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Abstract— This paper addresses robust consensus problems
among multiple agents with uncertain parameters constrained
in a given set. Specifically, the network coefficients are supposed
polynomial functions of an uncertain vector constrained in
a set described by polynomial inequalities. First, the paper
provides a necessary and sufficient condition for robust first-
order consensus based on the eigenvalues of the uncertain
Laplacian matrix. Based on this condition, a sufficient condition
for robust first-order consensus is derived by solving a linear
matrix inequality (LMI) problem built by exploiting sum-
of-squares (SOS) polynomials. Then, the paper provides a
necessary and sufficient condition for robust second-order
consensus through the uncertain expanded Laplacian matrix
and Lyapunov stability theory. Based on this condition, a
sufficient condition for robust second-order consensus is derived
by solving an LMI problem built by exploiting SOS matrix
polynomials. Some numerical examples illustrate the proposed
results.

I. INTRODUCTION

Multi-agent dynamical systems are widely employed to
model collective behaviors in various areas, such as fauna
movements, insects clustering, sensor communications and
robust rendezvous [1]–[4]. Reaching consensus among au-
tonomous agents has attracted numerous attentions and a
considerable number of studies have been made to achieve
coordinative agreements for dynamic networks [5]–[7]. Tra-
ditional research topics focus on the efficiency of algorithms
to obtain consensus according to the deterministic dynamical
system. On account of the motion of individual vehicle,
communication link failure and unexpected noise interfere,
an increasing number of studies have focused on transform-
ing network topology. Also, by adopting algebraic graph
theory and constructing Erdos-Renyi random graph models,
stochastic dynamical systems can be properly simulated, thus
providing a foundation for further research on synchroniza-
tion protocols with ergodic properties. See e.g. [8]–[13] and
references therein.

In the basic studies, the dynamical multi-agent networks
used to address consensus problems are assumed to be exact-
ly known. Such studies have been generalized by addressing
consensus problems in the case of uncertain dynamical multi-
agent networks. Switching topologies, as a main approach
to model altering structures, exploit Laplacian graphs sim-
ulating the binomial status of communication links as “on”
or “off” in the graph evolving processes [14]–[17]. Other
assumptions, such as time delay on information exchange,
are investigated to model realistic autonomous multi-vehicle
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systems [18]–[20]. Moreover, nonlinear multi-agent systems
with proximity graphs and delayed communications are also
considered to model time-varying topological structure [21].

This paper addresses robust consensus problems among
multiple agents with uncertain parameters constrained in a
given set. Specifically, the network coefficients are supposed
polynomial functions of an uncertain vector constrained in
a set described by polynomial inequalities. First, the paper
provides a necessary and sufficient condition for robust first-
order consensus based on the eigenvalues of the uncertain
Laplacian matrix. Based on this condition, a sufficient con-
dition for robust first-order consensus is derived by solving
a linear matrix inequality (LMI) problem built by exploiting
sum-of-squares (SOS) polynomials (see e.g. [22] about LMIs
and [23] and references therein about SOS polynomials).
Then, the paper provides a necessary and sufficient condition
for robust second-order consensus through the uncertain
expanded Laplacian matrix and Lyapunov stability theory.
Based on this condition, a sufficient condition for robust
second-order consensus is derived by solving an LMI prob-
lem built by exploiting SOS matrix polynomials. Some
numerical examples illustrate the proposed results.

The paper is organized as follows. Section II provides the
problem formulation and some preliminaries about graph
theory and SOS polynomials. In Section III, the proposed
conditions for robust first-order and second-order consensus
are provided. In Section IV, some numerical examples are
reported. Lastly, Section V concludes the paper with some
final remarks.

II. PRELIMINARIES

A. Problem Formulation

The notation used throughout the paper is as follows:

- N,R: natural and real number sets;
- A′: transpose ofA;
- A > 0 (A ≥ 0): symmetric positive definite (semidefi-

nite) matrixA;
- 0n: origin of Rn;
- 1n = (1, . . . , 1)′Rn;
- In: n× n identity matrix;
- img(A): image of matrixA;
- ker(A): null space of matrixA.

