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Abstract— An increasingly important issue in the area of
uncertain systems is the estimation of the Robust Domain of
Attraction (RDA). Though this topic is of great interest, most
of attention has been paid to the RDA for uncertain polynomia
systems. This paper considers the RDA for rational polynonal
systems and non-polynomial systems, both with parametric
uncertainties, which are constrained in a semialgebraic $eThe
main underlying idea is to reformulate the original system b
an uncertain rational polynomial system by using the truncaed
Taylor expansion and the parameterizable remainder of non-
polynomial functions. A novel way to compute the largest
estimate of the RDA is proposed by using a given rational
Lyapunov function and the squared matrix representation
technique (SMR). Lastly, the benefits of this approach are
presented by a numerical example.

I. INTRODUCTION

It is well known that estimating the RDA of an equilibrium
point is an interesting yet challenging problem for underta
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targeting non-polynomial systems and rational systems are
increasingly high, considering the practical requestsun n
merous areas, e.g., for non-polynomial systems in robotic
arm modeling [16], airplanes in longitude flight [17], for
rational systems in enzyme-catalyzed interaction [18f an
metabolic networking organization [19]. With regard to non
polynomial systems, researchers are interested in poligiom
approximation methods, like replacing the nonlinear terms
with new variables and recasting the state space to an
expanded one [17], covering the non-polynomial functions
into a convex hull of a group of polynomials [20]. In [21],
an approach is provided by using Chebychev points with a
chosen quadratic Lyapunov function for the uncertaingefr
case. Related to this work is the method of [22], where a
rational Lyapunov function is used to estimate the RDA of
uncertain polynomial systems. Unfortunately, the prohlem
estimating the RDA for non-polynomial systems and for

systems. In fact, the RDA is usually a complicated set, whickptional polynomial systems with parametric uncertaitie

is difficult to be expressed by an analytic representatioRas never been considered, to the best knowledge of the
even for the uncertainty-free case [1]. In order to computg,thors.

the exact domain of attraction, some elegant methods areyqtivated from the above, this work extends the result of

proposed, e.g., the Zubov equation method and the maximab] (23] to the case of uncertain rational polynomial and
Lyapunov function method [2]. However, the solution ofyon_polynomial systems, and contributes in the following
the Zubov equation and the maximal Lyapunov functioghree aspects:

are not easy to be found in most cases. Fortunately, an

under-estimation method has been proven to be effective
using the sublevel set of Lyapunov functions [1]. Espegiall

« For the first time, the RDA is computed for both, an

b . . . .
y uncertain model of rational polynomial functions and

over the last decade, thanks to the rapid developments of
the Sum of Squares (SOS) technique and the semialgebraic
geometry [3]-[5], increasingly efficient methods have been
proposed based on semidefinite programming and Linear®
Matrix Inequalities (LMI) [6]—[10].

An overwhelming majority of existing works is concerned
with polynomial systems, while recently there are two new
trends. The first trend is to study the RDA of uncertain
systems with parametric uncertainty, which is stimulatgd b
practical needs, e.g., circuit design with changing patarse
influenced by temperature, and stabilization of mechanical
system with time-varying loads [11]-[13]. In [11], the RDA
is computed for polynomial systems with bounded paramet-
ric uncertainties by using polynomial Lyapunov functions
and a branch-and-bound type procedure. By also using a Lya-
punov function method, the largest estimate of the RDA for

a class of nonlinear functions with truncated Taylor
expansion, under the effect of parametric uncertainty,
which is constrained in a semialgebraic set.

By introducing a new class of parameter-dependent
SOS and employing the SMR technique, a quasi-convex
optimization problem is formulated to compute the
largest estimate of the RDA via expanding the sublevel
set of a rational Lyapunov function.

A necessary and sufficient condition is provided for the
tightness of the computed lower bound of the RDA.
This tightness can be established by a method which
first verifies whether a power vector is in a null space
and then verifies the vanishing of the derivative of the
selected Lyapunov function.

