
On Estimating the Robust Domain of Attraction for Uncertain
Non-Polynomial Systems: An LMI Approach

Dongkun Han, and Matthias Althoff

Abstract— An increasingly important issue in the area of
uncertain systems is the estimation of the Robust Domain of
Attraction (RDA). Though this topic is of great interest, most
of attention has been paid to the RDA for uncertain polynomial
systems. This paper considers the RDA for rational polynomial
systems and non-polynomial systems, both with parametric
uncertainties, which are constrained in a semialgebraic set. The
main underlying idea is to reformulate the original system to
an uncertain rational polynomial system by using the truncated
Taylor expansion and the parameterizable remainder of non-
polynomial functions. A novel way to compute the largest
estimate of the RDA is proposed by using a given rational
Lyapunov function and the squared matrix representation
technique (SMR). Lastly, the benefits of this approach are
presented by a numerical example.

I. I NTRODUCTION

It is well known that estimating the RDA of an equilibrium
point is an interesting yet challenging problem for uncertain
systems. In fact, the RDA is usually a complicated set, which
is difficult to be expressed by an analytic representation
even for the uncertainty-free case [1]. In order to compute
the exact domain of attraction, some elegant methods are
proposed, e.g., the Zubov equation method and the maximal
Lyapunov function method [2]. However, the solution of
the Zubov equation and the maximal Lyapunov function
are not easy to be found in most cases. Fortunately, an
under-estimation method has been proven to be effective by
using the sublevel set of Lyapunov functions [1]. Especially
over the last decade, thanks to the rapid developments of
the Sum of Squares (SOS) technique and the semialgebraic
geometry [3]–[5], increasingly efficient methods have been
proposed based on semidefinite programming and Linear
Matrix Inequalities (LMI) [6]–[10].

An overwhelming majority of existing works is concerned
with polynomial systems, while recently there are two new
trends. The first trend is to study the RDA of uncertain
systems with parametric uncertainty, which is stimulated by
practical needs, e.g., circuit design with changing parameters
influenced by temperature, and stabilization of mechanical
system with time-varying loads [11]–[13]. In [11], the RDA
is computed for polynomial systems with bounded paramet-
ric uncertainties by using polynomial Lyapunov functions
and a branch-and-bound type procedure. By also using a Lya-
punov function method, the largest estimate of the RDA for
polynomial systems is computed by an SOS decomposition
[14], [15]. On the other hand, the demands for developments
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targeting non-polynomial systems and rational systems are
increasingly high, considering the practical requests in nu-
merous areas, e.g., for non-polynomial systems in robotic
arm modeling [16], airplanes in longitude flight [17], for
rational systems in enzyme-catalyzed interaction [18], and
metabolic networking organization [19]. With regard to non-
polynomial systems, researchers are interested in polynomial
approximation methods, like replacing the nonlinear terms
with new variables and recasting the state space to an
expanded one [17], covering the non-polynomial functions
into a convex hull of a group of polynomials [20]. In [21],
an approach is provided by using Chebychev points with a
chosen quadratic Lyapunov function for the uncertainty-free
case. Related to this work is the method of [22], where a
rational Lyapunov function is used to estimate the RDA of
uncertain polynomial systems. Unfortunately, the problem,
estimating the RDA for non-polynomial systems and for
rational polynomial systems with parametric uncertainties,
has never been considered, to the best knowledge of the
authors.

Motivated from the above, this work extends the result of
[22], [23] to the case of uncertain rational polynomial and
non-polynomial systems, and contributes in the following
three aspects:

• For the first time, the RDA is computed for both, an
uncertain model of rational polynomial functions and
a class of nonlinear functions with truncated Taylor
expansion, under the effect of parametric uncertainty,
which is constrained in a semialgebraic set.

• By introducing a new class of parameter-dependent
SOS and employing the SMR technique, a quasi-convex
optimization problem is formulated to compute the
largest estimate of the RDA via expanding the sublevel
set of a rational Lyapunov function.

• A necessary and sufficient condition is provided for the
tightness of the computed lower bound of the RDA.
This tightness can be established by a method which
first verifies whether a power vector is in a null space
and then verifies the vanishing of the derivative of the
selected Lyapunov function.

II. PRELIMINARIES

Notations: Nn,Rn: natural and real number sets with
dimensionn; R+: positive real number set;0n: origin of Rn;
R
n
0 : Rn\{0n}; Ai,j : element in thei-th row and in thej-th

column of matrixA; AT : transpose ofA; A > 0 (A ≥ 0):
symmetric positive definite (semidefinite) matrixA; A⊗B:



Kronecker product of matricesA andB; A ◦ B: element-
wise product (Hadamard Product) of matricesA andB of the
same dimension, i.e.,(A◦B)i,j = Ai,j ·Bi,j ; A⊘B: element-
wise division of matricesA andB of the same dimension,
i.e.,(A⊘B)i,j = Ai,j/Bi,j ; ker(A): null space of linear map
A; degx(f): degree of polynomial functionf(x) in x; ∇f :
gradient off(x), i.e., ∇f = ( ∂f

∂x1

, . . . , ∂f
∂xn

)T ; lcm(v): the
least common multiple of all the entries of vectorv ∈ R

n;
diag(v): a square diagonal matrix with the elements of vector
v ∈ R

n on the main diagonal;(∗)TAB in a form of SMR:
BTAB.

