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Abstract— This paper addresses robust consensus problems systems [18]-[20]. Moreover, nonlinear multi-agent syste
among multiple agents with uncertain parameters constraied  with proximity graphs and delayed communications are also
in a given set. Specifically, the network coefficients are sygosed considered to model time-varying topological structur#][2

polynomial functions of an uncertain vector constrained in Thi dd bust bl
a set described by polynomial inequalities. First, the pape IS paper addrésses robust consensus probléms among

provides a necessary and sufficient condition for robust firs ~ Multiple agents with uncertain parameters constrained in a
order consensus based on the eigenvalues of the uncertain given set. Specifically, the network coefficients are supgos
Laplacian matrix. Based on this condition, a sufficient condtion polynomial functions of an uncertain vector constrained in
for robust first-order consensus is derived by solving a linar 5 get gescribed by polynomial inequalities. First, the pape
matrix inequality (LMI) problem built by exploiting sum- . - ", .
of-squares (SOS) polynomials. Then, the paper provides a provides a necessary and sufﬁmem condition for robugt firs .
necessary and sufficient condition for robust second-order Order consensus based on the eigenvalues of the uncertain
consensus through the uncertain expanded Laplacian matrix Laplacian matrix. Based on this condition, a sufficient con-
anfcz_ !_yatpun%v_t_stafbilitybthetory. BZSG% on this CO“ditGian, da dition for robust first-order consensus is derived by savin
sutricient condition 1or robust second-oraer consensus isarive ; H H i e
by solving an LMI problem built by exploiting SOS matrix a linear matrix inequality (LMI) problem built by exploitg
polynomials. Some numerical examples illustrate the propsed sum-of-squares (SOS) polynom!als (see e.g. [22] about ITMIs
results. and [23] and references therein about SOS polynomials).
Then, the paper provides a necessary and sufficient conditio
. INTRODUCTION for robust second-order consensus through the uncertain
Multi-agent dynamical systems are widely employed t@xpanded Laplacian matrix and Lyapunov stability theory.
model collective behaviors in various areas, such as fauBased on this condition, a sufficient condition for robust
movements, insects clustering, sensor communications aggcond-order consensus is derived by solving an LMI prob-
robust rendezvous [1]-[4]. Reaching consensus among dem built by exploiting SOS matrix polynomials. Some
tonomous agents has attracted numerous attentions anchuanerical examples illustrate the proposed results.
considerable number of studies have been made to achieverhe paper is organized as follows. Section Il provides the
coordinative agreements for dynamic networks [5]-[7].-Traproblem formulation and some preliminaries about graph
ditional research topics focus on the efficiency of algonish theory and SOS polynomials. In Section Ill, the proposed
to obtain consensus according to the deterministic dyra@micconditions for robust first-order and second-order consens
system. On account of the motion of individual vehicleare provided. In Section IV, some numerical examples are
communication link failure and unexpected noise interfer@eported. Lastly, Section V concludes the paper with some
an increasing number of studies have focused on transforfinal remarks.
ing network topology. Also, by adopting algebraic graph
theory and constructing Erdos-Renyi random graph models, Il. PRELIMINARIES
stochastic dynamical systems can be properly simulated, thy  prgplem Formulation
providing a foundation for further research on synchroniza ) . )
tion protocols with ergodic properties. See e.g. [8]-[131 a The notation used throughout the paper is as follows:
references therein. - N, R: natural and real number sets;
In the basic studies, the dynamical multi-agent networks - A’: transpose of4;
used to address consensus problems are assumed to be exact-4 > 0 (4 > 0): symmetric positive definite (semidefi-
ly known. Such studies have been generalized by addressing hite) matrix 4;
consensus problems in the case of uncertain dynamicalmulti - 05! origin of R™;
agent networks. Switching topologies, as a main approach- 1. = (1,...,1)'R™;
to model altering structures, exploit Laplacian graphs-sim - In: n X n identity matrix;
ulating the binomial status of communication links as “on” - img(A): image of matrixA;
or “off” in the graph evolving processes [14]-[17]. Other - ker(A): null space of matrixA.
assumptions, such as time delay on information exchange,A group of nodes of multi-agent dynamical system of or-
are investigated to model realistic autonomous multi-clehi dern is defined by a finite, nonempty set = { A1, ..., A,,},
_ _ and the weighted directed graph .of is described bys =
All authors are with the Department of Electrical and Elecic En- . . .
gineering, University of Hong Kong, Pokfulam Road, Hong Kgofe- ('Q{’ &, G)’ where¢’ is the set of directed edges belonging to
mail:dkhan@eee.hku.hk) o x of andG is the weighted adjacency matrix displayed by



