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SUMMARY

This paper investigates robust consensus for multi-aggstems with discrete-time dynamics affected
by uncertainty. In particular, the paper considers mugg+et systems with single and double integrators,
where the weighted adjacency matrix is a polynomial fumctié uncertain parameters constrained into a
semialgebraic set. Firstly, necessary and sufficient ¢immdi are provided for robust consensus based on the
existence of a Lyapunov function polynomially dependentt@nuncertainty. In particular, an upper bound
on the degree required for achieving necessity is provi@edondly, a necessary and sufficient condition
is provided for robust consensus with single integrator morthegative weighted adjacency matrices based
on the zeros of a polynomial. Lastly, it is shown how thesedd@ns can be investigated through convex
programming by exploiting linear matrix inequalities anairs of squares of polynomials. Some numerical
examples illustrate the proposed results. Copyrigh2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent years the consensus problems of multi-agentragdier networked cooperative systems)
are of great academic vitality, mainly owning to its wide Bgegions in various areas including
biological synchronization, formation control, sensotwwk and cooperative tracking control
[1-4]. It has been well studied that the interaction structurenafti-agent systems is a deciding
factor on whether the consensus can be achievéll [Specifically, to guarantee the consensability
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2 DONGKUN HAN, GRAZIANO CHESI

requires that the communication graph contains a spann@egfor a fixed topological structure,
while for a switching network, the union of communicatioragh has to obtain a spanning tree
frequently enough as the system evolvesd].

In addition to the switching topology, many efforts haveme®ade to construct a more realistic
model of multi-agent systems. Various assumptions have besught in such as unmeasurable
inputs, misbehaving agents, unexpected disturbances atessand uncertain perturbations in
communication®, 10]. This has led to the introduction of robust consensusgoasensus achieved
for all admissible uncertainties. In particulaf,1] investigates robust consensus of multi-agent
systems with input delays assuming the presence of asynartiegar perturbations in the coupling
weights of the communication networkld] supposes that the control input affects the velocity
states and depends linearly on uncertain parametesgpfoposes a robust consensus controller
and employs the proximity graph to model the communicatmmstraints.

This paper investigates robust consensus for multi-agestems with discrete-time dynamics
affected by uncertainty. In particular, the paper consideunlti-agent systems with single and double
integrators, where the weighted adjacency matrix is a potyial function of uncertain parameters
constrained into a semialgebraic set. Firstly, necessadysafficient conditions are provided for
robust consensus based on the existence of a Lyapunovdaormbilynomially dependent on the
uncertainty. In particular, an upper bound on the degregired,for achieving necessity is provided.
Secondly, a necessary and sufficient condition is providecbbust consensus with single integrator
and positive weighted adjacency matrices based on the né@polynomial. Lastly, it is shown
how these conditions can be investigated through conveyranoming by exploiting linear matrix
inequalities (LMIs) and sums of squares of polynomials ($(38e e.g.14] and references therein
about SOS polynomials). Some numerical examples illuestrag proposed results.

It is worth remarking that existing works have not addresgetdthe problems considered in
this paper. Indeed, robust consensus for multi-agent mgstéth discrete-time dynamics has been
considered only in the case of weighted adjacency matricearly affected by perturbations with
some specific structures, see el [L2]. A preliminary version of this paper appeared iio],
which is extended in this paper by considering not multiragystems with single integrator but
also with double integrator, and by providing an upper bcamthe degree of the Lyapunov function
required for achieving necessity in the conditions for sitmonsensus.

The paper is organized as follows. Sectimtroduces the problem formulation and provides
some preliminaries about graph theory and SOS polynonfsastion3 provides the proposed
conditions for robust consensus are provided. Sectidtustrates the proposed conditions with
some numerical examples. Lastly, Sectioconcludes the paper with some final remarks.
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ROBUST DISCRETE-TIME CONSENSUS 3

2. PRELIMINARIES

2.1. Problem Formulation

Notations:N, R, C: spaces of natural, real, and complex numbgdfsfranspose ofd; A > 0 (A >
0): symmetric positive definite (semidefinite) matedx 0,,: origin of R™; 1,, = (1,...,1)'R"™; I,,:
n x n identity matrix;img(A): image ofA; ker(A): null space of4; A ® B: Kronecker product of
A andB; adj(A): adjoint of A; LCM{a, b, .. .}: least common multiplier of, b, . . ..