Il. PRELIMINARIES

polynomial systems is computed by an SOS decomposition Notations: N*, R™: natural and real number sets with
[14], [15]. On the other hand, the demands for developmenggmension; R*: positive real number sef;,: origin of R™;
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Rf: R™\{0,}; A, ;: element in the-th row and in thej-th
column of matrixA4; AT: transpose of4; A > 0 (A > 0):
symmetric positive definite (semidefinite) matrik A ® B:



Kronecker product of matriced and B; A o B: element-
wise product (Hadamard Product) of matriceand B of the
same dimension, i.e(AoB); ; = A, ;-B; ;; A2 B: element-
wise division of matricesA and B of the same dimension,
e.,(AoB),; = Ai /B ;; ker(A): null space of linear map
A; deg, (f): degree of polynom|al functiorf (z) in z; Vf:
gradient of f(z), i.e., Vf = (£L,..., 2L)7; lem(v): the
least common multiple of all the entries of vector R";

diag(v): a square diagonal matrix with the elements of vector

v € R on the main diagonalkx)” AB in a form of SMR:
BT AB.

Let P be the set of polynomials arfd™*™ be the set of
matrix polynomials with dimensiom x m. A polynomial
p(z) € P is nonnegative ifp(x) > 0 for all + € R™.
An effective way of checking whether(z) is nonnegative

consists of checking whethex(z) can be expressed as an

S0S, i.e.p(z) = Y'_, pi(z)? for somep, ...
denote the set of SOS polynomials/a%®s. If p(x) €
becomed) only for z = 0,, andp(x) is without monomials
of degreed and1, we callp(z) local SOSwhich is denoted
by P5OS.

NURS P. We
fPSOS

A. Model Formulation
In this paper, we consider the following model:

+Zgz

whereD C R" is the domaln,a: € R™ denotes the state
vector,z(0) = zinis € R™ is the initial stated € R™ denotes
the uncertain parameter vectgi(x(¢), ) € R™, are vector
rational polynomial functions which can be expressed as

f(z(2),0) foum (2(8),0) @ faen(2(1).0),  (2)
9i(x(t), 0) Gnum, (2(1),0) @ gaen, (2(1),0),  (3)

in which @ denotes the element-wise divisiofyum (z(t), ),
Faen(z(t),0), gnum; (x(t),0), gden, (z(t),0) € P™ are vector
polynomial functions¢; (xq, (t)), . . ., ¢ (x4, (t)) denote non-
polynomial functions and,...,a, € {1,...,n} are the
indexes, satisfying < n. The uncertain parametéris in a
semialgebraic set

O = {6 R™ :a(h) >0, b(H) = 0} (4)

where a(f) : R™ — R" andb(f) : R — R™ are
polynomial functions. For the brevity of the presentatitrg,
dependence of functions on timestatex(¢) and parameter
6 will be omitted whenever reasonable.

i(t) = 0)Gi(zq; (1)), €D (1)

In this paper, we are interested in estimating the RDA of

an equilibrium point. First, we introduce the definition bét
RDA of the origin [11], [13], i.e.,

R = 909 {xinit eR" tgglw x(t; zinit, 0) = On}7
c

wherex (¢; zinit, #) denotes the solution of system (1) at time

t, starting from initial stater;,;; and using paramete.
In addition, we assume that, : = 1,...,r, arek times
differentiable at the origin and + 1 times differentiable

within the open interva{0, z,,), then¢; could be rewritten
by a Taylor expansion evaluated at the origin as follows:

Z‘k+1

Gi(7a,) i) i (k + 1) (5)

where¢; € R is a bounded parametdr,denotes the trunca-
tion degree and);(z,,) is thek-th order Taylor polynomial:

= ni(7q

k : ;
@ Gi(@a,) Ta,
mi(wa,) = Y, ——=| (6)
=0 dxf” Tq;=0 J:
Remark 1:We exploit the parameters; to over-

approximate the Taylor remaindéf(z., )
&€= (&,...,&)7T is in the orthotope

—ni(xq,), where

== [IlvFl] Xoeee

()

r, are selected as the tightest

X [T, Tr)

andr,, 7, € R, i =1,...,
bounds fulfilling

dk+1 Cl (a:a'i )
dakHl

for all . € Z, whereZ is a set chosen in the sublevel set of
a Lyapunov functionV,,,  which will be introduced in the
next subsection.

