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Abstract

This paper studies robust local synchronization in multi-agent systems with time-varying parametric

uncertainties constrained in a polytope. In contrast to existing methods with non-convex conditions via

using quadratic Lyapunov function (QLF), a new criteria is proposed based on using homogeneous poly-

nomial Lyapunov functions (HPLFs) where the original system is suitably approximated by an uncertain

polytopic system. Furthermore, corresponding tractable conditions of linear matrix inequalities (LMIs)

have been provided by exploiting squares matrix representation (SMR). Then, polytopic synchronization

margin problem is, for the first time, proposed and investigated via handling generalized eigenvalue

problems (GEVPs). Lastly, numerical examples illustrate the usefulness of the proposed method.

I. INTRODUCTION

Collective motions of multi-agent systems are appearing in a widespread field, stimulating a

tremendous upsurge of research efforts toward the mechanism behind the phenomena. As a key

problem, synchronization has attracted particular research attentions due to its emerging broad

range of applications in various fields, like biology, electronics, sociology, to name just a few [1]–

[4]. Interestingly, synchronization problem of complex networks shares common features with

another academic focus: consensus of multi-agent system, especially in the case of identical nodes

with linear dynamics [5]–[8]. Common examples can be easily found in rendezvous problems

where a certain manner-distance is stabilized with each agent communicating with the nearest

neighbours [9].
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For fixed topology, synchronization of coupled networks is extensively investigated by a

master stability function (MSF) method which calculates the maximum Lyapunov exponent of

variational equation for the nonlinear coupled networks [10], [11]. The local synchronization of

a linearized system can be successfully guaranteed by using MSF, thus triggering a particular

interest in how synchronization depends on structural factors, such as clustering coefficient,

coupling strength, average distance [12]. Besides the eigenvalue analysis of the coupling matrix

for assorted synchronization schemes, Belykh et al. have proposed an alternative approach called

the Connection Graph Stability (CGS) method, which combines the stability theory with graph

theory [13].

However, most of existing results establish on the assumption that the models of dynam-

ical networks are accurate. Such an assumption can not always be applicable when it meets

multitudinous applications in practice. For a simple instance in electronic circuits, the values

of resistance and capacitance as communication weights of networks are not constant, while

displaying fluctuations in different circumstances. Thus, more recently, robust synchronization of

systems with uncertainties has been given critical attentions in this field [14]–[17]. For uncertain

adjacency matrix (or called uncertain coupling matrix), MSFs and eigenvalue analysis can hardly

be applied, making Lyapunov stability theory as a main approach for robust synchronization.

In [14] a decentralized hybrid feedback scheme is applied into a robust global synchronization

problem with relative-attitude error. In [15], by using quadratic Lyapunov Functions (QLFs) an

impulsive control scheme is proposed for robust synchronization of coupled neural networks with

bounded coupling force. In [16], by using QLFs, robust 2-D synchronization is investigated with

time-invariant polytopic parameter uncertainties. In [17], robust synchronization performance

is analyzed by QLF with control gains disturbed by square integrable bounded time-varying

uncertainties.

Contrast with the literatures, this paper considers robust local synchronization with time-

varying parametric uncertainties and provides synchronization conditions by employing HPLFs

which are much less conservative comparing with QLFs. Specifically, in contrary to non-convex

approaches, the original system is approximated by a polytopic system whose asymptotical

stability is properly guaranteed through a non-conservatism approach by using HPLFs which

can be tackled by solving an LMI feasibility test. Furthermore, it is shown that polytopic

synchronization margin can be searched by solving GEVPs. Lastly, the usefulness of proposed



method is proved by numerical examples.

II. PRELIMINARIES

Notations: N,R: natural and real number sets; 0n: origin of Rn; Rn
0 : Rn\{0n}; A′: transpose of

A; 1n: ones vector of Rn; In: n×n identity matrix; A > 0 (A ≥ 0): symmetric positive definite

(semidefinite) matrix A; A⊗ B: Kronecker product of matrices A and B; he(A): A+ A′, with

A ∈ R
n×n; co{X1, . . . , Xp}: convex hull of matrices X1, . . . , Xp ∈ R

m×n; X [i]: i-th Kronecker

power, i.e.

X [i] =





X ⊗X [i−1] if i > 1

1 if i = 0.