G = (Gij)nxn- In graph?, a directed edge from; to A; is  wherex = (z1,...,2,) € R" is the state vector, antl(f) =
defined byG;; and it represents an information transmitting(L;; (6))»x» IS the uncertain Laplacian matrix given by
channel from thej-th node to thei-th node, where vehicle oo
A; and vehicleA; are called parent node and child node, Li;(9) B —Gy(0) Vi # (6)
respectively. There is a directed edge%hif and only if Li(0) = =X, jziLis(9)-
Gi; # 0. The pseudodigraph is considered in this paper tg js worth pointing out that the uncertain Laplacian matrix
model the communicative topology of multi-agent systenhas the diffusion property that
with all the edges being positively weighted. .

In graph¥, a directed path fromd; to A; is denoted by (0 — L
a sequence of edgesi{ A;1),(Ai1, Ai2),...,(Ai1, A;) in the ;L” (6) =0 Vi=1,...,n. 0
directed network with distinct nodeg;;, £k = 1,...,1. A
graph¢ is a strongly connected graph on the condition that The second problem considered in this paper concerns
there is a directed path between any pair of distinct notégbust second-order consensus. Specifically, let us censid
A; and A; [24]. A root is defined by a node of the propertythe system

that, for any node different fromj, there is a directed path @) = pilt)

from i to j. If graph & is a directed graph and there is n

exactly one root and expect the root, every nod&/irhas pi(t) = Z aGii(0)(xz;(t) — (1))

exactly one parent, we cé&# a directed tree. A spanning tree j=1, j#i (8)
of a directed graph is a directed tree in which graph edges n

connect all the nodes of the graph [25]. Hence for a multi- + BGi;(0)(p;(t) — pi(t))
vertex graph of orden, a spanning tree containsvertices J=1, j#i

and hasiz— 1 edges. If any subset of edges contains or form@herex; € R is the position state of theth node,p; € R is
a spanning tree, we say that the graph has a spanning trqge velocity state of theth node, and, 3 € R are constants.
In this paper, we consider uncertain multi-agent dynamical proplem 2. To establish if, for any initial state, the

s_ystems. For robust first-orgler consensus, the continuoygycertain multi-agent dynamical system (8) achieves robus
time model for a network witm agents can be expressedsecond-order consensus, i.e.

by
. tir&xi(t)—xj(t) =0
B = 3 GOt — (), i=1,n @) lim i)~ (1) = 0. ©

J=1, j#i
In order to address this problem, we rewrite the uncertain

where z; € R is the state of the-th node,f# € R” is multi-agent dynamical system (8) as

an uncertain vector, and;; : R” — R is the (4, j)-th
entry of the uncertain weighted adjacency maifixd) = Ti(t) = pilt)
G;i(0))nxn. The uncertain vectof is constrained as . - -
(Gia (Ol pill) = =3 aLy(O0); (1) + 3 BLy(0)p;(0).

=1 =1

J J (10)
where By defining the position state vector= (z1,...,z,) € R,

, the velocity state vectop = (p1,...,pn) € R™ and the
Q={0eR": s(0) >0Vi=1,...,h} (3) global state vectoy = (2/,p')" € R?", this system can be

rewritten in compact form as

0e (2

for somesy, ..., sy : R — R. In the sequel we will assume
that the uncertain multi-agent dynamical systems is desdri y(t) = ﬂ(e)y(t) (11)
by a pseudodigraph, i.e. that;;(#) > 0 for all € ©. _ . _ o
Moreover, we will assume tha&(#) and s, (), ...,s,(0) WhereL(0) is the uncertain extended Laplacian matrix given
are polynomial functions.

The first problem considered in this paper concerns robust L) = 0 I ) (12)
first-order consensus, and it is defined as follows. —aL(9) —BL(0)

Problem 1. To establish if, for any initial state, the g 505 polynomials
uncertain multi-agent dynamical system (1) achieves robus

first-order consensus, i.e. An useful way of establishing whether a (multivariate)

polynomial is nonnegative consists of establishing whethe
lim z;(t) — x;(t) =0 V0 € Q. (4) itis a SOS polynomial. In fact, the latter task amounts to
troo solving an LMI problem.
In order to address this problem, we rewrite the uncertain Specifically, let f(z) be a polynomial of degre@m in
multi-agent dynamical system (1) as z € R". Then, f(z) can be written as