Let P be the set of polynomials andPn×m be the set of
matrix polynomials with dimensionn × m. A polynomial
p(x) ∈ P is nonnegative ifp(x) ≥ 0 for all x ∈ R

n.
An effective way of checking whetherp(x) is nonnegative
consists of checking whetherp(x) can be expressed as an
SOS, i.e.,p(x) =

∑l
i=1 pi(x)

2 for somep1, . . . , pl ∈ P . We
denote the set of SOS polynomials asPSOS. If p(x) ∈ PSOS

becomes0 only for x = 0n andp(x) is without monomials
of degree0 and1, we callp(x) local SOSwhich is denoted
by PSOS

0 .

A. Model Formulation

In this paper, we consider the following model:

ẋ(t) = f(x(t), θ) +

r∑

i=1

gi(x(t), θ)ζi(xai(t)), x ∈ D (1)

whereD ⊆ R
n is the domain,x ∈ R

n denotes the state
vector,x(0) = xinit ∈ R

n is the initial state,θ ∈ R
nθ denotes

the uncertain parameter vector,f(x(t), θ) ∈ R
n, are vector

rational polynomial functions which can be expressed as

f(x(t), θ) = fnum(x(t), θ) ⊘ fden(x(t), θ), (2)

gi(x(t), θ) = gnumi
(x(t), θ) ⊘ gdeni

(x(t), θ), (3)

in which⊘ denotes the element-wise division,fnum(x(t), θ),
fden(x(t), θ), gnumi

(x(t), θ), gdeni
(x(t), θ) ∈ Pn are vector

polynomial functions,ζ1(xai(t)), . . . , ζr(xai(t)) denote non-
polynomial functions anda1, . . . , ar ∈ {1, . . . , n} are the
indexes, satisfyingr < n. The uncertain parameterθ is in a
semialgebraic set

Θ = {θ ∈ R
nθ : a(θ) ≥ 0, b(θ) = 0} (4)

where a(θ) : R
nθ → R

na and b(θ) : R
nθ → R

nb are
polynomial functions. For the brevity of the presentation,the
dependence of functions on timet, statex(t) and parameter
θ will be omitted whenever reasonable.

In this paper, we are interested in estimating the RDA of
an equilibrium point. First, we introduce the definition of the
RDA of the origin [11], [13], i.e.,

R =
⋂

θ∈Θ

{
xinit ∈ R

n : lim
t→+∞

χ(t;xinit , θ) = 0n

}
,

whereχ(t;xinit , θ) denotes the solution of system (1) at time
t, starting from initial statexinit and using parameterθ.

In addition, we assume thatζi, i = 1, . . . , r, arek times
differentiable at the origin andk + 1 times differentiable

within the open interval(0, xai), thenζi could be rewritten
by a Taylor expansion evaluated at the origin as follows:

ζi(xai) = ηi(xai) + ξi
xk+1
ai

(k + 1)!
(5)

whereξi ∈ R is a bounded parameter,k denotes the trunca-
tion degree andηi(xai) is thek-th order Taylor polynomial:

ηi(xai) =

k∑

j=0

djζi(xai)

dxjai

∣∣∣∣
xai

=0

xjai
j!
. (6)

Remark 1:We exploit the parametersξi to over-
approximate the Taylor remainderζi(xai ) − ηi(xai), where
ξ = (ξ1, . . . , ξr)

T is in the orthotope

Ξ = [τ1, τ1]× · · · × [τ r, τ r] (7)

and τ i, τ i ∈ R, i = 1, . . . , r, are selected as the tightest
bounds fulfilling

τ i ≤
dk+1ζi(xai)

dxk+1
ai

∣∣∣∣
xai

=ι

≤ τ i (8)

for all ι ∈ I, whereI is a set chosen in the sublevel set of
a Lyapunov functionVxai

which will be introduced in the
next subsection.

Remark 2:The model (1) is a quite general one, including
a sum of products between a group of parameter-dependent
rational functions and a group of non-polynomial functions
ζi which are expressed by Taylor expansion with a pa-
rameterized remainder in Lagrange form. Previous models
considered for computing the domain of attraction [8], [11],
[13], [16], [17] are thus special cases of the model considered
in this work.

Example 1:Consider a deliberately simple 2-dimensional
system described by





ẋ1 =
−x1 − 5x52 − x21(θ1 + θ2)

1 + x22
− x2sin(x1)

ẋ2 =
1

θ1
− 2x2θ2 − 2x31 −

ex2

θ1

(9)

with 1 ≤ θ1 ≤ 2, 0 ≤ θ2 ≤ 1 and θ21 + θ22 − 2 = 0.
We can write this model in the form of (1) by choosing
fnum = (−x1− 5x52−x21(θ1+ θ2),−2x2θ2− 2x31)

T , fden =
(1 + x22, 1)

T , g1 = (x2, 0)
T , g2 = (0, 1

θ1
)T , ζ1 = sin(x1),

ζ2 = 1 − ex2 , a(θ) = (θ1 − 1, 2 − θ1, θ2, 1 − θ2)
T and

b(θ) = θ21+θ
2
2−2. Let us select the truncation degreek = 5,

by using the Taylor expansion ofζi one has




ẋ1 =
−x1 − 5x52 − x21(θ1 + θ2)

1 + x22

− x2

(
x1 −

x31
3!