In graph theory, a weighted and directed graph G = (A , E , G) consists of a finite nonempty

node set A = {A1, ..., AN}, a directed edge set E ⊆ A ×A , and a weighted adjacency matrix

G ∈ R
N×N . A directed edge from Aj to Ai is described by Gij which means information can

be transmitted from the j-th node to the i-th node but not conversely.

In this paper, robustness of local synchronization is considered for time-varying parametric

uncertainties. In particular, it is supposed that the weighted adjacency matrix G is affected by

uncertain parameters θ(t) ∈ R
a, denoting the time-varying perturbations from environment to

the system dynamics [16], [18], [19]. And θ(t) satisfies

θ(t) ∈ Ω. (1)

In this paper, we consider Ω as follows.

Ω = co{θ(1), ..., θ(v)} (2)

for some given vectors θ(1), ..., θ(v) ∈ R
a. Then, let us introduce the uncertain multi-agent systems

with time-varying uncertainties by

ẋi(t) = f(xi(t))− c

N∑

j=1

Lij(θ(t))Γxj(t), i, j = 1, . . . , N (3)

where xi ∈ R
n is the state of i-th agent, N is the number of agents, c is the coupling weight,

f(xi) ∈ R
n is a nonlinear function, Γ = diag(γ1, . . . , γn) ∈ R

n×n is a diagonal matrix where

γi > 0 stands for the agents communicating through their i-th states. Lij(θ(t)) is the ij-th entry

of the uncertain Laplacian matrix L(θ(t)) ∈ R
N×N given by Lij(θ(t)) = −Gij(θ(t)) for all i 6= j

and by Lii(θ(t)) = −
∑N

j=1, j 6=i Lij(θ(t)).



Linear pertubation in communication network is widely adopted in literatures where Gij(θ(t))

is a linear function [16], [17], [20]. Thus the uncertain Laplacian matrix can be expressed as

L(θ(t)) = L0 +

a∑

i=1

θi(t)Li.

Nonlinear perturbations and corresponding approaches will also be discussed in Section IV. Let

us introduce the uncertain multi-agent dynamical system (3) in compact form

ẋ(t) = g(x(t))− c(L(θ(t))⊗ Γ)x(t) (4)

where x(t) = (x1(t)
′, . . . , xN (t)

′)′ and g(x(t)) = (f(x1(t))
′, . . . , f(xN(t))

′)′. Let s(t) ∈ R
n be

a solution of an isolated node, i.e.

ṡ(t) = f(s(t)). (5)

Let us observe that s(t) can be an equilibrium point, a periodic orbit, or a chaotic orbit, etc.

Then, the robust local synchronization problem is proposed as follows.

Problem 1: To establish if the uncertain multi-agent dynamical system (4) achieves robust

local synchronization, i.e. for any ǫ there exist κ(ǫ) and T > 0 such that ‖xi(0)−xj(0)‖ ≤ κ(ǫ)

implies ‖xi(t)− xj(t)‖ ≤ ǫ for all θ(t) ∈ Ω, t > T and i, j = 1, . . . , N .

An extending problem of great interests is the synchronization margin problem, which will

be proposed and investigated in Section V.

III. SYSTEM TRANSFORMATION

First, let us introduce the following assumptions on f(xi).

Assumption 1: The function f(xi) is continuously differentiable in a neighbourhood of the

solution s(t).

Remark 1: This assumption just requires that the continuity of first derivative of the vector

field is guaranteed in a neighbourhood of the solution of interest.

Let θ(t) ∈ Ω defined by (2).

Remark 2: The uncertain parameter θ(t) is constrained in a polytope which is a very typical

form both for time-varying uncertain system and for time-invariant uncertain system in robust

synchronization and robust control [20]–[22].