@(t) = —L(0)x(t) ) f@) = 2™V (F + C(5))atm (13)



wherez{"} is a vector containing all monomials of degreeA. Robust First-Order Consensus

less than or equal tee in z, F' is a symmetric matrix, and o graph¥ = («,&,G), it has been found that the
C(9) is a linear parametrization of the linear subspace  consensus of the directed network is determined by the
, topological structure. The following theorem extends te th
C= {C =C': gt Calm) = 0} : (14)  case of uncertain multi-agent dynamical systems threg-exis
ing conditions found for the case of multi-agent dynamical
The representation (13) is known as Gram matrix methasystems without uncertainty [14], and provides a further
[26] and square matrix representation (SMR) [27]. This repeondition in terms of zeros of a polynomial.
resentation was introduced in [27] for establishing whethe Theorem 1: For a given uncertain Laplacian matrix6)
a polynomial is SOS via LMIs. Indeedf(z) is SOS if there in (6) and network¥ = (&, &, G) with uncertain parame-

exist polynomialsf; (), fo(z), ... such that ters, the following four statements are equivalent.
a) Robust first-order consensus can be achieved.
fl@)=>" filx)® (15)  b) VO € Q, L(9) has exactly one simple eigenvaloend
i all the other eigenvalues have positive parts.

c) VO € Q, the directed grapl/ has a spanning tree.

and this condition holds if and only if there exisfssuch d) V0 € Q. g(0) £ 0, where

that the following LMI feasibility test holds:

d
PG >0, (16) a(0) = —1(A.0) - (21)
, : . . and
This techniques can also be used in the case of matrix I(\,0) = det(\ — L(6)). (22)

polynomials. Specifically, lef/ (x) be a symmetric matrix

polynomial of sizes x s of degree2m in z € R" (this means Proof Assume the Laplacian matrixX.(¢) is constructed
that all the entries of\/(x) are polynomials of degregm by (6). Then, the first three statements are equivalent and
in z). Then, M (z) can be written as follow directly from the analogous ones found for the case

of multi-agent dynamical systems without uncertainty [14]

M(z) = (z'™ @ LY (M + D(6))(z'"™ @ 1,)  (17) From Lemma 3.3 in [14], one has th&(\;(L(6))) > 0,

Vi = 1,2...,n, VO € Q. Moreover, statement d) implies
where M is a symmetric matrix, andD(6) is a linear that L() has exactly one zero eigenvalug) € Q. Thus,
parametrization of the linear subspace statements b) and d) are equivalent. Therefore, the theorem

holds. [

D= {D - D - (x{m} ® IS)'D(;L'{’”} ®I,) = 0}, (18) One way of checking condition d) in Theorem 1 consists

of using SOS polynomials and amounts to solving an LMI

The representation (13) was introduced in [28] for estatRroblem. Specifically, define

lishing whether a matrix polynomial is SOS via LMiIs. ¢t = sup ¢
Indeed, M (z) is SOS if there exist matrix polynomials c,gi(0)
M, (x), Ma(z), ... such that gi(0) is SOS (23)
h
S.t. .
M(x) = M;(x) M;(x) (19) (—=1)*q(0) —c = > gi(0)s:(0) is SOS

i i=1
and this condition holds if and only if there exisissuch wherek € {0,1} is defined as
that the following LMI feasibility test holds: 0 if g(6p) >0

k= ' (24)
1 otherwise

M+ D(5) 2 0. (20) and 0, is any vectorf in Q which can be freely chosen.

. o . Then, condition d) in Theorem 1 holdsdf > 0.
It is worth mentioning that SOS polynomials have been Indeed, it turns out that* is a lower bound of(6) (if

exploited in optimization over polynomials since a longeim q(60) > 0) or —q() (otherwise) ford € €. In fact, whenever

in particular [29] has been one of the pioneering works Othe constraints in (23) hold, for arye it follows that
this topic. The reader is also referred to the survey [23]

and references therein for details and algorithms about SOS & L
polynomials. 0 < (=1)%q0) —c— Z;giw)si(@) (25)

(—1)*q(0) —c

i.e. c is a lower bound of —1)*¢(6) for 6 € Q.
In this section we derive the proposed conditions for robust The quantityc* in (23) can be found by solving an LMI
first-order and second-order consensus. problem by using the representation of polynomials repbrte