In graph theory, a weighted and directed graghis defined as? = (<7, &, G), where«/ =
{A4, ..., A, } describes the set of nodes of a multi-agent syster, is the set of directed edges
belonging to«7 x &7 andG is the weighted adjacency matrix. If tti& j)-th entry of G satisfies
Gi; # 0, then there is a directed edge from tf#h node to the-th node in%. A directed path
from A; to A, is defined as a sequence of directed edggsA4i1), (41, Ai2), ..., Ay, 4;) in a
directed network with distinct nodes;,, k = 1,...,[. If a node: has the property that, for any
node; different fromi, there is a directed path fromto j, then the nodé is said to be a root. A
directed tree is a directed graph where exactly one rootseaisd, except the root, every nodedn
has exactly one parent. If the edges of a directed tree coati¢ise nodes of the graph, we call this
kind of directed tree as a spanning tree.

In this paper we investigate robust consensus for multivegjyestems with discrete-time dynamics
affected by uncertainty, which can reflect the presence wigtlst or totally unknown control gains.
In particular, for multi-agent systems with single integrave consider the model

1 n
vi(k+1) = o——— Y Gi;(O)x;(k), i=1,...,n 1)
> Giy) 7=
j=1
wherez; € R is the state of thé-th node,# € R” is the vector of uncertain parameters, ar#d
R" — R™*™ is a polynomial function. The vector of uncertain paramgeigeiconstrained according

to
0e (2

wheref) is the semialgebraic set defined by

Q={0eR": s;(6) >0Vi=1,...,h} 3)

for some polynomials, ..., s, : R” — R. The systemX) can be rewritten in compact form as
z(k+1) = D(0)x(k) (4)

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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4 DONGKUN HAN, GRAZIANO CHESI
whereD : R" — R™*" js defined by
Gi;(6)

Di;(0) = — ;
> Gin(9)
k=1

i,j=1,...,n. (5)
Problem 1. To establish whethefif achieves robust consensus, i.e.

lim z;(k) —2;(k) =0 Vi,j=1,...,nVz(0) € R" V0 € Q. (6)

k—o0

For multi-agent systems with double integrator, we condide model

0i(k+1) = oi(k)+ui(k)
with . .
wi(k) = ka3 Gus (O)(as () = (k) + ke D G 0) ey K) = () ®)

whereky, ko € R are positive scalars representing coupling strengtheszan,; € R denote the
position and velocity states of thieéh agent. The systenT) can be rewritten in compact form as

)=o)
where
L) = ( _k;fZ(e) I, —Z;L(G) ) (10)
andL(¢) € R"*" is the uncertain Laplacian matrix given by
Lij(0) = —Giy(0) Vi#j
Liu(0) = — Z Li; (0). an
J=1, j#i

Problem 2. To establish if {) achieves robust consensus, i.e.

lim z;(k) —x;(k) = 0
Freo Vi,j=1,...,nVz(0), 0(0) € R" V0 € Q. (12)
Jim oi(k) —oj(k) = 0

In the sequel we will assume th@{0) is well-posed ovef, i.e.

n
D Gi(0) #£0 Vi=1,...,nV0 € Q. (13)
k=1

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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ROBUST DISCRETE-TIME CONSENSUS 5

Also, we will say thatG () is nonnegative it¥;;(#) > 0forall i, = 1,...,n and for alld € Q.

It is also useful to introduce the definition of (row) stodi@snatrix, which is a nonnegative
matrix with the property that all its row sums ard16]. Let us observe thab(6) is a stochastic
matrix if G(#) is nonnegative.

2.2. SOSPolynomials

A sufficient condition for establishing whether a polynohiganonnegative consists of establishing
if the polynomial is SOS, and this latter condition amoumtsolving an LMI feasibility test as
explained for instance inLf].