A group of nodes of multi-agent dynamical system of or-
dern is defined by a finite, nonempty setA = {A1, ..., An},
and the weighted directed graph ofA is described byG =
(A , E , G), whereE is the set of directed edges belonging to
A ×A andG is the weighted adjacency matrix displayed by



G = (Gij)n×n. In graphG , a directed edge fromAj to Ai is
defined byGij and it represents an information transmitting
channel from thej-th node to thei-th node, where vehicle
Aj and vehicleAi are called parent node and child node,
respectively. There is a directed edge inG if and only if
Gij 6= 0. The pseudodigraph is considered in this paper to
model the communicative topology of multi-agent system
with all the edges being positively weighted.

In graphG , a directed path fromAi to Aj is denoted by
a sequence of edges (Ai, Ai1),(Ai1, Ai2),...,(Ail, Aj ) in the
directed network with distinct nodesAik, k = 1, . . . , l. A
graphG is a strongly connected graph on the condition that
there is a directed path between any pair of distinct notes
Ai andAj [24]. A root is defined by a node of the property
that, for any nodei different fromj, there is a directed path
from i to j. If graph G is a directed graph and there is
exactly one root and expect the root, every node inG has
exactly one parent, we callG a directed tree. A spanning tree
of a directed graph is a directed tree in which graph edges
connect all the nodes of the graph [25]. Hence for a multi-
vertex graph of ordern, a spanning tree containsn vertices
and hasn−1 edges. If any subset of edges contains or forms
a spanning tree, we say that the graph has a spanning tree.

In this paper, we consider uncertain multi-agent dynamical
systems. For robust first-order consensus, the continuous-
time model for a network withn agents can be expressed
by

ẋi(t) =

n
∑

j=1, j 6=i

Gij(θ)(xj(t)− xi(t)), i = 1, . . . , n (1)

where xi ∈ R is the state of thei-th node,θ ∈ R
r is

an uncertain vector, andGij : R
r → R is the (i, j)-th

entry of the uncertain weighted adjacency matrixG(θ) =
(Gij(θ))n×n. The uncertain vectorθ is constrained as

θ ∈ Ω (2)

where

Ω = {θ ∈ R
r : si(θ) ≥ 0 ∀i = 1, . . . , h} (3)

for somes1, . . . , sh : Rr → R. In the sequel we will assume
that the uncertain multi-agent dynamical systems is described
by a pseudodigraph, i.e. thatGij(θ) ≥ 0 for all θ ∈ Θ.
Moreover, we will assume thatG(θ) and s1(θ), . . . , sh(θ)
are polynomial functions.

The first problem considered in this paper concerns robust
first-order consensus, and it is defined as follows.

Problem 1. To establish if, for any initial state, the
uncertain multi-agent dynamical system (1) achieves robust
first-order consensus, i.e.

lim
t→∞

xi(t)− xj(t) = 0 ∀θ ∈ Ω. (4)

In order to address this problem, we rewrite the uncertain
multi-agent dynamical system (1) as

ẋ(t) = −L(θ)x(t) (5)

wherex = (x1, . . . , xn) ∈ R
n is the state vector, andL(θ) =

(Lij(θ))n×n is the uncertain Laplacian matrix given by

Lij(θ) = −Gij(θ) ∀i 6= j

Lii(θ) = −
∑n

j=1, j 6=i Lij(θ).
(6)

It is worth pointing out that the uncertain Laplacian matrix
has the diffusion property that

n
∑

j=1

Lij(θ) = 0 ∀i = 1, . . . , n. (7)

The second problem considered in this paper concerns
robust second-order consensus. Specifically, let us consider
the system

ẋi(t) = ρi(t)

ρ̇i(t) =

n
∑

j=1, j 6=i

αGij(θ)(xj(t)− xi(t))

+
n
∑

j=1, j 6=i

βGij(θ)(ρj(t)− ρi(t))

(8)

wherexi ∈ R is the position state of thei-th node,ρi ∈ R is
the velocity state of thei-th node, andα, β ∈ R are constants.

Problem 2. To establish if, for any initial state, the
uncertain multi-agent dynamical system (8) achieves robust
second-order consensus, i.e.

lim
t→∞

xi(t)− xj(t) = 0

lim
t→∞

ρi(t)− ρj(t) = 0.
(9)

In order to address this problem, we rewrite the uncertain
multi-agent dynamical system (8) as

ẋi(t) = ρi(t)

ρ̇i(t) = −

n
∑

j=1

αLij(θ)xj(t) +

n
∑

j=1

βLij(θ)ρj(t).