IN

IIl. CONDITIONS FORROBUST CONSENSUS



in Section Il. Indeed, le2m; be the degree af;(0) and2m, the algebraic multiplicity of the eigenvalue zero has been
be the degree of—1)*q(6) — c — Zf‘zl g:(0)s;(). Let us decreased of one. Similarly, it follows thatVyL(0)V;Va
introduce the representations has the same eigenvalues bff) except that the algebraic
(0 plmiY gptmi} multiplicity of the eigenvalue zero has been decreased of
gi(0) = (mo}’ ' (mo) two. Hence, from Lemma 1, it follows that robust second-
) = 0V Ui(Gi)ote (26) order consensus can be achieved if and only-If(6) has
(—=D*q(0) = a{mo},(F +C(0))gtmod all the eigenvalues in the open right half plane foréait Q.
1 = gimodweimod From Lyapunov stability theorem for linear systems, this is

whereG;, U (Gy), F, C(6) andW are symmetric matrices. equivalent to say that there exig&#) such that (31) holds

Then for all § € Q. Therefore, the theorem holds. |
. In order to investigate the condition of Theorem 2, we can
¢ = pe exploit SOS matrix polynomials. Specifically, 1€(f) and
G. >0 Gi(0),i=1,...,h, be symmetric matrix polynomials to be
' (27)  determined, and define
U PrcE) - aw - ZU h
R(0) = P(O)L(0) + L(0) P(0) = > Gi(0)s:(0).  (32)
Problem (27) is a convex optimization problem with linear i=1
cost function and LMI constraints, known as eigenvalug g easy to verify that (31) holds if there exists> 0 such
problem and semidefinite program [22]. that
B. Robust Second-Order Consensus JGD%‘(;) iSISOS_ oS a3
Let us consider the problem of establishing robust second- RE9§ : ci’;kzglsi‘s Son (33)

order consensus. For this problem, we exploit the uncertain
expanded Laplacian matrik(¢). First of all, let us introduce In fact, whenever the constraints in (33) hold with- 0, for
the following preliminary result, which extends to the cage any 6 < Q it follows thatG;(6) > 0, P(§) > 0 and
uncertain multi-agent dynamical systems the conditiorgiv

in [20] for the case of multi-agent dynamical systems withou 9 o

uncertainty. 0 < P(O)L(O)+ L(0 Z Gi( — clan—2
Lemma 1: For all § € Q, robust second-order consensus o o

for the uncertain multi-agent dynamical system (11) can be = P(O)L(6) + L(0) P(0) — CI% 2

obtained if and only if-~L(6) has only one zero eigenvalue < P(O)L() + L(6)' P(6)

of algebraic multiplicity two and all the other eigenvalues (34)

are in the open right half plane. i.e. (31) holds.

Starting from this result, we provide a new condition for The condition (33) can be formulated via a convex
investigating robust second-order consensus based oixmatptimization problem with LMI constraints by using the

inequalities. Specifically, define; = 1,,, wo = 0, w3 = representation of matrix polynomials reported in Sectibn |
0,—1 and the vectors Indeed, le2m; be the degree of7; (), 2m be the degree of
w w P(6), and2m, be the degree oR(0) — cI. Let us introduce
uy = ( 1), Ug = ( 3). (28) the representations
w2 w1
LetV; € R2*2n—1 andV, € R?"~1%27=2 pe matrices such Gi(0) = (01" @ L) Gi (Q{ml} ® I2p—2)
that Gi(0)si(0) = (00"} @ Lop2)'Us(Gi) (01 @ Ipn o)
img(V1) = ker(u}), img(Va) = ker(uy).  (29) P() = (0'™ @ Ir-2)'P(OU™ @ I5,-»)
, _ , R(O) = (01} @ Inp_o) (F + D(8))(01™0} @ I, _5)
Let us define the transformed uncertain expanded Laplacian (35)
matrix: } ) whereG;, U;(G;), P, F and D(§) are symmetric matrices.
L(0) = Vo Vi L(0)V1 V2. (30) Then, define
Theorem 2. Robust second-order consensus can be = sup ¢
achieved if and only if there exists a functioh : R" — ¢,G;,P,5
R2n—2x2n=2 g ch that G; >0
P>1I,, (36)
PO >0 Ve,  (31) sit.
PO)L(O) + L(O)'P() >0

F+D 0) —cls, — ZU

Proof Let us observe that, is an eigenvector ofL(6) B B
corresponding to the eigenvalue zero. Moreover, obseate thwheres; ands, are the sizes of and ', respectively. Then,
VIL(6)V; has the same eigenvalues 6ff) except that it directly follows that (31) holds it* > 0.



IV. NUMERICAL EXAMPLES 400, i.e. (33) holds with any positive scalar Therefore,
In this section, a couple of simulation examples ar&obust second-order consensus is achieved. In this case, th

provided to illustrate the proposed approach both for firsfncertain extended Laplacian matrix is given by
order consensus and for second-order consensus. 00 0 0 0 .