Observe
∑N

j=1Lij(θ(t))Γs(t) = 0, by subtracting (5) from (3), we get the system

ẏi(t) = f(xi(t))− f(s(t))− c

N∑

j=1

Lij(θ(t))Γyj(t) (6)

where yi = xi − s, i = 1, . . . , N . For local synchronization, one can use the dynamics of the

system locally about s(t) in the case without uncertainty [23], [10], [24]. For the uncertain

system (6), it can also be expressed as

ẏ(t) = (IN ⊗Df(s(t)))y(t)− c(L(θ(t))⊗ Γ)y(t) (7)

where y(t) = (y1(t)
′, . . . , yN(t)

′)′ and Df(s(t)) ∈ R
n×n is the Jacobin matrix of f(xi) evaluated

for xi = s(t). Observe 1N is the right eigenvector of L(θ(t)) corresponding to eigenvalue

zero, let η′ = (η1, ..., ηN) ∈ R
1×N be the left eigenvector of the uncertain Laplacian matrix

L(θ(t)) corresponding to eigenvalue zero, and
∑N

i=1 ηi = 1. A new disagreement variable can

be introduced as follows:

z(t) = y(t)− ((1Nη
′)⊗ In)y(t) (8)

where z(t) ∈ R
nN satisfies (η′ ⊗ In)z(t) = 0n. Define

M = (IN − 1Nη
′)⊗ In. (9)

Observe matrix M commutes with matrices IN ⊗ Df(s(t)) and c(L(θ(t)) ⊗ Γ), then one can

get an uncertain disagreement system as follows:

ż(t) = (IN ⊗Df(s(t))− cL(θ(t))⊗ Γ)z(t). (10)

Lemma 1: Suppose that Assumption 1 holds. The robust local synchronization of system (7)

can be achieved if and only if system (10) is asymptotically stable.

Proof (Necessity) From the definition of yi one has that the robust local synchronization of

system (7) can be achieved if |yi − yj| → 0n whenever the initial condition for y lies in a

neighborhood of the equilibrium characterized by y∗i = y∗j for all i, j. Assume limt→∞ y(t) →

(τ(t)′, ..., τ(t)′)′ = 1N ⊗ τ(t). One has

lim
t→∞

z(t) = ((IN − 1Nη
′)⊗ In)× (1N ⊗ τ(t))

= ((IN − 1Nη
′)1N )⊗ τ(t) = 0nN .



(Sufficiency) According to the structure of L(θ(t)), there exist matrices Υ ∈ R
N×(N−1) and

Ψ ∈ R
(N−1)×N such that

 η′

Ψ


L(θ(t))(1N Υ) =


 0 0′

N−1

0N−1 Ξ(θ(t))




where Ξ ∈ R
(N−1)×(N−1) is a matrix function in θ(t). For system (7), pre-multiplying by

 η′

Ψ


⊗ In, the first n rows generate that

ξ̇ = Df(s(t))ξ(t) (11)

where ξ(t) ∈ R
n. Suppose system (10) is asymptotically stable, it is clear that

y(t) → (ξ(t)′, ξ(t)′, ..., ξ(t)′)′ = 1N ⊗ ξ(t).

This completes the proof. �

Corollary 1: Since (10) is a linear time-varying system, one has following equivalent condi-

tions.

• system (10) is asymptotically stable.

• system (10) is exponentially stable.

• robust local synchronization of system (7) can be achieved.

• robust local exponential synchronization of system (7) can be achieved.

Lemma 2: Under Assumption 1, the robust local synchronization of system (4) can be achieved

if the following polytopic system is asymptotically stable.




ż(t) = Â(p(t))z(t)

p(t) ∈ P

(12)

where p(t) ∈ R
q is an uncertain parameter vector, P is the polytope defined by

P = co{p(1), . . . , p(w)}

and Â(p(t)) is given by

Â(p(t)) = Â0 +

q∑

i=1

pi(t)Âi

for some Â0, Â1, . . . , Âq ∈ R
q×q.



Proof Let us define

D(t) = IN ⊗Df(s(t)).

One can choose any suitable bounds bij , cij ∈ R satisfying

bij ≤ Dij(t) ≤ cij ∀t ≥ 0

for all i, j = 1, . . . , k and k = nN . Clearly, such bounds always exist since Df(s(t)) is

continuous. Then define ι(t) ∈ R
b satisfying

ι ∈ I = co{ι(1), ..., ι(c)}

a parameter ιl(t) is assigned to each entry of Dij(t) choosing




D̂0,ij = bij

D̂l,ij = cij − bij

in order to guarantee that D(t) is included by the uncertain polytopic system. Obviously, for

entries of Dij(t) that are linearly dependent, merely one parameter ιl(t) is needed. Then system

(10) can be expressed as

ż(t) = A

(
b∑

1=1

Diιi(t),

a∑

i=1

Liθi(t)

)
z(t) (13)

where function A is linear on ιi(t), for all i = 1, ..., b and also linear on θi(t), for all i = 1, ..., a.