(10)
By defining the position state vectorx = (x1, . . . , xn) ∈ R

n,
the velocity state vectorρ = (ρ1, . . . , ρn) ∈ R

n and the
global state vectory = (x′, ρ′)′ ∈ R

2n, this system can be
rewritten in compact form as

ẏ(t) = L̃(θ)y(t) (11)

whereL̃(θ) is the uncertain extended Laplacian matrix given
by

L̃(θ) =

[

0 I

−αL(θ) −βL(θ)

]

. (12)

B. SOS Polynomials

An useful way of establishing whether a (multivariate)
polynomial is nonnegative consists of establishing whether
it is a SOS polynomial. In fact, the latter task amounts to
solving an LMI problem.

Specifically, letf(x) be a polynomial of degree2m in
x ∈ R

r. Then,f(x) can be written as

f(x) = x{m}′

(F + C(δ))x{m} (13)



wherex{m} is a vector containing all monomials of degree
less than or equal tom in x, F is a symmetric matrix, and
C(δ) is a linear parametrization of the linear subspace

C =
{

C = C′ : x{m}′

Cx{m} = 0
}

. (14)

The representation (13) is known as Gram matrix method
[26] and square matrix representation (SMR) [27]. This rep-
resentation was introduced in [27] for establishing whether
a polynomial is SOS via LMIs. Indeed,f(x) is SOS if there
exist polynomialsf1(x), f2(x), . . . such that

f(x) =
∑

i

fi(x)
2 (15)

and this condition holds if and only if there existsδ such
that the following LMI feasibility test holds:

F + C(δ) ≥ 0. (16)

This techniques can also be used in the case of matrix
polynomials. Specifically, letM(x) be a symmetric matrix
polynomial of sizes×s of degree2m in x ∈ R

r (this means
that all the entries ofM(x) are polynomials of degree2m
in x). Then,M(x) can be written as

M(x) = (x{m} ⊗ Is)
′(M̄ +D(δ))(x{m} ⊗ Is) (17)

where M̄ is a symmetric matrix, andD(δ) is a linear
parametrization of the linear subspace

D =
{

D = D′ : (x{m} ⊗ Is)
′D(x{m} ⊗ Is) = 0

}

. (18)

The representation (13) was introduced in [28] for estab-
lishing whether a matrix polynomial is SOS via LMIs.
Indeed,M(x) is SOS if there exist matrix polynomials
M1(x),M2(x), . . . such that

M(x) =
∑

i

Mi(x)
′Mi(x) (19)

and this condition holds if and only if there existsδ such
that the following LMI feasibility test holds:

M̄ +D(δ) ≥ 0. (20)

It is worth mentioning that SOS polynomials have been
exploited in optimization over polynomials since a long time,
in particular [29] has been one of the pioneering works on
this topic. The reader is also referred to the survey [23]
and references therein for details and algorithms about SOS
polynomials.

III. C ONDITIONS FORROBUST CONSENSUS

In this section we derive the proposed conditions for robust
first-order and second-order consensus.

A. Robust First-Order Consensus

For graphG = (A , E , G), it has been found that the
consensus of the directed network is determined by the
topological structure. The following theorem extends to the
case of uncertain multi-agent dynamical systems three exist-
ing conditions found for the case of multi-agent dynamical
systems without uncertainty [14], and provides a further
condition in terms of zeros of a polynomial.

Theorem 1: For a given uncertain Laplacian matrixL(θ)
in (6) and networkG = (A , E , G) with uncertain parame-
ters, the following four statements are equivalent.

a) Robust first-order consensus can be achieved.
b) ∀θ ∈ Ω, L(θ) has exactly one simple eigenvalue0 and

all the other eigenvalues have positive parts.
c) ∀θ ∈ Ω, the directed graphG has a spanning tree.
d) ∀θ ∈ Ω, q(θ) 6= 0, where

q(θ) =
d

dλ
l(λ, θ)

∣

∣

∣

∣

λ=0

(21)

and
l(λ, θ) = det(λI − L(θ)). (22)