Remark 2: The model (1) is a quite general one, including
a sum of products between a group of parameter-dependent
rational functions and a group of non-polynomial functions
¢; which are expressed by Taylor expansion with a pa-
rameterized remainder in Lagrange form. Previous models
considered for computing the domain of attraction [8], [11]
[13], [16], [17] are thus special cases of the model considler
in this work.

Example 1:Consider a deliberately simple 2-dimensional
system described by

<7

Tq, =L

8

i

—x1 — by — 22(61 + 62)
1+ 22

j?g = gil — 21‘292 — 2],“13 — 91
with 1 < 6; < 2,0 <6y <1landh} +060; -2 = 0.
We can write this model in the form of (1) by choosing
fnum = (_xl - 5333 - .13%(91 + 92)7 —2]}202 - Zx?)Ty fden =
(1+23, )7, g1 = (22,0)", g2 = (0, 5-)", (1 = sin(z1),
CQ 1 — e*2, CL(G) = (91 - 1,2 — 91,02,1 — 02)T and
b(0) = 07 +03 —2. Let us select the truncation degree- 5,
by using the Taylor expansion gf one has

T = — wosin(z1)

9)

er?

i = —I1 —51’3—%%(91%—92)
e 1+ 22
3 2} x$
—.132(.131 3'+§+£ 6')
j?g = —2.23292 —2.131
1 2
91($2+—+§+—+—+§2 )

(10)
where the ranges df; and({, can be obtained according to
the selected Lyapunov function and its sublevel set, which



will be shown in Example 2. Example 2:Continued from Example 1, (10) can be e-
The more general case with non-polynomial parametequivalently expressed as

dependent functiong;(z, ) is discussed in Section Il 1 _ )
B. Problem Formulation 1= g g og (720%1 + 360023 + 720270y
In this paper, we aim to compute the sublevel set of + 7202302 + 720x175 — 1202522 + 62fws + &12822)
rational Lyapunov function to under-approxim&e Specif- .1 3 5
ically, let v(z) be a rational function of system (1): 2= T900, (144020162 + 144010, + 7202 + 3603
V() + 12023 + 3023 + 623 + &a8)
— mum\/ 11 ]
(@) = @) AL ith a(6) = (011,201, 62, 1—65)T andb(0) — 0>+62—2.

Let us consider a simple Lyapunov functiof,,, = #% + x3

wherev,um € P andvgen € P fulfill )
andvgen = 1. The bounds, and7; in (8) can be selected

Vo € D, ”wlﬁgoov(x) = 00, as
Va € D/{0,}, vnum(z) > 0, and vgum(0,) =0, (12) _ siny/c, if v/ < /2,
Vx € D, vgen(x) > 0, Li== =0 0= { 1, otherwise,
andD is defined in (1). The sublevel set ofz) is Ty = —eVe, Ty = —eV°,
V() ={z eR": v(z) <c} (13)  from which we have thai(0) = (/,—1,2—01,05,1—05,&,—

71,71 —&1,8 — Ty, T2 — &)T andb(9) = 0?2 + 63 — 2. The

wherec € R. The functionu(z) is a Lyapunov function of largest under-estimate of the RDA is shown in Fig. 1.

system (1) for the origin if
0(x,0) <0, Vo € D/{0,}, VO € O. (14)

We can now formally formulate our main problem: com-
pute the largest under-estimate of the RDA using the subleve
set of a rational Lyapunov function(x), i.e., solving

l.
uw* =sup c
(11)— (14) hold 15 =
st.¢ V() CD = Ot

V9eO, V& EeEE, Vi=1,...,r

wheref and © are introduced in (1) and (4); and = are
introduced in (5) and (7). =17

I11. UNDER-APPROXIMATING THE RDA

In this section, we will first give an estimation of the RDA -'
by using a selected rational Lyapunov function. Then, the '_22 -1 0 1 2
problem of the largest estimate of the RDA can be convertec z1(t)

from a non-convex problem to a quasi-convex optimization . S
problem Based on thIS, a necessary and sufficient COnd't'gfg 1. Example 2: The solid red line indicates the bound eflﬂTgest