Specifically, letf (#) be a polynomial of degree not greater tizamin ¢ € R". Then, f(¢) can be
written as
f(0) =0t (F + 0(8)0t™ (14)

wheregi™} ¢ Re(m™) s a vector containing all monomials of degree not greatmthin 6, whose

number is given by
(r+m)!
rim!

F is a symmetric matrix, and'(9) is a linear parametrization of the linear subspace

O'(T, m) - ) (15)
c={c=c: otm'cotmt —o}.

The representationlf)) is known as Gram matrix method and as square matrix repessm
(SMR). In [17] this representation was introduced to establish whetpehamomial is SOS through
an LMl feasibility test. Indeedf (#) is SOS if there exist polynomial§ (6), f2(9), ... such that

f@=ZMW (16)

and this condition holds if and only if there exigtsuch that the following LMI holds:

F+C(6) > 0. (17)

This technique can also be used in the case of matrix polyasnas proposed inlf].
Specifically, letM () € R5** be a symmetric matrix polynomial of degree not greater than
in ® € R". Then,M () can be written as

M(0) = A(M + N(8),m, s) (18)
where
A(M + N(6),m,s) = (01™ @ I, (M + N(8))(0'™ & I,),
Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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6 DONGKUN HAN, GRAZIANO CHESI
M is a symmetric matrix, and/(§) is a linear parametrization of the linear subspace
N = {N =N (0 @ LYN@O™ ©1,) = 0} .
The matrix polynomial\/ () is said SOS if there exist matrix polynomial$, (6), Mz(6), ... such
that
M(0) =) M;(6)' M;(0) (19)
and this condition holds if and only if there existsatisfying the LMI

M + N(8) > 0. (20)

3. CONDITIONS FOR ROBUST CONSENSUS

3.1. SingleIntegrator

Let us introduce the polynomial

¢(0) LCM{iGZ—j(G), zln} (21)
and let us define
F(0) =¢(0)D(0). (22)

Let V; € R™*(»=1) pe such that

img(Vy) = ker(1)) (23)
‘/1/‘/1 = Infl
and let us define
Dy(0) = VD)V (24)
and
Fi(0) = V{F(0)Vi. (25)

The following result provides a sufficient and necessarydid@n for establishing whetherl)
achieves robust consensus.

Theorem 1
Let 7 be the degree af(¢), and define

w1 =n(n*—n—2)r. (26)

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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ROBUST DISCRETE-TIME CONSENSUS 7

The systemX) achieves robust consensus if and only if there exists a striummatrix polynomial
P(#) € R(»=Dx(n=1) of degreed < ju; such that

{ P(6) >0 o € Q. 27)
C(0)2P(6) — Fy(6) P(O)F1(0) > 0

Proof (Sufficiency) Suppose tha27) holds. From Lyapunov stability theorem for discrete-time
linear systems, this implies that

N (F1(0))] <|¢€(0)] Vi=1,....,n—1V0 € Q (28)
where); (Fy(6)) is thei-th eigenvalue of (6). Since
F1(0) = ¢(6)D1(9) (29)
it hence follows thai (9) is Schur for alld € €, i.e.
[N (D1(9))] <1 Vi=1,...,n—1V0 e Q. (30)
Sincel is an eigenvalue ab(f), we can denote the characteristic polynomialagf) as
det (AT — D(0)) = (A — 1)E(N, 6). (31)

Since 1,, is an eigenvector ofD(#) corresponding to the eigenvalue it follows that the
characteristic polynomial ab (0) is given by

det (AT — Dy (6)) = £(\,6) (32)

i.e. D1(#) has the same eigenvaluesioff) except that the algebraic multiplicity of the eigenvalue
1 has been decreased of one. Hence, sibc@) is Schur for allg € €, it follows that D(6) has
exactly one simple eigenvaldeand all the other eigenvalues with magnitude smaller thimm all

6 € Q. From [9] this is equivalent to say that consensus is achieved far alf2.