Proof Assume the Laplacian matrixL(θ) is constructed
by (6). Then, the first three statements are equivalent and
follow directly from the analogous ones found for the case
of multi-agent dynamical systems without uncertainty [14].
From Lemma 3.3 in [14], one has thatℜ(λi(L(θ))) ≥ 0,
∀i = 1, 2..., n, ∀θ ∈ Ω. Moreover, statement d) implies
that L(θ) has exactly one zero eigenvalue,∀θ ∈ Ω. Thus,
statements b) and d) are equivalent. Therefore, the theorem
holds. �

One way of checking condition d) in Theorem 1 consists
of using SOS polynomials and amounts to solving an LMI
problem. Specifically, define

c∗ = sup
c,gi(θ)

c

s.t.











gi(θ) is SOS

(−1)kq(θ)− c−

h
∑

i=1

gi(θ)si(θ) is SOS

(23)

wherek ∈ {0, 1} is defined as

k =

{

0 if q(θ0) > 0
1 otherwise

(24)

and θ0 is any vectorθ in Ω which can be freely chosen.
Then, condition d) in Theorem 1 holds ifc∗ > 0.

Indeed, it turns out thatc∗ is a lower bound ofq(θ) (if
q(θ0) > 0) or−q(θ) (otherwise) forθ ∈ Ω. In fact, whenever
the constraints in (23) hold, for anyθ ∈ Ω it follows that

0 ≤ (−1)kq(θ)− c−

h
∑

i=1

gi(θ)si(θ)

≤ (−1)kq(θ)− c

(25)

i.e. c is a lower bound of(−1)kq(θ) for θ ∈ Ω.
The quantityc∗ in (23) can be found by solving an LMI

problem by using the representation of polynomials reported



in Section II. Indeed, let2mi be the degree ofgi(θ) and2m0

be the degree of(−1)kq(θ) − c −
∑h

i=1 gi(θ)si(θ). Let us
introduce the representations

gi(θ) = θ{mi}
′

Giθ
{mi}

gi(θ)si(θ) = θ{m0}
′

Ui(Gi)θ
{m0}

(−1)kq(θ) = θ{m0}
′

(F + C(δ))θ{m0}

1 = θ{m0}
′

Wθ{m0}

(26)

whereGi, Ui(Gi), F , C(δ) andW are symmetric matrices.
Then,

c∗ = sup
c,Gi,δ

c

s.t.











Gi ≥ 0

F + C(δ)− cW −

h
∑

i=1

Ui(Gi) ≥ 0.

(27)

Problem (27) is a convex optimization problem with linear
cost function and LMI constraints, known as eigenvalue
problem and semidefinite program [22].

B. Robust Second-Order Consensus

Let us consider the problem of establishing robust second-
order consensus. For this problem, we exploit the uncertain
expanded Laplacian matrix̃L(θ). First of all, let us introduce
the following preliminary result, which extends to the caseof
uncertain multi-agent dynamical systems the condition given
in [20] for the case of multi-agent dynamical systems without
uncertainty.

Lemma 1: For all θ ∈ Ω, robust second-order consensus
for the uncertain multi-agent dynamical system (11) can be
obtained if and only if−L̃(θ) has only one zero eigenvalue
of algebraic multiplicity two and all the other eigenvalues
are in the open right half plane.

Starting from this result, we provide a new condition for
investigating robust second-order consensus based on matrix
inequalities. Specifically, definew1 = 1n, w2 = 0n, w3 =
0n−1 and the vectors

u1 =

(

w1

w2

)

, u2 =

(

w3

w1

)

. (28)

Let V1 ∈ R
2n×2n−1 andV2 ∈ R

2n−1×2n−2 be matrices such
that

img(V1) = ker(u′
1), img(V2) = ker(u′

2). (29)

Let us define the transformed uncertain expanded Laplacian
matrix:

L̆(θ) = −V ′
2V

′
1 L̃(θ)V1V2. (30)

Theorem 2: Robust second-order consensus can be
achieved if and only if there exists a functionP : Rr →
R

2n−2×2n−2 such that
{

P (θ) > 0

P (θ)L̆(θ) + L̆(θ)′P (θ) > 0
∀θ ∈ Ω. (31)