+
x51
5!

+ ξ1
x61
6!

)

ẋ2 = −2x2θ2 − 2x31

− 1

θ1

(
x2 +

x22
2!

+
x32
3!

+
x42
4!

+
x52
5!

+ ξ2
x62
6!

)

(10)
where the ranges ofζ1 andζ2 can be obtained according to
the selected Lyapunov function and its sublevel set, which



will be shown in Example 2.
The more general case with non-polynomial parameter-

dependent functionsζi(x, θ) is discussed in Section III.

B. Problem Formulation

In this paper, we aim to compute the sublevel set of a
rational Lyapunov function to under-approximateR. Specif-
ically, let v(x) be a rational function of system (1):

v(x) =
vnum(x)

vden(x)
(11)

wherevnum ∈ P andvden ∈ P fulfill

∀x ∈ D, lim
‖x‖→∞

v(x) = ∞,

∀x ∈ D/{0n}, vnum(x) > 0, and vnum(0n) = 0,
∀x ∈ D, vden(x) > 0,

(12)

andD is defined in (1). The sublevel set ofv(x) is

V(c) = {x ∈ R
n : v(x) ≤ c} (13)

wherec ∈ R. The functionv(x) is a Lyapunov function of
system (1) for the origin if

v̇(x, θ) < 0, ∀x ∈ D/{0n}, ∀θ ∈ Θ. (14)

We can now formally formulate our main problem: com-
pute the largest under-estimate of the RDA using the sublevel
set of a rational Lyapunov functionv(x), i.e., solving

µ∗ = sup
c, v

c

s.t.






(11)− (14) hold
V(c) ⊆ D
∀θ ∈ Θ, ∀ξi ∈ Ξ, ∀i = 1, . . . , r

(15)

whereθ andΘ are introduced in (1) and (4),ξi andΞ are
introduced in (5) and (7).

III. U NDER-APPROXIMATING THE RDA

In this section, we will first give an estimation of the RDA
by using a selected rational Lyapunov function. Then, the
problem of the largest estimate of the RDA can be converted
from a non-convex problem to a quasi-convex optimization
problem. Based on this, a necessary and sufficient condition
is proposed for establishing the tightness of this estimate.

A. Estimation with Pre-defined Shape

First, the system (1) can be rewritten in a compact
parameter-dependent rational polynomial form as follows:

∃ξ ∈ Ξ, ẋ = hnum(x, θ̃)⊘ hden(x, θ̃) = h(x, θ̃) (16)

where θ̃ = (θT , ξT )T ∈ R
n
θ̃ , nθ̃ = nθ + r, hnum ∈ Pn

andhden ∈ Pn which can be obtained fromf , gi and the
Taylor expansion ofζi with a selected truncation degreek.
Considering (4) and (7), a new constraint set forθ̃ can be
defined as follows:

Θ̃ = {θ̃ ∈ R
n
θ̃ : ã(θ̃) ≥ 0, b(θ) = 0} (17)

where ã(θ̃) = (a(θ)T , ξ1 − τ1, τ1 − ξ1, . . . , ξr − τ r, τr −
ξr)

T ∈ R
nã and τ i, τ i are chosen according to (8). The

following example is provided for illustration.

Example 2:Continued from Example 1, (10) can be e-
quivalently expressed as




ẋ1 =
1

−720(1 + x22)
(720x1 + 3600x52 + 720x21θ1

+ 720x21θ2 + 720x1x2 − 120x31x2 + 6x51x2 + ξ1x
6
1x2)

ẋ2 =
1

−720θ1
(1440x2θ1θ2 + 1440x31θ1 + 720x2 + 360x22

+ 120x32 + 30x42 + 6x52 + ξ2x
6
2)

with a(θ) = (θ1−1, 2−θ1, θ2, 1−θ2)T andb(θ) = θ21+θ
2
2−2.

Let us consider a simple Lyapunov functionvnum = x21+x
2
2

andvden = 1. The boundsτ i andτ i in (8) can be selected
as

τ1 = −σ, τ1 = σ, σ =

{
sin

√
c, if

√
c ≤ π/2,

1, otherwise,

τ2 = −e
√
c, τ2 = −e−

√
c,

from which we have that̃a(θ̃) = (θ1−1, 2−θ1, θ2, 1−θ2, ξ1−
τ1, τ1 − ξ1, ξ2 − τ2, τ2 − ξ2)

T andb(θ) = θ21 + θ22 − 2. The
largest under-estimate of the RDA is shown in Fig. 1.

−2 −1 0 1 2
−2

−1

0

1

2

x1(t)

x
2
(t
)

v̇(x, θ̃) = 0

v(x) = µ∗ = 0.5919

Fig. 1. Example 2: The solid red line indicates the bound of the largest
estimate of the RDA by usingv(x) = x2

1
+ x2

2
; the dashed lines indicate

v̇(x, θ̃) = 0 with k=5 for someθ̃ ∈ Θ̃.