One can have a new time-varying variable p̂(t) ∈ R
a+b constrained in P̂ = co{p̂(1), . . . , p̂(ŵ)}

such that system (13) can be further equivalently expressed as

ż(t) = Â(p̂(t))z(t).

Thus the proof completes. �

Remark 3: In literatures, local synchronization conditions are proposed based on the manifold

s(t), thus making it a non-convex condition which is not tractable. This lemma gives an essential

transformation which provides a useful way to make conditions of robust local synchronization

solvable by convex approaches given by Section IV. Nevertheless, it is admitted that conservatism

generates from the gap between the polytope I and the manifold s(t). Approaches without

employing this transformation will also be discussed in Section IV.



IV. MAIN RESULTS

Based on the transformation introduced by Lemma 2, robust local synchronization problem

changes to a robust stability problem of (12), which can be appropriately investigated by HPLFs, a

non-conservative class of Lyapunov functions. More importantly, by including s(t) in a polytope,

robust local synchronization conditions can be checked by solving an LMI feasibility test.

A. Conditions via HPLF

Let us first introduce the definition of HPLF.

Definition 1: Let v : RnN → R be a homogeneous polynomial of degree 2m satisfying




v(z) > 0, ∀z ∈ R
nN
0

v̇(z) < 0, ∀z ∈ R
nN
0 and ∀p ∈ P

(14)

where

v̇(z) =
dv(z)

dt

∣∣∣∣
ż=Â(p)z

.

Then v(z) is called a HPLF of degree 2m for the system (12).

Theorem 1: Under Assumption 1, if there exists a continuously differentiable homogeneous

function v(z) satisfying




0 < v(z)

0 < −µi(z) ∀i = 1, . . . , w,
∀z 6= 0 (15)

where

µi(z) = v̇(z, p)|p=p(i)

and

v̇(z, p) =

(
dv(z)

dz

)′ (
Â(p)z

)
.

Then, function v(z) is a HPLF for (12) and the robust local synchronization of (3) can be

achieved.

Proof Since p(t) ∈ R
q and P is a polytope described by P = co{p(1), . . . , p(w)}, one can

find d1(p), . . . , dw(p) ∈ R such that

Â(p(t)) =

w∑

i=1

di(p)Â(p
(i))



where d1(p), . . . , dw(p) ∈ R are such that




w∑

i=1

di(p)p
(i) = p

di(p) ≥ 0 ∀i = 1, . . . , w
w∑

i=1

di(p) = 1.

on the condition that (15) holds. Accordingly, one has that

v̇(z, p) =

(
dv(z)

dz

)′
(

w∑

i=1

di(p)Â(p
(i))z

)

=
w∑

i=1

di(p)

(
dv(z)

dz

)′ (
Â(p(i))z

)

=

w∑

i=1

di(p)µi(z)

which implies that

v̇(z, p) < 0 ∀z 6= 0

Hence, for all p ∈ P , v(z) is a HPLF for (12). Therefore, (12) is robustly asymptotically stable,

and robust local synchronization of (3) can be achieved. �

Remark 4: For Theorem 1, it is worthy to note that

• Theorem 1 provides conditions for robust local synchronization, and significantly it makes

free of calculating all the eigenvalues of Laplacian matrix as required in the literatures.

Moreover, HPLF is used and gives a less conservative condition than QLFs widely adopted

by literatures, thus proposing a promising way to combine with graph theory to obtain some

topological conditions.

• For nonlinear time-varying uncertainties, the approach of HPLF can not be adopted. How-

ever, under an assumption that G(θ) is polynomial function of θ, sufficient conditions can be

derived by using polynomial parameter-dependent Homogeneous Lyapunov function (PPD-

HLF), i.e., searching a Lyapunov function which is a polynomial function of uncertain

parameter θ.