Proof Let us observe thatu1 is an eigenvector of̃L(θ)
corresponding to the eigenvalue zero. Moreover, observe that
V ′
1 L̃(θ)V1 has the same eigenvalues ofL̃(θ) except that

the algebraic multiplicity of the eigenvalue zero has been
decreased of one. Similarly, it follows thatV ′

2V
′
1 L̃(θ)V1V2

has the same eigenvalues ofL̃(θ) except that the algebraic
multiplicity of the eigenvalue zero has been decreased of
two. Hence, from Lemma 1, it follows that robust second-
order consensus can be achieved if and only if−L̃(θ) has
all the eigenvalues in the open right half plane for allθ ∈ Ω.
From Lyapunov stability theorem for linear systems, this is
equivalent to say that there existsP (θ) such that (31) holds
for all θ ∈ Ω. Therefore, the theorem holds. �

In order to investigate the condition of Theorem 2, we can
exploit SOS matrix polynomials. Specifically, letP (θ) and
Gi(θ), i = 1, . . . , h, be symmetric matrix polynomials to be
determined, and define

R(θ) = P (θ)L̆(θ) + L̆(θ)′P (θ)−

h
∑

i=1

Gi(θ)si(θ). (32)

It is easy to verify that (31) holds if there existsc > 0 such
that







Gi(θ) is SOS
P (θ)− I2n−2 is SOS
R(θ)− cI2n−2 is SOS.

(33)

In fact, whenever the constraints in (33) hold withc > 0, for
any θ ∈ Ω it follows thatGi(θ) ≥ 0, P (θ) > 0 and

0 ≤ P (θ)L̆(θ) + L̆(θ)′P (θ)−

h
∑

i=1

Gi(θ)si(θ)− cI2n−2

≤ P (θ)L̆(θ) + L̆(θ)′P (θ)− cI2n−2

≤ P (θ)L̆(θ) + L̆(θ)′P (θ)
(34)

i.e. (31) holds.
The condition (33) can be formulated via a convex

optimization problem with LMI constraints by using the
representation of matrix polynomials reported in Section II.
Indeed, let2mi be the degree ofGi(θ), 2m be the degree of
P (θ), and2m0 be the degree ofR(θ)− cI. Let us introduce
the representations

Gi(θ) = (θ{mi} ⊗ I2n−2)
′Ḡi(θ

{mi} ⊗ I2n−2)
Gi(θ)si(θ) = (θ{m0} ⊗ I2n−2)

′Ūi(Ḡi)(θ
{m0} ⊗ I2n−2)

P (θ) = (θ{m} ⊗ I2n−2)
′P̄ (θ{m} ⊗ I2n−2)

R(θ) = (θ{m0} ⊗ I2n−2)
′(F̄ +D(δ))(θ{m0} ⊗ I2n−2)

(35)
whereḠi, Ūi(Ḡi), P̄ , F̄ andD(δ) are symmetric matrices.
Then, define

c∗ = sup
c,Ḡi,P̄ ,δ

c

s.t.



















Ḡi ≥ 0
P̄ ≥ Is1

F̄ +D(δ)− cIs2 −

h
∑

i=1

Ūi(Ḡi) ≥ 0

(36)

wheres1 ands2 are the sizes of̄P andF̄ , respectively. Then,
it directly follows that (31) holds ifc∗ > 0.



IV. NUMERICAL EXAMPLES

In this section, a couple of simulation examples are
provided to illustrate the proposed approach both for first-
order consensus and for second-order consensus.

A. Example 1

Fig. 1. Multi-agent system considered in Example 1.

In this example we consider the multi-agent system shown
in Figure 1. It is assumed that the network is affected by an
uncertain parameter, specifically

G(θ) =









1 0 θ + 1 0
3θ 1 0 0
0 2− θ 1 0

3θ + 2 0 0 1









whereθ is constrained in the setΩ chosen as

Ω = [0, 1].

Hence, we haven = 4 and r = 1. Moreover,Ω can be
described as in (3) with

s1(θ) = θ(1− θ).

According to (6), the Laplacian matrixL(θ) is given by:

L(θ) =









θ + 1 0 −θ − 1 0
−3θ 3θ 0 0
0 θ − 2 2− θ 0

−3θ − 2 0 0 3θ + 2









.

