Prom (0, dg+1)215)T and(¢pol(y;J7’)®¢hom(97d9+1)®1ﬁ,)1 ponential or asymptotical synchronization with boundatkr

it follows that there exists a positive scatarsuch that polytopic uncertainties can be achieved. Follow-up qoesti
arises naturally that what is the largest level of polytopic

0> U(B(M,d,~) +N(ﬁj),cﬁ,d9 +1,n), Vj=1,..,v. uncertainties on which the robustness of asymptotical syn-
N o , chronization maintains. This section gives the answerHi t
In addition, consideringV(3’) € .47, one has question.
Considering time-varying bounded-rate polytopic underta
ty given by (7), a variation rate margin of robust asymptltic

Therefore, it follows that there exists a positive scalasuch synchronization can be defined for uncertain synchrominati
that protocol (6). Letn be variation rate margin for system (6) as

. follows:
0 > R(y,sq(0),0,7),

Since = is a convex hull of vectorg’ for j = 1,...,v, the . 1) )
condition of Lemma 6 holds which completes the proofl v < CO{"d ey 1 }’ Vo < Aa}~

U(N(B),dyp,dg+1,7) =0, Vj=1,....0.

n = sup {n € R : (6) achieves robust synchronization,

(23)
A para”e"ng result can be provided by the same approachlt is of Specia| usefulness that another definition comemfro
for robust asymptotical contraction as follows: a typical instance of above denotation, which concerns en th

Corollary 1: The robust asymptotical synchronization of2ses that robust asymptotical synchronization is gueeant
(6) can be achieved under Assumption 1 if it satisfies folfmyi PY @ HPD-PACMM (y,sq(0)) given by (17) for system (6)

Condition’ as fO||OWS:
~ Definition 5: Defineny,, 4,1 as{d,, do}-HPD-PACM vari-
{ 0 < M(a) (21) @tion rate margin for system (6) if there exists a HPD-PACM
0 > B(M(a),d)+ N(B), Vj=1,..,0, M (y,0) given by (17) for system (6) such that

where Nd, de} = Sup {77 eR:0¢ co{nd(l)7 ...,nd(")},
R(y.0.6) = W(BULG) + N.dydy +1.7),  (22) VO € Ao



Obviously, 74, .4,) IS @ lower bound of the variation rateThus, due to the last constraint in (25) one has
margin under the guarantee of robust asymptotical synchro-
nization by the class of HPD-PACM. Specifically, one has

Ndy.do} <1, Vdy, Vd. Based on this, one can also have that there exists a HPD-

. ) . PCM for all 6(¢) in following set
The following results gives a strategy for obtaining a lower

R(yvové”é:g—ly(i) <0 Vi=1,..,a

bound ofny,, 4,3 by solving a GEVP problem. Ndydy) = SUD {77 cR:0c Co{gfld(l)’ ...,g*ld(w},
Theorem 4:Let us define '
. V0 € Aq ).
n{du7d9} _* (24)

Therefore, one hag,, 4,3 < 7 Which completes this proof.
wherec¢* is the solution of

C*: v in(f) ()§
. y . 0 . a
S My B8 V. NUMERICAL EXAMPLES

0 < c
0 < a) To illustrate our proposed approach, two deliberately &mp
st.d 0 < (M(a)) + N(B°) examples are provided by using MATLAB and its toolboxes
0 > C(Bl( (a))+N(ﬁ0)) SMRSOFT and SeDuMi.
+By(M(a),d") + N(B) Vi=1,...,a
B (25) A. Example 1
wherelM () is a linear parametrization of spacg, N(5)isa  |n this example, a coupled model of Moore-Greitzer jet
linear parametrization of space’, R(y,0.0) = Ri(y,0,0)+ engines is considered in the no-stall mode [14], [41]. The
Ra(y,0,0), intrinsic dynamics of each jet engine is described fiy)
Rl (ya 0) 0) in (6) as
_ - dg" |\ T\ —0.523 — 1523 — @2
— (30 (L) - w(wmeryy) fie = (T e )
(29)(8MT )S —b(a—M(L(G) ®F)y)s, where z; = (z;1,72), i = 1,2, x;; relates to the mass
y flow andx;, relates to the pressure rise. The communications
R, (y, 9 9’) between these two jet engines are disturbed by a time-\@ryin
uncertaintyd(¢). Let the uncertain weighted adjacency matrix
= (29 ) (M) G(6(1)) be
1 0
and =
, ) ) o) ( 1-20(1) 1 ) '
Rl(y7979) = v Bl(M)+Nad7’7d9+1’ﬁ)a