• Sufficient conditions can also be proposed by PPD-HLF for the case without the transfor-

mation introduced by Lemma 2. Nevertheless, this approach can hardly provide solvable



conditions such as LMI conditions since s(t) is engaged in. Furthermore, in order to give

some solvable conditions, various assumptions are needed while the conservatism level

increases, such as assuming |s(t)|∞ < c, where c is a positive constant.

B. SMR Conditions

One effective way for checking whether a homogeneous polynomial is nonnegative consists

of checking whether it is a SOS polynomial, which can be equivalently expressed as an LMI

feasibility test [25].

Indeed, let x ∈ R
r and let h(x) be a homogeneous polynomial with all the monomials of

degree 2m. And let x{m} ∈ R
σ(r,m) be a vector containing all monomials of degree m where

σ(r,m) =
(r +m− 1)!

(r − 1)!m!
. (16)

Accordingly, h(x) can be written in the form of SMR as

h(x) = x{m}′(H + E(δ))x{m}

, Λ(H + E(δ), m, r)
(17)

where H ∈ R
σ(r,m)×σ(r,m) is a symmetric matrix, and E(δ) stands for a linear parametrization

of the linear subspace

Er,m =
{
E ∈ R

σ(r,m)×σ(r,m) : Λ(E,m, r) = 0
}
. (18)

By using representation (17), one can establish whether a homogeneous polynomial is SOS

polynomial via LMIs.

Definition 2: h(x) is SOS if there exist polynomials h1(x), h2(x), . . . such that

h(x) =
∑

i

hi(x)
2 (19)

and this condition holds if and only if there exists a δ such that the following LMI holds:

H + E(δ) ≥ 0. (20)

For more details to obtain E(δ), interested readers can refer to [25] and references therein.

According to Definition 1, we can express the HPLF v(z) via SMR as

v(z) = Λ(V,m, r)



where V ∈ R
σ(nN,m)×σ(nN,m) is a symmetric matrix. Before deriving the LMIs condition, let us

first introduce the following definition.

Definition 3: Define matrix Â# to be an extended matrix of Â if it is satisfied that

dz{m}

dt
=
∂z{m}

∂z
Âz = Â#z{m}. (21)

Lemma 3: [26] Let z[m] be the m-th Kronecker power of z (This notation given in Section

II), and Km be the matrix satisfying z[m] = Kmz
{m}. Then, the extended matrix Â# can be

obtained by

Â# = (K ′
mKm)

−1K ′
m

(
m−1∑

i=0

Im−1−i ⊗ Â⊗ Ii

)
Km.

Note that

Ãi = Â
(
p(i)
)

and let Ã
#
i be the extended matrix of Ãi. Now we can propose the LMI condition for robust

local synchronization.

Theorem 2: Under Assumption 1, the robust local synchronization of (3) can be achieved if

there exist a symmetric matrix V and δ(1), . . . , δ(w) such that




0 < V

0 > he
(
V Ã

#
i

)
+ E

(
δ(i)
)

∀i = 1, . . . , w.
(22)

Proof on the condition that (22) holds, via Pre- and post-multiplying the first inequality in (22)

by z{m}′ and z{m}, respectively, one has that

0 < Λ(V,m, r)

= v(z)

which directly follows that v(z) is positive definite since the square of power vector z{m}′z{m} >

0 for all z 6= 0. On the other hand, from (21) one can obtain that

µi(z) = z{m}′
(
V Ã

#
i +

(
V Ã

#
i

)′)
z{m}

= Λ
(

he
(
V Ã

#
i

)
, m, r

)



and according to the second LMI one can have that

µi(z) < 0.

Thus, by condition (22), v(z) is guaranteed to be a HPLF for (12). Therefore, from Theorem 1,

the robust local synchronization of (3) can be achieved which completes the proof. �

Remark 5: One can systematically establish if there exist a symmetric matrix V and δ(1), . . . , δ(w)

such that (22) holds. In fact, this is an LMI condition, which amounts to solving a convex

optimization problem.

V. POLYTOPIC SYNCHRONIZATION MARGIN

Section IV answers how the robust local synchronization with polytopic uncertainties can be

achieved. Another question comes naturally that what is the largest level of polytopic uncertainties

on which the robustness of local synchronization maintains. In order to answer this question, let

us first introduce following definitions.