In order to check the nonnegativity over a semialgebraic
set, real Positivestellensatz (P-satz) is verified to be a power-
ful tool [24]. The following result provides a stronger version
of the P-satz:

Lemma 1: ([25]) f1, . . . , fl are polynomials of even de-
gree such that the set

F = {x ∈ R
n : f1(x) ≥ 0, . . . , fl(x) ≥ 0} (18)

is compact and there are no common zeros for the highest
degree forms inRn0 , then there exists a polynomialp satifying

p(x) > 0, ∀x ∈ F ⇐⇒ ∃s0(x), . . . , sl(x) ∈ PSOS :

p(x) = s0(x) +
∑l

i=1 si(x)fi(x).
(19)



The above lemma points out that the cone generated by
fi includes any strictly positive polynomialp(x) ∈ F over a
semialgebraic set, which paves the way to estimate the RDA
via SOS programming. Based on the above result, a new
class of parameter-dependent polynomials is defined and the
positivity of a parameter-dependent polynomial on a compact
set can be established by exploiting the local SOS cone.

Definition 1 (Locally parameter-dependent SOS:PSOS
L ):

Consider a polynomialp(x, θ) ∈ P , p(x, θ) is an SOS
polynomial on θ and a local SOS polynomial onx, i.e.,
p(x, θ) can be expressed asp(x, θ) =

∑m
i=1 p

2
i (x, θ) for

some polynomialspi(x, θ) which are without monomials
of degree 0 and 1 onx, then p(x, θ) is called a locally
parameter-dependent SOS, denoted asp ∈ PSOS

L .
Lemma 2:For variablex ∈ R

n, θ̃ ∈ R
n
θ̃ , polynomialsp,

a1, . . . , am andb1, . . . , bl depending both onx and θ̃, define
the set

B = {(xT , θ̃T )T ∈ R
n+n

θ̃ : ai(x, θ̃) ≥ 0, (20)

∀i = 1, . . . ,m, bj(x, θ̃) = 0, ∀j = 1, . . . , l}.

Let B be compact. Condition∀x ∈ B : p(x, θ̃) > 0 can be
established if the following condition holds:

{ ∃s1, . . . , sm ∈ PSOS
L , r1, . . . , rl ∈ P

p−∑m
i=1 siai −

∑l
j=1 ribj ∈ PSOS

L .
(21)

Proof: Considering (19) withs0 ∈ PSOS
L , this result can be

obtained from Lemma 1 by expanding the dimension of state
space fromn to n+ nθ̃ and setting

p =

m∑

i=1

siai +

l∑

j=1

rjbj + s0. (22)

�

Remark 3:By exploiting the locally parameter-dependent
SOS cone, condition (21) gives a sufficient condition to
establish the positivity of a parameter-dependent polynomial
on a compact set. Condition (21) is also a necessary condition
if the degree of auxiliary locally parameter-dependent SOS
polynomialssi is unlimited and there is a polynomialb in
setB such thatb−1[0,∞) is compact. For details please refer
to [25] for the case of SOS cones.

The following result answers the question whether a
sublevel set of a rational function is an estimate of the RDA.

Theorem 1:For a selected truncation degreek, consider
a positive scalarc ∈ R

+ and a rational functionv(x) :
R
n → R fulfilling (11)-(12), provided that there exist a

polynomial q(x, θ̃) : R
n+n

θ̃ → R and polynomial vector
s(x, θ̃) : Rn+nθ̃ → R

nã , r(x, θ̃) : Rn+nθ̃ → R
nb , such that

∀x ∈ R
n
0 , ∀θ̃ ∈ R

n
θ̃ :





ψ(x, θ̃) ∈ PSOS
L

q(x, θ̃) ∈ PSOS
L

si ∈ PSOS
L , i = 1, . . . , nã

(23)
where

ψ(x, θ̃) = w(x, θ̃)− q(x, θ̃)
(
cvden(x) − vnum

)

−s(x, θ̃)T ã(θ̃)− r(x, θ̃)T b(θ̃),
(24)

and

w(x, θ̃) =
(
vnum(x)∇vden(x)− vden(x)∇vnum(x)

)T

·
((
hnum(x, θ̃) ◦ η(x, θ̃)

)
· lcm

(
hden(x, θ̃)

))
,

(25)
functionsvnum and vden are introduced by (11), functions
hnum andhden are introduced by (16), operation∇(·) gives
the gradient of a function, operationlcm gives the least
common multiple of all the entries of a vector, operation◦
is the element-wise product, operation⊘ is the element-wise
division andη is a vector polynomial function

η(x, θ̃) =
(
1n ⊘ hden(x, θ̃)

)
· lcm

(
hden(x, θ̃)

)
(26)

where1n is the ones vector with the dimensionn and all
the elements being 1. Then,v(x) is a common Lyapunov
function for the origin, andV(c) ⊆ R.

Proof: Our main effort in this proof is to derive that the
rational functionv(x) is a common Lyapunov function of
system (16) given (23), then it yields thatV(c) ⊆ R [1].

Suppose that (23) holds, sincecvden(x) − vnum ≥ 0,
ã(θ̃) ≥ 0, b(θ̃)=0, q(x, θ̃) ∈ PSOS

L and si(x, θ̃) ∈ PSOS
L ,

for i = 1, . . . , nã, from Lemma 2, one has that

∀x ∈ V(c)/{0n}, ∀θ̃ ∈ Θ̃ : w(x, θ̃) > 0. (27)

Based on this, by using (25) and (26), it yields that

0 < w(x, θ̃)

0 <
w(x, θ̃)

vden(x)2 · lcm(hden(x, θ̃))2

0 <
(vnum(x)∇vden(x) − vden(x)∇vnum(x)

vden(x)2

)T

·
(hnum(x, θ̃) ◦ η(x, θ̃)

lcm
(
hden(x, θ̃)

)
)

0 <
(vnum(x)∇vden(x) − vden(x)∇vnum(x)

vden(x)2

)T
(28)

· hnum(x, θ̃) ◦
(
1n ⊘ hden(x, θ̃)

)
.