0 1 0
A. Example 1 0 O 0 0 O 1 0 0
0 O 0 0O 0 O 1 0
0 O 0 0O 0 O 0 1
° e lh 0 =4y 0 I 0 =l4 O
lo =l 0 0 I -l O 0
0 I3 —-Il3 0 0 I3 -3 O
| a0 0 —ly Iy O 0 —ly |

wherel; = -0 —1,1o=30,13=2—-0, 1, =30 + 2.

@ Q B. Example 2

i _ _ _ In this example we consider the uncertain maifixo)
Fig. 1. Multi-agent system considered in Example 1.

given by
In this example we consider the multi-agent system shown 1 2—20, 0 92
in Figure 1. It is assumed that the network is affected by an 0 1 1—6, 0
uncertain parameter, specifically 0) = 1 0 1 1— 06
1 0 0+1 0 2-6, 0 1

30 1 0
0 2-46 1
30 +2 0 0

whered is constrained in the sé&? chosen as

G(0) = whered € R? is constrained in the sé€? chosen as

= O O O

Q=[-1,1>
Hence, we haven = 4 andr = 2. Moreover,{) can be
Q=10,1]. described as in (3) with

Hencg, we hr_:wen = 4 and r = 1. Moreover,{2 can be si(0)=1—02 Vi=1,2.
described as in (3) with

51(6) = 6(1 — ), According to (6), the Laplacian matrik(6) is given by:

According to (6), the Laplacian matrik(6) is given by: 4 _0292 2192 _02 ) 0 ' —02
o — V1 1 —
9+91 09 —0-—1 0 L(a)_ -1 0 2_02 92_1
_ -3 3 0 0 0 01 —2 0 2-—46
L) = 0o 60-2 2-6 0 | ! !
—30—-2 0 0 30 +2 To establish whether this uncertain network is able to

achieve robust first-order consensus, let us use Theorem 1.

To establish whether this uncertain network is able t? articular, the polynomiag(8) in (21) is given by:
achieve robust first-order consensus, let us use Theorem rl_p ’ poly 9 y:

In particular, the polynomia4(6) in (21) is given by: q(0) = 2020, — 502 +461 02 — 200,05+ 290, — 602+ 2605 —32.
3 2

q(0) = 30" + 207 = 560 — 4. According to condition d) in Theorem 1, robust first-order
According to condition d) in Theorem 1, robust first-ordeiconsensus is achieved if and onlydff) # 0 for all 6 €
consensus is achieved if and only¢if¢) # 0 for all § € [—1,1]%. Let us compute the quantity* in (27). We have
[0,1]. In this case, it is easy to see thgl) satisfies this thatk = —1, and by simply choosing multiplieg; (¢) of
property sincey(6) is an univariate polynomial with all roots degree2 we find ¢* = 2, which proves that condition d) in
outside lying outsidé0, 1]. Nevertheless, let us compute theTheorem 1 is satisfied.

quantity ¢* in (27). We have that = —1, and by simply Next, let us consider the problem of establishing whether
choosing multiplierg; (9) of degree2 we find¢* = 4, which  this uncertain network is able to achieve robust seconérord
proves that condition d) in Theorem 1 is satisfied. consensus. We choose= 1 and = 0.6 in the system (8),

Next, let us consider the problem of establishing whetheand we use Theorem 2 by looking for a constant matrix
this uncertain network is able to achieve robust secondunction P(0) satisfying (31). By solving (36) we find* =
order consensus. We choose= 5 = 1 in the system (8), —0.252, which does not prove (33). We repeat the procedure
and we use Theorem 2 by looking for a constant matriky looking for a matrix function”(6) of degree2, and we
function P(9) satisfying (31). By solving (36) we find* = find ¢* = 400, i.e. (33) holds with any positive scalar



Therefore, robust second-order consensus is achievduisin t[18] P. Bilman and G.Ferrari-Trecate.
case, the uncertain extended Laplacian matrix is given by

0
0

o o

o~
[ah

= O

0

0 0 0 1 0 0 0 ]
0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

Iy 0 2 0.6y 0.6l 0 1.2

I3 =l 0 0 0.6l3 —0.6l3 0

0 0.50; 0.5l 0.6 0 0.3l 0.312

ly. O —ly 0 0.6l 0 —0.6l4 |

Wherel1 2292—4, l2=2—292, l3=91—1, l4:2—01.
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