Definition 4: ζP
2m is called 2m-HPLF polytopic synchronization margin for system (3) if there

exists a HPLF v with degree 2m for system (3) such that

ζP
2m = sup

{
ζ ∈ R : θ(t) ∈ co

{
ζθ(1), ..., ζθ(v)

}}
.

Of special usefulness is another definition which comes from a special instance of above

denotation, concerning on the polytope Ω as the unit ℓ∞ box.

Definition 5: ζ∞2m is called 2m-HPLF ℓ∞ synchronization margin for system (3) if there exists

a HPLF v with degree 2m for (3) such that

ζ∞2m = sup
{
ζ ∈ R : ‖θ(t)‖∞ ≤ ζ

}
.

For ease of description, we consider the problem of estimating ζ∞2m as follows.

Problem 2: (2m-HPLF ℓ∞ synchronization margin problem) To search for the lower bound

of ζ∞2m if there exists a HPLF v with degree 2m for (3).

First let us rewrite system (12) with θ(t) = p(t) ∈ R
a and Ω = P as follows.





ż(t) = Â(θ(t))z(t)

θ(t) ∈ Ω.
(23)



Let us denote the vertices of the unit ℓ∞ ball by ν(1), ..., ν(2
a), and define

Āi = Â(θ(i))− Â0, i = 1, ..., 2a,

and denote Ā
#
i , i = 1, ..., 2a, to be the corresponding extended matrix of Āi (please refer to

Definition 3). Next result proposes a desirable way which consists of a quasi-convex optimization

to check the 2m-HPLF ℓ∞ synchronization margin.

Theorem 3: Let us define

ζ̂∞2m =
1

φ∗
(24)

where integer m ≥ 1, φ∗ is the solution of

φ∗ = inf
φ, V, δ(0),...,δ(2

a)
φ

s.t.





0 < φ

0 < V

0 < −he
(
V Â

#
0

)
−E

(
δ(0)
)

0 < φ
(
− he

(
V Â

#
0

)
− E

(
δ(0)
))

−he
(
V Ā

#
i

)
−E

(
δ(i)
)
∀i = 1, . . . , 2a

(25)

and E(·) is a linear parametrization of EnN,m. Then ζ̂∞2m is the lower bound of ζ∞2m, i.e. ζ̂∞2m ≤ ζ∞2m.

Proof Suppose that (25) holds. Pre- and post-multiplying the second LMI in (25) by z{m}′ and

z{m}, respectively, one has that

0 < Λ(V,m, r)

hence implying v(z) is positive definite since z{m}′z{m} > 0 for all z 6= 0. Moreover, the time

derivative of v(z) for θ = φ−1ν(i) is given by

v̇(z)|θ=φ−1ν(i) = z{m}′he
(
V
(
Â

#
0 + φ−1Ā

#
i

))
z{m}

= φ−1z{m}′
(
φhe
(
V Â

#
0

)
+ he

(
V Ā

#
i

))

= φ−1z{m}′
(
φ
(

he
(
V Â

#
0

)
+ E

(
δ(0)
))

+ he
(
V Ā

#
i

)
+ E

(
δ(i)
))
z{m}.

(26)

Thus, due to the last constraint in (25) one has

v̇(z)|θ=φ−1ν(i) < 0 ∀i = 1, ..., 2a.



Based on this, one can also have that v̇(z) is negative definite for all θ(t) in following set

{
θ(t) ∈ R

a : ‖θ(t)‖∞ ≤ φ−1
}
.

Therefore, one has ζ̂∞2m ≤ ζ∞2m which completes this proof. �

Remark 6: Theorem 3 provides an lower bound for 2m-HPLF ℓ∞ synchronization margin

ζ∞2m. Specially, one has ζ̂∞2m = ζ∞2m when (nN, 2m) is in certain sets, e.g. {(nN, 2) : nN ∈ N},

{(2, 2m) : m ∈ N} and {(3, 4)} [26]. These sets are strongly related with the Hilberts 17th

problem which concerns on the gap between SOS polynomials and positive polynomials.

A simple result can be obtained directly from Theorem 3 when we consider a = 1 and

θ ∈ [0, ψ]. Paralleled with ζ∞2m, we define ψ∞
2m for the case of system (12) with scalar uncertainty

widely adopted in literatures.