In addition, from (11) and (16), one has that there exists a
ξ ∈ Ξ (thus aθ̃ ∈ Θ̃) such that

v̇(x, θ̃) =
(vden(x)∇vnum(x) − vnum(x)∇vden(x)

vden(x)2

)T

·
(
hnum(x, θ̃)⊘ hden(x, θ̃)

)
. (29)

Meanwhile, considering the fact that
(
hnum(x, θ̃)⊘ hden(x, θ̃)

)
=

hnum(x, θ̃) ◦
(
1n ⊘ hden(x, θ̃)

)
,

and comparing (28) with (29), it yields that from (28)

∀θ̃ ∈ Θ̃ : 0 < −v̇(x, θ̃).

Therefore, one has thatv(x) is a Lyapunov function for the
origin andV(c) ⊆ R which completes this proof. �

Remark 4:For this theorem, it is worth noting that



• The conservatism of this approach stems from the
bounded degrees of the auxiliary functionsq, s and
r (see Remark 3). Another source of conservatism is
that, for system (1), the rational Lyapunov function is
usually not the maximal Lyapunov function by which
the exact DA can be obtained. In other words, the ratio-
nal Lyapunov function can only be used to approximate
the maximal Lyapunov function, making this method an
under-estimation of the exact RDA.

• This method can also be extended to a more gener-
al case with multi-variable parameter-dependent non-
polynomial functionsζi(x, θ) in system (1), by using the
method of multi-variable truncated Taylor expansion.
However, this extension may result in a large number
of parametersξi for expressing the Taylor remainder,
which is computationally demanding.

B. Selection of the Lyapunov function

In this subsection, a simple strategy for choosing an initial
Lyapunov function will be introduced. In particular, let us
introduce the Jacobian matrix

A(θ̃) =
dh(x, θ̃)

dx

∣∣∣∣
x=0n

(30)

and a symmetric matrixP such that

∀θ̃ ∈ Θ̃,

{
P > 0

PA(θ̃) +A(θ̃)P < 0.
(31)

Observe that the condition (31) is equivalent to the condition
that there exists a quadratic Lyapunov function for the
linearized system, which can be established by using the
existing SOS matrix techniques.

One way to construct the rational Lyapunov function is

v(x) =
vq + va
vden

(32)

fulfilling (12) where

vq(x) = xTPx (33)

is the quadratic Lyapunov function for the origin, withP
satisfying (31), andva is an auxiliary polynomial function
which can be simply chosen as(xTx) · (xTPx). In fact, va
can be selected as any polynomial such that (11)-(12) hold
and

∇va(x)
∣∣
x=0n

= 0, ∇2va(x)
∣∣
x=0n

= 0. (34)

More details for choosing the initial rational Lyapunov
function, please refer to [26].

It is useful to mention that the search for an optimal
rational Lyapunov function to enlarge the RDA may provide
a less conservative result, but it is out of the scope of this
paper due to limited space. The readers may refer to [5], [23]
for the case of polynomial Lyapunov functions.

C. Square Matrix Representation (SMR) based Quasi-
Convex Optimization

Notice that the condition of Theorem 1 is not easy to
establish because it turns out to be a non-convex problem

for finding a locally parameter-dependent SOSs(x, θ̃) and
a positive scalarc at the same time. In addition, another
challenge is that there is no existing method for locally
parameter-dependent SOS programming. In order to solve
these issues, a new class of SMR is proposed for the set of
locally parameter-dependent SOS, i.e.,p(x, θ̃) ∈ PSOS

L , and
an approach is provided to convert this non-convex problem
to a quasi-convex optimization problem.

In the following, we will first recall the SMR method and
then introduce the class of SMR for the setPSOS

L . Consider a
polynomialp1(x) ∈ P of degreedegx(p1), definedp1x as the
smallest integer not less thandegx(p1)2 , i.e.,dp1x = ⌈deg

x
(p1)
2 ⌉,

we can expressp1(x) in SMR as:

p1(x) = (∗)T (P1 + L1(δ))φp(n, d
p1
x ) (35)

where (∗)TAB is short forBTAB introduced in Section
II, P1 is denoted by the SMR matrix ofp1(x), n is the
number of variables,φp(n, dp1x ) ∈ R

l1 is called the power
vector containing all monomials of degree less or equal to
dp1x , L1(δ) is a parameterization of the affine space

L1 = {L1(δ) ∈ R
l1×l1 : L1(δ) = LT1 (δ),

(∗)TL1(δ)φp(n, d
p1
x ) = 0}, (36)

in which δ is a vector of free parameters. An exemple of
SMR is provided below.

Example 3:Given a polynomialp1(x) = 7− 3x+6x2 +
4x3 + 5x4, we havedp1x = 2, n = 1 and φp(n, dp1x ) =
(1, x, x2)T . Then,p1(x) can be expressed using (35) with

P1 =




7 −1.5 0
−1.5 6 2
0 2 5


 , L1(δ) =




0 0 δ
0 −2δ 0
δ 0 0


 .