; o . . . estimate of the RDA by usin = 2 + x2; the dashed lines indicate
is proposed for establishing the tightness of this estimate i(z,0) = 0 with k=5 fg; Somgg”é 6 RS

A. Estimation with Pre-defined Shape . _ .
First, the system (1) can be rewritten in a compact In order to check the nonnegativity over a semialgebraic

parameter-dependent rational polynomial form as follows: S€l real Positivestellensatz (P-satz) is verified to beveepo
ful tool [24]. The following result provides a stronger viers

3¢ €E, &= hnum(2,0) @ haen(z,0) = h(2,0)  (16)  of the P-satz:
where d — (67,€T)T € R, n; = ng + r, houm € P" Lemma 1:([25]) f1,--.,fi are polynomials of even de-
and hgen, € P™ which can be obtained fronf, g; and the gree such that the set
Taylor expansion of; with a selected truncation degrée F={zeR": fi(x) >0,..., fi(x) >0} (18)
Considering (4) and (7), a new constraint set focan be
defined as follows:

© = {0 R :a(f) >0, b(d) =0} (17)

is compact and there are no common zeros for the highest
degree forms iRy, then there exists a polynomiabatifying

~ p(z) >0, Vo € F < Fso(x),...,s(zx) € PSOS:
wherea() = (a(0)",& — 1,71 — &1, & — L0 Ty — p(x) = so(x) + 'y si(x) fi(x).
¢)T € R" and7;, 7, are chosen according to (8). The (29
following example is provided for illustration.



The above lemma points out that the cone generated lyd

fi includes any strictly positive polynomialx) € F over a - T
semialgebraic set, which paves the way to estimate the RDAY (z,0) = (’Unum(x)v’”den(x) - 'Uden(x)vvmlm(x))
via SOS programming. Based on the above result, a new -((hnum(w,é) On(w,g)) -1cm(hden(X,9~))2,
class of parameter-dependent polynomials is defined and the (Z5)

positivity of a parameter-dependent polynomial on acompaﬁmctionsumm and vaen are introduced by (11), functions

set can be established by exploiting the local SOS cone. Bum @nd haen are introduced by (16), operatiov(-) gives
Definition 1 (Locally parameter-dependent SOF:°°):  the gradient of a function, operatiolem gives the least

Consider a polynomiap(z,0) € P, p(z,0) is an SOS  common multiple of all the entries of a vector, operation

polynomial onf and a local SOS polynomial om, i.e., s the element-wise product, operatieris the element-wise

p(z,0) can be expressed agx,0) = 371, pi(x,0) for  givision andy is a vector polynomial function

some polynomialsp;(x,0) which are without monomials . N .

of degree 0 and 1 om, then p(z,6) is called alocally 1(x,0) = (1n @ haen(,6)) - lem(hgen(x,0))  (26)

parameter-dependent SOgenoted ap < PEOS. _ where1,, is the ones vector with the dimensionand all
Lemma 2:For variablex € R", ¢ € R"7, polynomialsp,  the elements being 1. Then(z) is a common Lyapunov

ai,...,am andby, ..., b, depending both om andé, define function for the origin, and’(c) C R.
the set 3 ) Proof: Our main effort in this proof is to derive that the
B = {&T,60)T ¢ R" ™ : q4(x,0) >0, (20) rational functionv(x) is @ common Lyapunov function of
Vi=1,...,m, bj(z,0) =0, Vj=1,...,1}. system (16) given (23), then it yields thetc) C R [1].