. . . R For 0(t) > 0.721, the synchronization can not be achieved
Ro(y,0,0) = W(B2(M,0)+ N,d;,do +1, ”) since a Hopf bifurcation takes place as shown in Fig. 1 where

Then7 is the lower bound o ie. ~ error statesz(t) = w1(t) — x2(t).In (a) of Fig. 1,0(t) =
N dn}{d”’de} Fitay do) Hdydo} = 0.6, § = 0, synchronization can be achieved where trajectory
by, 6§ *

Proof Suppose that (25) holds. Pre- and post-multiplying tH @gent Lis shown in (b). In (c) of Fig. £(¢) = 0.75, 6 = 0,
second inequality in (25) byl (y, dy) @ dhom (0, do) @ 1) T synchronization can not be achieved where trajectory ofitage
o s Yy om

and (époi(y, d, ) ©bnom (6, dg) © 11 ), respectively, one has thatl is shown in (d). Since, € = = co{_d(l)_, oy d)Y, for anyn
given by (23), the robust synchronization can not be ackieve

0 < P(M,dy,do,7) when 6(t) > 0.721. Hence in this example we consider the
hence implying M(y,6) is positive definite since Parameter bound < 6(t) < 0.6. o .
(po1 (Y, dy) @ brom (0, dg) @ I )T (bpol (Y, dy) @ rom (0, do) ® Letc = 1,T = I, and a maximum variation raigof 6(t) is
I;) > 0 for all y # 0. Then, R(y,0,6) for 6 = ¢~1p( is considered such that the robust asymptotical synchroaizat
given by can be achieved for any(t)| < n. Hence = can be expressed
= (B + < BV d) dy o+ 7)) (26) — ok o5

_ g*1@(<Bl(M) + By(M, d'), dy, dg + ln)

) , ) TABLE I: Lower bound, for some values ofl, anddy.
sinceN(5*) € A, Vi=0,1,..., a, it follows

. dy/dg O T 2 3
R(y, 0,091, T WA WA WA WA
=¢ o (c(B1 (M(a)) + N(8%)) (27) 2 1783 1971 207.7 214.1

+BQ(J\7[(a),di)+N(5i),&r,d9+1,ﬁ). 3 185.8 202.3 2112 216.4
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X1, Fig. 3: Example 2. Topology of six-agent system.
(d)
Fig. 1: Example 1. Hopf bifurcation of coupled M-G jetB. Example 2
engines. In this case, a six-agent system in Figure 3 is considered
with following intrinsic dynamics in (6) as
| fa)=( 50" :
Then, we compute the lower bourdby employing HPD- —3i1 — Tig

Table I. Comparing with other sufficient conditions pro‘ddeweighted adjacency matrix a&(0) = Go + 3% G;6; where
by [29] (quadratic Lyapunov function method with affine e

parameter dependence) and by [14] (Parameter-independent 1 0 0 0 10 O
polynomial contraction matrix), the proposed method gen- 51 0 0 0 O
eralize these cases and gives a less conservative result by Go — 0 8 1 0 20 0
using higher-order HPD-PCM. Specifically, regards to Imea °“loo0o61 0 0]
parameter-dependent quadratic Lyapunov function, thastob 0 008 1 0
asymptotical synchronization can not be guaranteed where 0000 9 0
d, = 1 anddy = 1. Moreover, the proposed method also
obtains a significant larger bound contrast with the paramet 00 0 0 020
independent polynomial contraction matrix whelge= 0. 010 0 0 0 0
G — _ 0 03 0 O 0 O
! 0 0 02 0 0 0|’
0 0 0 05 0 O
0o 0 o0 0 0 O
0 00 0 —03 0
000 0 0 O
0000 0 O
“=loo000 0 o0
0000 0 O
0 00 0 —-01 0
9 = (91;02)/, A2 - {e(t) S RQ : 91 + 92 = 1, 91,92 Z O},

v = 2 and E is chosen to be dal",d®} whered® =
‘ ‘ ‘ n(1,—1)T andd® = n(-1,1)T. Note that this is equivalent
4t 6 8 to |6;| <nfori=1,2 andf; + 0 = 0.

Fig. 2: Example 1. Trajectories of robust synchronization. ~ TABLE Il: Comparison of lower bound by different
approaches withl, = 1.