(Necessity) Suppose that)(achieves robust consensus. Fra®h this implies thatD(0) has
exactly one simple eigenvalueand all the other eigenvalues with magnitude smaller th&or
all 4 € Q. This means thab, (0) is Schur for alld € 2, and hence that the Lyapunov equation

P(6) — D1(0)' P(0) D1(0) = Q(6) (33)

has a unique solutioR (¢) satisfyingP(#) > 0 for all & € Q wheneve)(6) > 0for all 0 € Q. Since
¢(0) # 0forall @ € Q, this equation can be rewritten as

C(0)2P(0) — F1(0) P(O)F1(0) = ¢(6)°Q(0). (34)

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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8 DONGKUN HAN, GRAZIANO CHESI

Let us gather the(n — 1)/2 free entries ofP(#) andQ(6) into the vectorg () andq(#). We can
rewrite the previous equation as

E(0)p(0) = ¢(0)*a(0). (35)

Since the solutiorP(#) exists and is unique, it follows thdt(0) is invertible for allg € €2, and

hence G(E®)
_adjietv)) 2
Since the degrees ¢f6) and F; (0) are not greater thamr, it follows that the degree af'(9) is not

greater tharznr, and hence the degreeafj(E(0)) is not greater than

(%(n —Dn— 1) InT = piy. (37)

Let us choos&)(0) = ¢(0)~21, and let us redefing(0) as(—1)* det(E(0))P(§) wherea is 0 if
det(E(6)) > 0 for all # € Q or 1 otherwise. It follows tha(#) is a matrix polynomial of degree
not greater thap; that satisfies the Lyapunov equation

C(0)*P(8) — F1(0)' P(0)F1(0) = det(E(0))] (38)
and, hence 47). |

Theoreml provides a sufficient and necessary condition for robussensus ofX) based on the
existence of a Lyapunov function polynomially dependentt@uncertainty. The degree required
for achieving necessity,;, depends on the degree of the uncertain weighted adjaceatcix i@ (6)
and on the number of agents

The condition of Theorem can be investigated through convex optimization. Spedfidat
P(0) be as in Theoreni, and letH;(0) and J;(0), i = 1,...,h, be auxiliary symmetric matrix
polynomials of sizén — 1) x (n — 1), and define

=t (39)
T(0) = C((0)*P(0) — Fi(6) PO)F1(0) — > Ji(8)s:(6).

=1

The following result provides a sufficient condition for @&stishing whether) achieves robust
consensus based on LMls.

Corollary 1
The condition 27) holds for some symmetric matrix polynomiB(6) of degreel if ¢* > 0, where

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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ROBUST DISCRETE-TIME CONSENSUS 9

¢* is the solution of the following optimization problem:

ct = sup ¢
¢,H;,J;, P
H;(0)is SOS
Ji(0) is SOS
R(0) — I,,—1 is SOS
T(0) — cl,,—1 is SOS

(40)
S.t.

ProofSuppose that the constraints #0) are satisfied. This implies that

(41)

for all 8 € R". Let us consider any in the setQ. Sinces;(6) > 0 and H;(#) > 0, from the third
inequality we get
0 < R(O)—1I,1

= P(O) -1, Hi(0)s:(0) — I (42)
< P(Q) - In—l
which implies that
PO)>1,1 V0 €. (43)

Similarly, from the inequalityr’(6) — ¢I,,—; > 0 we get
C(6)2P(6) — Fy(8) P(O)F1(6) > cly V8 € Q. (44)
Therefore, ifc > 0, one has thatX?) is satisfied, and hence the theorem holds. |

Corollary 1 shows how the condition of Theorerh can be investigated through convex
programming by exploiting SOS polynomials. Indeed, sinstatldishing whether a matrix
polynomial is SOS can be done through an LMI as explained icti@e2.2, it follows that
the condition of Corollaryl amounts to solving an LMI feasibility test. Let us observattthe
conservatism of the condition of Corollatydepends on the degrees®(f) and of the multipliers
H;(0) and.J; ().

3.2. Single Integrator and Nonnegative Weighted Adjacency Matrices

Let us introduce the following preliminary result, whictretitly extends to the case of uncertain
multi-agent systems the condition given i8] (Corollary 2.18, Lemma 2.19 and Theorem 2.20)
for the case of multi-agent systems without uncertainty.