Corollary 2: Let us define

ψ̂∞
2m =

1

φ∗
(27)

where integer m ≥ 1, φ∗ is the solution of

φ∗ = inf
φ, V, δ(1),δ(2)

φ

s.t.





0 < V

0 < −he
(
V Â

#
0

)
−E

(
δ(1)
)

0 < φ
(
− he

(
V Â

#
0

)
− E

(
δ(1)
))

−he
(
V Ā

#
1

)
−E

(
δ(2)
)

(28)

and E(·) is a linear parametrization of EnN,m. Then ψ̂∞
2m is the lower bound of ψ∞

2m, i.e. ψ̂∞
2m ≤

ψ∞
2m.

VI. NUMERICAL EXAMPLES

To illustrate our proposed approach, two deliberately simple examples are provided by using

MATLAB.



A. Example 1

In this case, we consider a coupled jet engines of Moore-Greitzer model [27]. f(x) in (6)

describes the intrinsic dynamics of each jet engine as

f(xi) =


 −0.5x3i1 − 1.5x2i1 − xi2

3xi1 − xi2




where xi = (xi1, xi2)
′, i = 1, 2. For this jet engine model, a no-stall equilibrium is translated to

the origin by following transformation.




xi1 = x̃i1 − 1

xi2 = x̃i2 − xco − 2.

Here, we briefly introduce the practical meaning of each parameter: x̃i1 is the mass flow, x̃i2

is the pressure rise and xco is a constant. The communications between these two jet engines

are disturbed by a time-varying uncertainty θ(t) where the uncertain weighted adjacency matrix

G(θ(t)) is given as

G(θ(t)) =


 1 2− θ(t)

1 1


 .
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Fig. 1. Hopf bifurcation of coupled M-G jet engines.

Around θ = 3.392, a Hopf bifurcation takes place as shown in Fig. 1 and robust local

synchronization can not be achieved when θ > 3.392. Thus let us assume θ ∈ Ω = co{0, 3.0} and

we want to establish whether there exists a QLF or HPLF such that robust local synchronization

can be achieved for this given uncertainty range.
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Fig. 2. Trajectories of robust local synchronization.

Results show that one can not find a QLF such that the coupled M-G jet engines are able to

achieve robust local synchronization where m = 1. However, by using a HPLF where m = 2,

one can obtain that the LMIs (22) hold and hence robust local synchronization can be achieved

according to Theorem 2. In particular, a HPLF for this case is given by v(z) = z{2}
′

Iz{2} with

m = 2. Figure 2 shows 100 trajectories of z(t) with the initial conditions x(0) randomly chosen

in [−5, 5]4, and θ(t) randomly chosen in Ω.

B. Example 2

Let us consider (3) with N = 3, n = 1, c = 1, Γ = 1 and nonlinear function f(x) is given by

f(x) = −x− x3 − x5.



The uncertain weighted adjacency matrix G(θ) is given by

G(θ) =




1 2 + θ θ

−2− θ 1 5

θ −3 1




where θ(t) ∈ co{0, 1}. One has that (5) holds with s(t) = (0, 0)′. By choosing p1 = θ(t), it

follows that Â(p) in (12) can be obtained as

Â(p) =




−3 − 2p1 2 + p1 p1

−2− p1 −4 + p1 5

p1 −3 2− p1


 .

We find that the LMIs (22) hold and hence robust local synchronization can be achieved

according to Theorem 2. For this case, the lower bound provided by (25) is tight, i.e., ψ̂∞
2m =

ψ∞
2m. By applying QLFs, i.e., m = 1, one has ψ∞

2 = 8.9458. By contrast, via solving the

GEVP (28) and using a HPLF, we can obtain that robust synchronization margin has been

significantly expanded, as shown in Table I. By using bisection method, we obtain that the

maximal synchronization margin is 13.000 which means by using a HPLF merely with m = 2

one can get a very desirable result for this case.

TABLE I

SYNCHRONIZATION MARGIN COMPARISON

m=1 m=2 m=3 m=4

ψ∞

2m 8.9458 12.9397 12.9532 12.9698

VII. CONCLUSIONS

We have investigated robust local synchronization in multi-agent systems with time-varying

parametric uncertainties. A novel convex approach has been proposed based on the transfor-

mation from the original system to an uncertain polytopic system and on the use of HPLFs.