Now, let us consider a locally parameter-dependent poly-
nomial p2(x, θ̃) ∈ PSOS

L with degreedegx on x and with
degreedegθ̃ on θ̃, and θ̃ ∈ R

n
θ̃ . Thus, p2(x, θ̃) can be

expressed in the SMR form as

p2(x, θ̃) = (∗)T (P2+L2(δ))(φl(n, d
p2
x )⊗φp(nθ̃, d

p2

θ̃
)) (37)

wheredp2x = ⌈deg
x
(p2)
2 ⌉, dp2

θ̃
= ⌈deg

θ̃
(p2)

2 ⌉, φl(n, dp2x ) ∈ R
l2

is a power vector containing all the monomials of degree
less or equal todp2x except degrees 1 and 0.L2(δ) is a
parameterization of the affine space

L2 = {L2(α) ∈ R
l3×l3 : L2(α) = LT2 (α), (38)

(∗)TL1(α)
(
φl(n, d

p2
x )⊗ φp(nθ̃, d

p2

θ̃
)
)
= 0}

in which α is a vector of free parameters,l3 = l2 · l1. Let us
introduce

q(x, θ̃) = (∗)TQ
(
φl(n, d

q
x)⊗ φp(nθ̃, d

q

θ̃
)
)

si(x, θ̃) = (∗)TSi
(
φp(n, d

si
x )⊗ φl(nθ̃, d

si

θ̃
)
)

∀i = 1, . . . , nã (39)

ri(x, θ̃) = RTi

(
φl
(
n, degx(ri)

)
⊗ φp

(
nθ̃, degθ̃(ri)

))

∀i = 1, . . . , nb.



Based on these expressions, we further define

ψ(x, θ̃) = (∗)T (Ψ(c,Q, S,R) + L(α))

·
(
φl(n, d

ψ
x )⊗ φp(nθ̃, d

ψ

θ̃
)
)

S = diag(S1, . . . , Snã
)

R = (RT1 , . . . , R
T
nb
)T .

(40)

These expressions of SMR lead to a result for estimating the
largest RDA as follows:

Lemma 3:For a selected truncation degreek, consider
a rational functionv(x) : R

n → R satisfying (11)-(12),
suppose that there existQ, S, R andα defined in (39)-(40)
such that

µk = sup
c, Q, S, R, α

c

s.t.






Ψ(c,Q, S,R) + L(α) > 0
Q > 0
S > 0.

(41)

Then,µk is a lower bound ofµ∗, i.e.,µk ≤ µ∗.

Proof: Suppose that condition (41) holds. By pre-
multiplying and post-multiplying the first inequality of (41)
by (φl(n, dx)⊗φp(nθ̃, dθ̃))T andφl(n, dx)⊗φp(nθ̃, dθ̃), re-
spectively, one has thatψ(x, θ̃) > 0 andΨ(c,Q, S,R)+L(α)
is the SMR matrix ofψ(x, θ̃) > 0 based on the first equation
of (40). In addition, considering the fact thatφl(n, dx) 6= 0
holds whenx 6= 0, one has thatψ(x, θ̃) ∈ PSOS

L for all
x ∈ R

n
0 and for all θ̃ ∈ R

n
θ̃ , based on Definition 1.

In the same way, one obtains thatq(x, θ̃) ∈ PSOS
L and

si(x, θ̃) ∈ PSOS
L for all x ∈ R

n, for all θ̃ ∈ R
n
θ̃ , for all

i = 1, . . . , nã. Then, the condition (23) holds. Therefore,
V(c) is an estimate of the RDA with the truncation degree
k. Taking into account the definition ofµ∗ in (15), it implies
thatµk is a lower bound ofµ∗ which ends this proof. �

Let us observe that the optimization (41) is a problem
of bilinear matrix inequalities owing to the product ofQ
and c. One possible way to solve this problem is to use a
bisection algorithm onc where an LMI feasibility test is
solved for every fixed value ofc [11]. However, this method
may lead to a great number of LMI feasibility tests, which
is computationally demanding.

For this reason, we propose an approach of quasi-convex
optimization, and a generalized eigenvalue problem (GEVP)
is constructed in order to solve (41). First, let us introduce
the following transformation based on which the GEVP can
be properly formulated.

Lemma 4:Define the polynomials

ṽ(x) = vden(x) + λvnum (42)

u(x, θ̃) = u1(x, θ̃) + u2(x, θ̃) (43)

u1(x, θ̃) = w(x, θ̃) + q(x, θ̃)vnum(x)

−s(x, θ̃)T ã(θ̃)− r(x, θ̃)T b(θ̃) (44)

u2(x, θ̃) = q(x, θ̃)ṽ(x) (45)

and letU2 be the SMR matrix ofu2 with the power vector
φl(n, d

u
x)⊗ φp(nθ̃, d

u

θ̃
), Ṽ be the SMR matrix of̃v with the

power vectorφl(n, dṽx). Then,U2 can be expressed by

U2 = (∗)T (Q ⊗ Ṽ )H (46)

whereφl(n, dqx) ⊗ φp(nθ̃, d
q

θ̃
) ⊗ φl(n, d

ṽ
x) = H(φl(n, d

u
x) ⊗

φp(nθ̃, d
u

θ̃
)).