N ~ Suppose that (23) holds, sinG®gen() — vpum > 0,
Let B be compact. Conditioz € B : p(x,0) > 0 can be a(6) > 0, b(6)=0, q(z,0) € PSOS and s;(x,d) € PSOS

established if the following condition holds: fori—=1.....n-. from Lemma 2. one has that

SOS ~ ~ ~
{ Fstyosm €PLT T 1 € P 1) Yz € V(e)/{0n}, VOO : w(z,f)>0. (27

p— er;l S;Q; — 22:1 Tibj c PEOS.
o ) ) Based on this, by using (25) and (26), it yields that
Proof: Considering (19) withs, € P55, this result can be ~
obtained from Lemma 1 by expanding the dimension of state 0 < w(x,0)

space fromn to n + n; and setting 0 < w(z,0)
m ! Vden ()2 - lem(hgen(x, 0))?
p= Z sia; + Z rib; + so. (22) Vnum () VUden () — Vden (2) Vonum () \ T
. - 0 < ( )
i=1 j=1 vden(x)Q
0 P (22, 0) 0 1(2:, 0)
Remark 3:By exploiting the locally parameter-dependent ' ( lem (hen (x 9”)) )

SOS cone, condition (21) gives a sufficient condition to Ve () Vden () — veton () Vo ()
establish the positivity of a parameter-dependent poljabm 0 < ( = den d;“ =
on a compact set. Condition (21) is also a hecessary conditio vde‘j(x ) }
if the degree of auxiliary locally parameter-dependent SOS - hnum (2, 0) © (ln @ hden(z, 9)).
polynomialss; is unlimited and there is a polynomialin . )
set such thab—1[0, co) is compact. For details please referlN addition, from (11) and (16), one has that there exists a

to [25] for the case of SOS cones. ¢ € = (thus ad € ©) such that

)’ 8)

The following result answers the question whether A 2.0) = (vden(x)anum(w) —vnum(w)vvden(x))T
sublevel set of a rational function is an estimate of the RDA. ™’ a Vden ()2

The_o_rem 1:For a selected truncation degregconsmer ) (hnum(xaé) o hden(xaé))~ (29)
a positive scalaic € R* and a rational function(z) :

R™ — R fuffilling (11)-(12), provided that there exist a Meanwhile, considering the fact that
polynomial ¢(x,6) : R"*" — R and polynomial vector

s(x,0) : R™" — R", r(z, ) : R — R, such that (hnum(w, 0) @ haen(, 9)) =
. Y(z, é) € pPos B (2, 0) © (1n @ haen (2, 9))7
Vo €Rg, VOER™Y: 4 g(w,0) € PE,OS and comparing (28) with (29), it yields that from (28)
SiGPEOS,ZZL...,na o ~
(23) Vo e©: 0<—0(z,0).
where

~ ~ ~ Therefore, one has tha{x) is a Lyapunov function for the
(x,0) = w(z,0)—q(z,0) (cvden(x) - vnum) (24) origin andV(¢) € R which completes this proof. O
—s(x,0)Ta() — r(x,0)Tb(6), Remark 4:For this theorem, it is worth noting that



« The conservatism of this approach stems from théor finding a locally parameter-dependent S@S;, ) and
bounded degrees of the auxiliary functiopss and a positive scalar at the same time. In addition, another
r (see Remark 3). Another source of conservatism ighallenge is that there is no existing method for locally
that, for system (1), the rational Lyapunov function isparameter-dependent SOS programming. In order to solve
usually not the maximal Lyapunov function by whichthese issues, a new class of SMR is proposed for the set of
the exact DA can be obtained. In other words, the ratidecally parameter-dependent SOS, iz, 6) € PFOS, and
nal Lyapunov function can only be used to approximatan approach is provided to convert this non-convex problem
the maximal Lyapunov function, making this method arto a quasi-convex optimization problem.
under-estimation of the exact RDA.

« This method can also be extended to a more gener-In the following, we will first recall the SMR method and
al case with multi-variable parameter-dependent northen introduce the class of SMR for the 51°5. Consider a
polynomial functiong;; (z, #) in system (1), by using the polynomialp,(z) € P of degreedeg,(p1), defined?' as the
method of multi-variable truncated Taylor expansionsmallest integer not less théﬁﬁgg(ﬂ, i.e.,dPt = [%],
However, this extension may result in a large numbewe can expresg; (z) in SMR as:

of parameters; for expressing the Taylor remainder, ,
P % Tor expressing the Tay pi(@) = ()T (P + Li(0)dp(n,d2)  (35)