Corresponding LMI-based conditions are obtained by using SMR technique. Polytopic synchro-

nization margin has also been investigated by a convex optimization consisting of GEVPs. As

a nature extension, future works will focus on robust global synchronization with time-varying



uncertainties both for the case in a bounded-rate polytope and for the case in a semialgebraic

set. Another interesting and promising extension is H∞ synthesis for robust synchronization of

polynomial nonlinear system where pioneering work has already been done in [28].
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[11] J. Lü, X. Yu, G. Chen, and D. Cheng. Characterizing the synchronizability of small-world dynamical networks. IEEE

Transactions on Circuits and Systems-I, 51(4):787–796, 2004.

[12] C. S. Zhou and J. Kurths. Dynamical weights and enhanced synchronization in adaptive complex networks. Physical

Review Letters, 96:164102, 2006.

[13] V. N. Belykh, I. V. Belykh, and M. Hasler. Connection graph stability method for synchronized coupled chaotic systems.

Physica D, 195:159–187, 2004.

[14] C. G. Mayhew, R. G. Sanfelice, J. Sheng, M. Arcak, and A. R. Teel. Quaternion-based hybrid feedback for robust global

attitude synchronization. IEEE Transactions on Automatic Control, 57(8):2122–2127, 2012.



[15] P. Li, J. Cao, and Z. Wang. Robust impulsive synchronization of coupled delayed neural networks with uncertainties.

Physica A-Statistical Mechanics and Its Applications, 373:261–272, 2007.

[16] J. Liang, Z. Wang, X. Liu, and P. Louvieris. Robust synchronization for 2-D discrete-time coupled dynamical networks.

IEEE Transactions on Neural Networks and Learning Systems, 23(6):942–953, 2012.

[17] B. S. Chen, C. H. Chiang, and S. K. Nguang. Robust H∞ synchronization design of nonlinear coupled network via fuzzy

interpolation method. IEEE Transactions on Circuits and Systems-I, 58(2):349–362, 2011.

[18] D. Han, G. Chesi, and Y. S. Hung. Robust consensus for a class of uncertain multi-agent dynamical systems. IEEE

Transactions on Industrial Informatics, 9(1):306–312, 2013.

[19] D. Han and G. Chesi. Robust consensus for uncertain multi-agent systems with discrete-time dynamics. International

Journal of Robust and Nonlinear Control, Jan. 2013. DIO:10.1002/rnc.2968.

[20] J. Liang, Z. Wang, Y. Liu, and X. Liu. Robust synchronization of an array of coupled stochastic discrete-time delayed

neural networks. IEEE Transactions on Neural Networks, 19(11):1910–1921, 2008.

[21] G. Chesi, A. Garulli, A. Tesi, and A. Vicino. Polynomially parameter-dependent Lyapunov functions for robust stability

of polytopic systems: an LMI approach. IEEE Transactions on Automatic Control, 50(3):365–370, 2005.

[22] D. Peaucelle, D. Arzelier, O. Bachelier, and J. Bernussou. A new robust D-stability condition for real convex polytopic

uncertainty. Systems and Control Letters, 40(1):21–30, 2000.

[23] W. Yu, G. Chen, and M. Cao. Consensus in directed network of agents with nonlinear dynamics. IEEE Transactions on

Automatic Control, 56(6):1436–1441, 2011.

[24] D. Han and G. Chesi. Synchronization conditions for multi-agent systems with intrinsic nonlinear dynamics. IEEE

Transactions on Circuits and Systems-II, 60(4):227–231, 2013.

[25] G. Chesi. LMI techniques for optimization over polynomials in control: a survey. IEEE Transactions on Automatic Control,

55(11):2500–2510, 2010.

[26] G. Chesi, A. Garulli, A. Tesi, and A. Vicino. Homogeneous Polynomial Forms for Robustness Analysis of Uncertain

Systems. Springer-Verlag, 2009.

[27] M. Krstic, P. V. Kokotovic, and I. Kanellakopoulos. Nonlinear and Adaptive Control Design. John Wiley & Sons, Inc.,

New York, NY, USA, 1st edition, 1995.

[28] P. Li, J. Lam, and G. Chesi. On the synthesis of linear H-infinity filters for polynomial systems. Systems and Control

Letters, 61(1):31–36, 2012.