Proof: By exploiting the Kronecker product [27] and its
mixed-product property:

(A⊗B)(C ⊗D) = (AC)⊗ (BD), (47)

the product ofq and ṽ can be expressed in the SMR form
by a common power vector. Specifically,

q(x, θ̃)ṽ(x) = (∗)TQ(φl(n, d
q
x)⊗ φp(nθ̃, d

q

θ̃
))

·(∗)T Ṽ (φl(n, d
ṽ
x)

(47)
= (∗)T (Q⊗ Ṽ )

·
(
φl(n, d

q
x)⊗ φp(nθ̃, d

q

θ̃
)⊗ φl(n, d

ṽ
x)
)

= (∗)THT (Q⊗ Ṽ )H
·
(
φl(n, d

u
x)⊗ φp(nθ̃, d

u

θ̃
)
)

= (∗)TU2

(
φl(n, d

u
x)⊗ φp(nθ̃, d

u

θ̃
)
)
,

by which we conclude this proof. �

Theorem 2:For a selected truncation degreek, consider a
positive scalarλ ∈ R

+ and a rational functionv(x) : Rn →
R satisfying (11)-(12),µk in (41) can be computed by

µk = − ẽ

1 + λẽ
(48)

whereẽ is the solution of the following GEVP

ẽ = inf
e, Q, R, S, α

e

s.t.






Q > 0
S > 0
eU2(Q) > −U1(Q,R, S)− L(α).

(49)

Proof: From the last inequality of (49), one has

eU2(Q) + U1(Q,R, S) + L(α) > 0, (50)

which is the SMR matrix of the polynomialeu2(x, θ̃) +
u1(x, θ̃), and it can be expressed as

eu2(x, θ̃) + u1(x, θ̃)
(44),(45)
= eq(x, θ̃)ṽ(x) + w(x, θ̃) + q(x, θ̃)vnum(x)

−s(x, θ̃)T ã(θ̃)− r(x, θ̃)T b(θ̃)
(42)
= q(x, θ̃)

(
eλvnum(x) + evden(x) + vnum(x)

)

+w(x, θ̃)− s(x, θ̃)T ã(θ̃)− r(x, θ̃)T b(θ̃)

= −(1 + λe)
(

−e
1+λevden(x) − vnum(x)

)
q(x, θ̃)

+w(x, θ̃)− s(x, θ̃)T ã(θ̃)− r(x, θ̃)T b(θ̃).
(51)

Notice that for alle ∈ (−1/λ, 0], the function−e/(1 + λe)
is monotonically decreasing and its corresponding mapping
range is the interval[0,+∞). It directly yields that the lower
bound ofγ̃ can be calculated by (48).

Next, let us proveU2(Q) is positive definite which makes
(49) a GEVP. Considering the dimension of matricesU2,
Q and Ṽ , one has that a shrunk SMR matrix is obtained
after the power vector transformation in (46). Moreover,
any monomial of the power vectorφl(n, dqx)⊗φp(nθ̃, d

q

θ̃
)⊗



φl(n, d
ṽ
x) is included in the monomial set of the power vector

(φl(n, d
u
x)⊗ φp(nθ̃, d

u

θ̃
)), which directly implies that matrix

H has full rank. From Lemma 4, one hasU2 > 0 if Q > 0
and Ṽ > 0, which completes this proof. �

Note that the last constraint in (49) is called the linear-
fractional LMI. For more details of the formulation of the
GEVP, please refer to [6].

D. Tightness Investigation

The last theorem gives a useful strategy to compute a
guaranteed lower bound ofµk for a specific truncation degree
k. Naturally one may ask: Is this lower bound tight? The
following theorem is proposed to answer this question.

Theorem 3:Let Q̄, R̄, S̄ and ᾱ be the optimal values of
Q, R, S andα in the optimization (49), and define

Γ̄(Q̄, R̄, S̄, ᾱ) = ẽU2(Q̄) + U1(Q̄, R̄, S̄) + L(ᾱ). (52)

Then, a necessary and sufficient condition forµk = µ∗ is
that there exists a(x̄, θ̄) ∈ T where

T = {(x, θ̃) ∈ R
n
0 × R

nt :
φl(n, d

u
x̄)⊗ φp(nθ̃, d

u
θ̄
) ∈ ker(Γ̄) and v̇(x̄, θ̄) = 0}.

Proof: (Sufficiency) Let us recall that the largest estimate
of the RDA can be obtained byV(c) where

µ = sup
x∈R

n

0
,θ̃∈Θ̃

v(x) s.t. v̇(x, θ̃) = 0. (53)

Let the optimum of (53) bēx and θ̄. From (25), one has

w(x̄, θ̄) = 0, vnum(x̄)− µvden(x̄) = 0. (54)

In addition, let us observe that

0 ≤ (∗)T Γ̄(Q̄, R̄, S̄, ᾱ)
(
φl(n, d

u
x̄)⊗ φp(nθ̃, d

u
θ̄
)
)

(50),(52)
= eu2(x̄, θ̄) + u1(x̄, θ̄)

(44),(45)
= −(1 + λe)

(
µvden(x̄)− vnum(x̄)

)
q(x̄, θ̄)

+w(x̄, θ̄)− s(x̄, θ̃)T ã(θ̄)− r(x̄, θ̄)T b(θ̄).