which is computationally demanding.
B. Selection of the Lyapunov function where (*)TAB is short for BTAB introduced in Section
Il, P, is denoted by the SMR matrix gf;(z), n is the
In this subsection, a simple strategy for choosing an initighymper of variablesg, (n,d?) € R is called the power
Lyapunov function will be introduced. In particular, let Usyector containing all monomials of degree less or equal to

introduce the Jacobian matrix dPr, L1(0) is a parameterization of the affine space
A(9) = —dhﬁf’” (30) L = AL RV Li(0) = L), g6
T lz=0, (#)" L1(0)pp(n,dir) = 0},
and a symmetric matri¥’ such that in which § is a vector of free parameters. An exemple of
- SMR is provided below.
vico, L £=>0 (31)
PA(D) + A@)P < 0.

Example 3:Given a polynomiap; (z) = 7 — 3z + 622 +
Observe that the condition (31) is equivalent to the coaditi 4,3 4 554, we haved?* = 2, n = 1 and ¢,(n,d?') =
that there exists a quadratic Lyapunov function for thei s 22)”. Then,p;(z) can be expressed using (35) with
linearized system, which can be established by using the

existing SOS matrix techniques. 7 —15 0 0 0 ¢
One way to construct the rational Lyapunov function is P={ -15 6 2 ), Li(0) = g _025 8 :

n 0 2 5
o(z) = Lol (32) .
Uden Now, let us consider a locally parameter-dependent poly-
fulfilling (12) where nomial py(z,0) € PSS with degreedeg, on 2 and with
degreedeg; on ¢, and ¢ € R"s. Thus, pz(x,0) can be
T )
vg(®) = 2" Px (33) expressed in the SMR form as

is the quadratic Lyapunov function for the origin, with pz(w’g) _ (*)T(P2+L2(5))(¢l(n’d;gz)®¢p(n57dljz)) (37)
satisfying (31), andv, is an auxiliary polynomial function 0

which can be simply chosen #s”z) - (z7 Pz). In fact,v,  whered?r? = (deggi(m)], drz — (degéT(pz’)], d1(n,dP2) € Rl

can be selected as any polynomial such that (11)-(12) hoigl a power vector conta?ning all the monomials of degree

and less or equal tad?? except degrees 1 and @,(d) is a
Voa(2)],_, =0, VZua(z)|,_, =0. (34) parameterization of the affine space

More details for choosing the initial rational Lyapunov %, = {Ly(a)ec R¥*5 : Ly(a) = LT (a), (38)

function, please refer to [26]. (*)TLl(a)((b](n’diz) ® ¢p(néjd§2)) =0}

It is useful to mention that the search for an optimal
rational Lyapunov function to enlarge the RDA may providdén which « is a vector of free parameteils,= [ - [;. Let us
a less conservative result, but it is out of the scope of thigtroduce
paper due to limited space. The readers may refer to [5], [23] N T q o
for the case of polynomial Lyapunov functions. a(, 9) o (*)TQ(¢1(TL’ dz) ® ¢p(ng, dé))
si(x,0 x)" S, n,d>) ® ¢1(ng, d3
C. Square Matrix Representation (SMR) based Quasi- (2.6) (V')— 1 ((bp( i =) @ g o >) 39
Convex Optimization ) t=5eeMa (39)

_ pT , _ (s
Notice that the condition of Theorem 1 is not easy to ri(z,0) = Rj (¢1 (n, deg, (1)) ® oy (”G’dege(”)))
establish because it turns out to be a non-convex problem Vi=1,...,np.



Based on these expressions, we further define power vectore,(n, d2). Then,Us can be expressed by
d(x,0) = (*)7(¥(c,Q,S, R)+ L(w)) Uy = ()"(QeV)H (46)

) v o :
. d(i‘zl((”s’dm)@@gp()”e’de)) (40)  whered(n, d2) @ by (ng, d) @ di(n, d2) = H (¢ (n, d¥) &
Ro— (Rl R Op(ng, d)).