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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10 DONGKUN HAN, GRAZIANO CHESI

Lemma 1
Suppose that?(0) is nonnegative. The following three statements are ecerval

a) The systeml() achieves robust consensus.

b) for all 8 € 2, D(9) has exactly one simple eigenvaluand all the other eigenvalues satisfy
[A] < 1.

c) for all 8 € Q, the directed grapt# () has a spanning tree.

The following result shows how Lemniacan be exploited to obtain a necessary and sufficient
condition for robust consensus with single integrator amhegative weighted adjacency matrices
based on the zeros of a polynomial.

Theorem 2
Suppose that/(¢) is nonnegative. The systerh)(@chieves robust consensus if and only if

qp(0) #0 VO € Q (45)
where dp(06)
0) = &@DpinY) 46
qp(0) P\ . (46)
and
Ip(X,0) = det(A — D(6)). 47)

Proof Suppose thatz(d) is nonnegative. From Lemma one has that1) achieves robust
consensus if and only if, for all € 2, D(0) has exactly one simple eigenvalu@and all the other
eigenvalues with magnitude smaller than

Now, sinceD(#) is a stochastic matrix with positive diagonal elementsplitofvs that every
eigenvalue oD (#) not equal tal has magnitude smaller thansee e.g.16]. Hence, it just remains
to show that the eigenvalues simple.

Let us observe that this is equivalent to say that the chaniatit polynomial (), 8) of D(6)
can be written as
Ip(A,0) = (A—=1)&(A,0) (48)

where
&(1,0) £0 VO € Q. (49)

This last condition coincides withf) since

dip (X, 0) dg(A, 0)

=£(N, 0 A—1 50
IS =+ - D= (50)
and, hence, the theorem holds. |
Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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ROBUST DISCRETE-TIME CONSENSUS 11

Theorem? provides a necessary and sufficient condition for robussensus that can be used in
the case of single integrator and nonnegative weightedadgy matrices. This condition requires
to check whether the polynomial, (9) is nonzero ovef).

The condition of Theoreri can be investigated through convex optimization. Spedifidat us
define

dlp (N, 0)
qr(0) = —+— (51)
ax |,
where
lp(X,0) = det(AI — F(0)). (52)
Also, leta;(0),i = 1,..., h, be auxiliary polynomials, and define
h
b(0) = qr(bo)gr(6) — Z ai(0)s:(0) (53)

=1
wheref, is arbitrary inf2.

Corollary 2
Suppose that*(4) is nonnegative. The conditiod¥) holds if¢* > 0, wherec* is the solution of the
following optimization problem:

*

¢ = supec
o | @(®)iss0s (54)
| b(h) — cis SOS

ProofSuppose that the constraints &%) are satisfied. This implies that

a;(0) =0 (55)
b(#)—c>0

for all # € R". Let us consider ang in the setQ. Sinces;(#) > 0 anda;(8) > 0, from the second
inequality we get

0 < b)) —c
= qr(0o)qr(8) — X1 ai(0)si(0) —c (56)
< qr(00)gr(0) —c
which implies that
qr(00)qr(0) > ¢ V0 € Q. 57)

If ¢ > 0, this implies thatyr(6y)qr (6) is positive oveK). From the continuity o~ (¢) and the fact
thatd, € , it follows that

qr(0) #0 Vo € Q. (58)
By observing that

qr(0) = ¢(6)" D(6) (59)
Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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12 DONGKUN HAN, GRAZIANO CHESI

and¢ () # 0 for all 0 € 2, we conclude that®) holds. [ |

3.3. Double Integrators

From @) one has that

u (k) —ui(k) = ki (Ln(9)(x1(k) —zi(k)) + Z(Gij(ﬂ) = G1;(0))(x1 (k) — xj(’ﬂ)))

~ (60
This implies that
ok +1)—ei(k+1) = oi(k) —ai(k) =k (Z(Lij(o) — Ly;(0)) (21 (k) — IC](k)))
j=2
—ka (Z(Lu (0) — L1;(0)) (01 (k) — Qj(k))>-
” (61)
Hence, 9) can be rewritten as
2(k+1) =T(0)z(k) (62)
where
2(k) = (¥1—T2,...,T1 — Tn, 01 — 02, -, 01 — Qn)/
f(o) _ < Injl Infl ~ )
—k1L(0) I,—1— koL(0)
(63)
Los(0) — L12(0) ... Lo2y(0) — L1,(0)
L) = : - :
Lyn2(0) — L12(0) ... Lpn(0) — L1,(6)

The following preliminary result directly extends to theseabf uncertain multi-agent systems the
condition given in 0] for the case of multi-agent systems without uncertainty.