Approachegdy 0 1 2 3
. _ _ _ [29] N/A~ 5734 NA NA
Fig. 2 shows that 50 trajectories oft) with 0(¢) randomly [14] 4871 NA NA NA

chosen in{? and initial conditionsz(0) randomly chosen in

[_474]4. This paper 48.71 59.52 67.13 70.81




Similar to former example, we compute the lower boun@learly, one can obtain the contraction ratefrom the upper

7 by employing HPD-PCM method witld, = 1 anddy = bound of matrix measure of system Jacobian as
0,1,2,3 as shown in Table II. Comparing with sufficient
conditions provided by [29] and by [14] , again, the proposed cq = —max{py(J)}.

method is testified to be less conservative and obtains arlarg
robust asymptotical synchronization margin with > 1. According to the equivalence betwe¢n|, and | - |, from
Furthermore, it also shows that by increasing the degreemma 2, one has
of uncertain parametedy, the conservatism level decreases
progressively and apparently. 6], < n(M9I7HP) |5ag e !
It is worthy to note that, comparing with approach of [29],
even though samé, is considered, proposed method stilivhich can be alternatively expressed as
obtains a bigger margif (also shown in Table Il) in that this
paper completely parametrized corresponding affine spaces |oz]p < |5$0|p€_cq(t_w)

while [29] does not.

wherey) = %j:g” denotes a time-shift.

VI. CONCLUSIONS
Robust synchronization of multi-agent system with poly-
nomial nonlinear dynamics is considered affected by tim& Proof of Lemma 7

varying polyto_pic uncertainty with bounded vgriation raté | et A7; and Mo be any matrices inZ. It directly follows
Based on partial contraction, a novel approach is propogedfiat for any linear combination dff; and M-, one has: M +

using a new class of contraction matrix, i.e., homogeneoystQ e ., for all ¢, ¢y € R such thate; + ¢, = 1. Thus
parameter-dependent polynomial contraction matrix (HPRne can obtain thaiz is an affine space.

PCM), and conditions for robust exponential synchronorati

and robust asymptotical synchronization are both provided

Corresponding sufficient conditions have also been prapose a = nlpor(7t, dy)lhom (@, dy),

in terms of LMIs via exploring the parametrizations of relt S

affine sets. Moreover, we investigate the variation raterder the total number of free entries 8 < R**“ can be calculated

bust asymptotical synchronization margin whose lower boudS 3a(a + 1). Let b € R2*(**1) be a vector containing the

can be estimated via solving GEVPs. frele entries of matrix\/, and define a linear mapping' :
Comparing with Parameter Linear-dependent Quadrafi¢”*™") — R**“ satisfying E(b) = M. Thus, one has

Lyapunov Function (PLD-QLF) and parameter-independent _
yap ( QLF) p p W, d,. dy. 1)

Define

polynomial contraction matrix, numerical examples have Y
shown that the proposed method generalize above methods = (*) JTE(b)(¢po1(y,dy) ® Pnom (0, do) ® I7)
and can successfully decrease the conservatism level by usi = (F0)" (dpol(y, 2dy) ® dnom (0, 2dp) @ I7)

a higher-order HPD-PCM, in other words, an expanded lower, . . . .
- . . - \Where F' is a suitable transformation matrix. Observe that
bound of variation rate margin can be obtained via incregsin

the value ofd, anddy respectively. _ )
Future efforts will be devoted to investigate the upper fibun A ={ED) b € ker(E)}
of degreed, andd, to ensure the robust synchronization. In, directly follows that
addition, particular interests have casted on stochagtichso-
nization with randomly switching topology, like represainte dim(.#) = dim{E

) / b) : b e ker(E)})
stochastic models used in [15], [16], [18].

(
= dim(ker(E))
= la(a+1)—rankE).
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APPENDIX .
. For scalar homogeneous polynomial #) the number of
A. Proof of Proposition 1 distinct monomials with at least one odd power @fis
From (3), one obtains lhom (@, 2dg) — lhom(a, dg). Considering all the distinct mono-

mials in y of degree less or equal i, and in the matrix

form with sizen x n, the total number of distinct monomials

From Definition 1, the contraction of System 1 foif, yields with at least one odd power éfcan be expressed %sfz(fwr

to 1)(Ihom(a, 2ds) — lhom(a, dg))lpo1(72, 2d,), Which completes
[0z|q < |0zo|qe™ . the proof.

0|, < |5x0|qe.fot g (J(7))dT
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