To establish whether this uncertain network is able to
achieve robust first-order consensus, let us use Theorem 1.
In particular, the polynomialq(θ) in (21) is given by:

q(θ) = 3θ3 + 2θ2 − 56θ− 4.

According to condition d) in Theorem 1, robust first-order
consensus is achieved if and only ifq(θ) 6= 0 for all θ ∈
[0, 1]. In this case, it is easy to see thatq(θ) satisfies this
property sinceq(θ) is an univariate polynomial with all roots
outside lying outside[0, 1]. Nevertheless, let us compute the
quantity c∗ in (27). We have thatk = −1, and by simply
choosing multiplierg1(θ) of degree2 we findc∗ = 4, which
proves that condition d) in Theorem 1 is satisfied.

Next, let us consider the problem of establishing whether
this uncertain network is able to achieve robust second-
order consensus. We chooseα = β = 1 in the system (8),
and we use Theorem 2 by looking for a constant matrix
functionP (θ) satisfying (31). By solving (36) we findc∗ =

+∞, i.e. (33) holds with any positive scalarc. Therefore,
robust second-order consensus is achieved. In this case, the
uncertain extended Laplacian matrix is given by

























0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
l1 0 −l1 0 l1 0 −l1 0
l2 −l2 0 0 l2 −l2 0 0
0 l3 −l3 0 0 l3 −l3 0
l4 0 0 −l4 l4 0 0 −l4

























wherel1 = −θ − 1, l2 = 3θ, l3 = 2− θ, l4 = 3θ + 2.

B. Example 2

In this example we consider the uncertain matrixG(θ)
given by

G(θ) =









1 2− 2θ2 0 2
0 1 1− θ1 0
1 0 1 1− θ2
0 2− θ1 0 1









whereθ ∈ R
2 is constrained in the setΩ chosen as

Ω = [−1, 1]2.

Hence, we haven = 4 and r = 2. Moreover,Ω can be
described as in (3) with

si(θ) = 1− θ2i ∀i = 1, 2.

According to (6), the Laplacian matrixL(θ) is given by:

L(θ) =









4− 2θ2 2θ2 − 2 0 −2
0 1− θ1 θ1 − 1 0
−1 0 2− θ2 θ2 − 1
0 θ1 − 2 0 2− θ1









To establish whether this uncertain network is able to
achieve robust first-order consensus, let us use Theorem 1.
In particular, the polynomialq(θ) in (21) is given by:

q(θ) = 2θ21θ2−5θ21+4θ1θ
2
2−20θ1θ2+29θ1−6θ22+26θ2−32.

According to condition d) in Theorem 1, robust first-order
consensus is achieved if and only ifq(θ) 6= 0 for all θ ∈
[−1, 1]2. Let us compute the quantityc∗ in (27). We have
that k = −1, and by simply choosing multiplierg1(θ) of
degree2 we find c∗ = 2, which proves that condition d) in
Theorem 1 is satisfied.

Next, let us consider the problem of establishing whether
this uncertain network is able to achieve robust second-order
consensus. We chooseα = 1 andβ = 0.6 in the system (8),
and we use Theorem 2 by looking for a constant matrix
functionP (θ) satisfying (31). By solving (36) we findc∗ =
−0.252, which does not prove (33). We repeat the procedure
by looking for a matrix functionP (θ) of degree2, and we
find c∗ = +∞, i.e. (33) holds with any positive scalarc.



Therefore, robust second-order consensus is achieved. In this
case, the uncertain extended Laplacian matrix is given by
























0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
l1 l2 0 2 0.6l1 0.6l2 0 1.2
0 l3 −l3 0 0 0.6l3 −0.6l3 0
1 0 0.5l1 0.5l2 0.6 0 0.3l1 0.3l2
0 l4 0 −l4 0 0.6l4 0 −0.6l4

























wherel1 = 2θ2 − 4, l2 = 2− 2θ2, l3 = θ1 − 1, l4 = 2− θ1.

V. CONCLUSIONS

In this paper we have addressed the problems of es-
tablishing robust first-order and second-order consensus in
uncertain multi-agent dynamical systems. For these problems
we have provided necessary and sufficient conditions based
on the properties of the uncertain Laplacian matrix and
Lyapunov stability theory, and we have derived sufficient
conditions that amount to solving LMI problems built by
exploiting SOS matrix polynomials.
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