Lemma 2
The system?) achieves robust consensus if and only if

X (T@)| <1 Vi=1,....2n—2V0 €Q (64)

where); (T'()) is thei-th eigenvalue of (6).
The following result provides a sufficient and necessaryda@n for establishing whethei7)
achieves robust consensus.

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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ROBUST DISCRETE-TIME CONSENSUS 13

Theorem 3
Let 7 be the degree af'(¢), and define

pa = 2n(2n — 3)71. (65)

The system7) achieves robust consensus if and only if there exists a striwmmatrix polynomial
P(#) € RGn=2)x(27=2) of degreed < u, such that

P(6) >0
{ " feyPe) V6 € Q. (66)

=
=

V

jen)

Proof (Sufficiency) Suppose tha§) holds. From Lyapunov stability theorem for discrete-time
linear systems, this implies that4) holds. Hence, from Lemm2, we conclude that7) achieves
robust consensus.

(Necessity) Suppose that)(achieves robust consensus. From Lenfirthis implies that §4)
holds. This means that the Lyapunov equation

P(9) = T(6)'P(O)L(6) = Q(0) (67)

has a unique solutioft () satisfyingP(#) > 0 for all € 2 wheneverQ(0) > 0 for all § € . This
equation can be rewritten as

E0)p(0) = q(0) (68)

where p(f) and ¢(#) contain the(2n — 1)(2n — 2)/2 free entries ofP(f) and Q(6). Since the
solutionP(#) exists and is unique, it follows th&t(0) is invertible for allg € €2, and hence

adj(E(0))

p(0) = mqw)- (69)
Since the degree af(6) is not greater than, it follows that the degree of () is not greater than

27, and hence the degreeaij(E(6)) is not greater than

(%(Qn—l)(Qn—Q)—1> 27 = pia. (70)

Let us choos&)(0) = I»,—2, and let us redefiné(0) as (—1)* det(E(9))P(f) wherea is 0 if
det(E(6)) > 0 for all & € Q or 1 otherwise. It follows tha(#) is a matrix polynomial of degree
not greater thap. that satisfiesqo). |

Theoreml provides a sufficient and necessary condition for robussensus of{) based on the
existence of a Lyapunov function polynomially dependentt@nuncertainty. This condition can be
investigated through convex optimization.

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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14 DONGKUN HAN, GRAZIANO CHESI

Specifically, letP(¢) be as in Theorem, and letH;(0) and J;(0), i = 1,...,h, be auxiliary
symmetric matrix polynomials of siz@&n — 2) x (2n — 2), and define

=t (71)

i=1

The following result provides a sufficient condition for aslishing whether®) achieves robust
consensus based on LMIs. The proof is analogous to that afli@nr 1.

Corollary 3
The condition §6) holds for some symmetric matrix polynomiB(6) of degreel if ¢* > 0, where
¢* is the solution of 40) with R(6) andT'(0) replaced by those ir7().

4. NUMERICAL EXAMPLES

In this section we present two examples to illustrate th@p@sed conditions. The LMI problems
are solved with MATLAB and the toolbox SeDuMz{].

4.1. Example 1

Figure 1. Topology of four-agent system.

Let us consider the four-agent system in Figureith

1 0 0 0
146 1 0 2
coy=| T
0 1 1 0
3+20 4 0 1
where# is constrained in
Q= [71, 1]
Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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ROBUST DISCRETE-TIME CONSENSUS 15

This set can be described as 8) with

81(9)_1—92
By using 6) we get
1 0 0 0
1+6 1 0 2
D() = 440 44+ 4+0
0 0.5 0.5 0
3+ 20 2 0 1
8420 446 8 + 20
and, hence,
C(0) =8 +26.