Sinceã(θ̄) ≥ 0 andb(θ̄) = 0, it follows that

eu2(x̄, θ̄) + u1(x̄, θ̄)

≤ −(1 + λe)
(
µvden(x̄)− vnum(x̄)

)
q(x̄, θ̄)

+w(x̄, θ̄)
(54)
= 0,

which directly yields that(∗)T Γ̄(Q̄, R̄, S̄, ᾱ)
(
φl(n, d

u
x̄) ⊗

φp(nθ̃, d
u
θ̄
)
)
= 0. Taking into account that̄Γ is semidefinite,

one hasφl(n, dux̄)⊗ φp(nθ̃, d
u
θ̄
) is in the null space of̄Γ.

(Necessity) Let us supposeφl(n, dux̄) ⊗ φp(nθ̃, d
u
θ̄
) ∈

ker(Γ̄), it follows that

0 = (∗)T Γ̃(Q̄, R̄, S̄, α̃)
(
φl(n, d

u
x̄)⊗ φp(nθ̃, d

u
θ̄
)
)

(52),(51)
= −(1 + λe)

(
−e

1+λevden(x̄)− vnum(x̄)
)
q(x̄, θ̄)

+w(x̄, θ̄)− s(x̄, θ̄)T ã(θ̄)− r(x̄, θ̄)T b(θ̄).

Then, taking into account thaṫv(x̄, θ̄) = 0, ã(θ̄) ≥ 0 and
b(θ̄) = 0, one hasv(x̄) = µk. It further implies thatµ∗ ≤
v(x̄) = µk, while µk is a lower bound ofµ∗, i.e.,µk ≤ µ∗.
Thus, one hasµ∗ = µk. �

The above result gives a necessary and sufficient condition
for verifying the tightness of the lower bound ofµ∗. This
result is demonstrated by the following example.

IV. A N ILLUSTRATIVE EXAMPLE

Computation is carried out using MATLAB R2014a on
a standard laptop with a 2.3GHz Intel Core i7-4712MQ
processor and an 8GB DDR3 RAM.

Consider a 2-dimensional non-polynomial system





ẋ1 =
x2 − θ21x1
2 + x21

− θ2x
2
1 − 5x32 − sin(x1)

ẋ2 = 1− 2θ2x2 − 4x31
1 + x22

− 5θ1x2 − ex2

with g1 = g2 = 1, ζ1 = sin(x1), ζ2 = 1 − ex2 , Θ = {θ ∈
R

2| 0 ≤ θ1 ≤ 1, 0.5 ≤ θ2 ≤ 2, θ21 + θ22 ≤ 3}. Let us
consider the estimation problem of the RDA by selecting
the rational Lyapunov function via (32) as

v1(x) =
x21 + x22 + x41 − x21x

2
2 + x42

2 + x1 − 2x2 + 2x21 + 4x22
. (55)

The lower boundµk can be obtained by solving the GEVP
in (49). The result of computation is shown in Tab. I subject
to different truncation degreesk. We compare this approach
with the method of polynomial Lyapunov functions and
choose a quadratic Lyapunov functionv2(x) = x21 + x22
[28]. The result shows that, by contrast, both the unitary
sublevel setV(1) and the largest estimate of the RDA are
much smaller than the proposed approach by usingv1(x)
(see Fig. 2).

TABLE I

THE LOWER BOUNDµk FOR SOME VALUES OF TRUNCATION DEGREEk

AND THE CORRESPONDING COMPUTATIONAL TIMEtc .

k 1 2 3 4 5

µk 0.784 1.142 1.307 1.327 1.348

tc[s] 6.214 7.764 8.358 9.945 8.863

Then, we would like to check whether the tightness of
the lower bound is established. By using the condition (52)
from Theorem 3, one obtains that the tightness is established
with µk = µ∗ at point x̄ = (−2.309,−2.863)T and θ̄ =
(0.416, 0.737, 0.174, 2.146)T wherex̄ ∈ T .

V. CONCLUSION AND FUTURE WORK

For uncertain rational polynomial systems and non-
polynomial systems, a novel approach is proposed to com-
pute the largest estimate of the RDA. A criterion based
on SOS conditions is proposed for establishing whether a
sublevel set of a rational function is in the RDA. Then,
by introducing a new class of SMR for the set of locally
parameter-dependent SOS and a transformation of power
vector, the lower bound of the largest estimate of the RDA
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Fig. 2. The computational results: The solid blue line and red line
indicate the bounds of the largest estimate of the RDA by using v1 and
v2, respectively; the solid yellow line and green line indicate the bounds of
the unitary sublevel set by usingv1 andv2, respectively; the dashed lines
indicate v̇(x, θ̃) = 0 with k=5 for someθ̃ ∈ Θ̃.

can be calculated via a quasi-convex optimization consisting
of a generalized eigenvalue problem for a selected rational
Lyapunov function. Lastly, the tightness of the obtained
lower bound can be established by a necessary and sufficient
condition, which consists of checking the value of the
derivative of Lyapunov function and checking whether a
power vector is in a linear null space.

Future effort will be devoted to designing a less conser-
vative convex approach to further enlarge the lower bound
of µ∗ by using variable rational Lyapunov functions, e.g.,
searching a Lyapunov function with the largest volume of
the sublevel setV(c) (see [4], [23] for the case of polynomial
Lyapunov functions). Moreover, we are interested to develop
this approach combining with other robust verification meth-
ods, such as reachability analysis methods and contraction
theory methods [29], [30].
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