First, let us use Corollary to establish whether robust consensus with single integcain be
achieved. We solve the LMI problem@) with a constant symmetric matrix functidn(6) finding
c* = +o00. Hence, from Corollant we conclude that robust consensus with single integratobea
achieved.

The same conclusion can be obtained using CoroltssinceG(0) is nonnegative. Specifically,
the polynomialyr(9) in (51) is given by

qr(0) = 860" + 1160° + 59607 + 12486 + 832.

We solve the LMI problem54) with a multipliera,(0) of degree2, finding ¢* = 72. Hence, from
Corollary 2 we conclude that robust consensus with single integratobeaachieved.

Second, let us use Corollai/to establish whether robust consensus with double integrat
can be achieved. In particular, we considé)y yith k; = 0.021 and k; = 0.197. We solve the
LMI problem (40) with a constant symmetric matrix functid?(¢) finding ¢* = +oc. Hence, from
Corollary 3 we conclude that robust consensus with double integratorde achieved.

4.2. Example 2
Figure 2. Topology of six-agent system.
Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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Let us consider the six-agent system in Fig2ikegith

1 0 0 0 1 0

3+0; 1 0 0 0 0

GO) = 0 3—-0; 1 0 01 +0 0
0 340, 1 0 0

0 0 1+ 0.50; 1 0

0 0 0 1 1

whered € R? is constrained in
Q={0eR*: |0 <1}. (72)

This set can be described as 8) with
s1(0) =1 — 6% — 63

Hence, different from the Example 1, the network is affettgtivo uncertain parameters, aGdd)
is not nonnegative.

First, let us use Corollary to establish whether robust consensus with single integcain be
achieved. We solve the LMI problemM@ with a constant symmetric matrix functid?(#) finding
c* = +o00. Hence, from Corollant we conclude that robust consensus with single integratobea
achieved. This is confirmed by Figuewhich shows in Figur&a a trajectory of:(k) for randomly
chosend € Q andz(0), and in Figure3b 100 trajectories ofy(k), wherey; (k) = x;(k) — z1(k),
i=2,...,6, forrandomly chosefi € Q andz(0).

101

L )
75 10

)
N
2

k
(@) (b)

Figure 3. Example 2: some trajectories with single integrat

Second, let us use CorollaByto establish whether robust consensus with double integratin
be achieved. In particular, we considé)y with k; = 0.01 andk, = 0.2. We solve the LMI problem
(40) with a symmetric matrix functio®(9) of degreel, finding ¢* = +oc. Hence, from Corollary
3 we conclude that robust consensus with double integratorde achieved. This is confirmed by

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
Prepared using rncauth.cls DOI: 10.1002/rnc
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Figure4, which shows in Figureda—4b a trajectory of:(k) ando(k) for randomly choseid € €2
andz(0), o(0), and in Figureglc—-4d 100 trajectories ofy(k) andz(k), wherey; (k) = x; (k) — z1(k)
andz; (k) = 0i(k) — 01(k), i = 2,...,6, for randomly chose# € Q andz(0), o(0).

200

1501 6.25H

-125f

(b)

k k
(© (d)

Figure 4. Example 2: some trajectories with double integsat

5. CONCLUSIONS

We have investigated multi-agent systems with discrete-tidynamics where the weighted
adjacency matrix is a polynomial function of uncertain pagéers constrained into a semialgebraic
set. We have provided necessary and sufficient conditionsofaust consensus with single and
double integrators based on the existence of a Lyapunoviftumpolynomially dependent on
the uncertainty. Moreover, we have provided a necessary saffttient condition for robust
consensus with single integrator and positive weightedaeijcy matrices in terms of positivity
of a polynomial. Lastly, we have shown how these conditicars loe investigated through convex
programming by exploiting LMIs and SOS polynomials. Thegmeed conditions can be extended

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
Prepared using rncauth.cls DOI: 10.1002/rnc
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in a number of directions, for instance to the case that thierying systems are controlled in
networked environments by adopting the frameworks intcedun R2-24].
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