Proof: By exploiting the Kronecker product [27] and its
These expressions of SMR lead to a result for estimating tmeixed-product property:

largest RDA as follows:
J (A B)(C D) = (AC) & (BD), (@7)
Lemma 3:For a selected truncation degrée consider _ .

a rational functionv(z) : R* — R satisfying (11)-(12), the product ofg and v can be expressed in the SMR form

suppose that there exi€l, S, R anda defined in (39)-(40) Py @ common power vector. Specifically,

such that g(z,0)0(x) = ()7Q(di(n,d) ® dy(ng,dl))
= sw e () TV (d1(n, d?)
W(e,Q, 5, R) + La) > 0 41) D (WTQaV) )
S > 0. = HTHT(QeV)H
Then, s, is a lower bound ofi*, i.e., s < 1i*. (A1(n, d) @ ¢p(ng, dy))
en, uy, is a lower bound ofu*, i.e., uy < p = ()TUs(a(n, d%) ® ¢§(n9~,dg)),

Proof: Suppose that condition (41) holds. By pre- ) ]
multiplying and post-multiplying the first inequality of 3 Py which we conclude this proof. U
by (d1(n, dz) @ ¢y (ng,dg))T andei(n, du) ® ép (ng, dy), re- Thgorem 2:For a selected truncation de_grle,econ&der a
spectively, one has that(z, §) > 0 and¥(c, Q, S, R)+L(«) POSitive scalan € R* and a rational functiom(z) : R" —
is the SMR matrix ofi(z, #) > 0 based on the first equation R Satisfying (11)-(12)y in (41) can be computed by

of (40). In addition, considering the fact thai(n,d,) # 0 é

holds whenz # 0, one has that(z,0) € P8 for all FE="7773¢ (48)
@ € Ry and for all¢ € R"7, based on Definition 1. \yheres is the solution of the following GEVP

In the same way, one obtains thatz,d) € PSS and

si(z,0) € PSOS for all z € R™, for all 6 € R"4, for all e=_ by e

i = 1,...,n3. Then, the condition (23) holds. Therefore, Q>0 (49)
V(c) is an estimate of the RDA with the truncation degree st.d §>0

k. Taking into account the definition @f* in (15), it implies { eUs(Q) > —U1(Q, R, S) — L(w).

that i, is a lower bound of:* which ends this proof. OJ . ,
Proof: From the last inequality of (49), one has

Let us observe that the optimization (41) is a problem
of bilinear matrix inequalities owing to the product 6f el2(Q) + U1(Q, R, S) + L(a) > 0, (50)
and c. One possible way to solve this problem is to use §ich is the SMR matrix of the polynomiaduQ(x,é) +
bisection algorithm on: where an LMI feasibility test is ui(z,0), and it can be expressed as
solved for every fixed value af [11]. However, this method . .
may lead to a great number of LMI feasibility tests, which eus(z,0) + ui(z,0)

is computationally demanding. @24 (e, 0)3(x) +w(x,0) + g(z, 6)vnum ()
For this reason, we propose an approach of quasi-convex —s(z, 0)"a(0) —r(x,0)"o(0

optimization, and a generalized eigenvalue problem (GEVP) @2 q(z,0) QeAvnum(:{) + €Vden() +~vnumgx))

is constructed in order to solve (41). First, let us intraguc +w(z,0) — s(x,0)Ta(0) — r(z,0)Tb(0)

the following transformation based on which the GEVP can

= —(1 A T en — Unum aé
be properly formulated. (1+ e)(l“evd (x) —v (I))Q(x )

+w(z,0) — s(z,0)Ta(d) —r(x,0)Tb(0).
Lemma 4:Define the polynomials (51)

Notice that for alle € (—1/, 0], the function—e/(1 + Xe)

(x) = vden() + Anum 42) . . / ) : .
- 2 - is monotonically decreasing and its corresponding mapping
u(z, 9) = ul(x,?) +uz (33; 0) (43) range is the intervdD, +o0). It directly yields that the lower
ui(z,0) = w(z,0)+ q(x,0)vpum(x) bound ofy can be calculated by (48).

—s(x,0)Ta(0) — r(z,0)Tb(6)  (44) Next, let us prove/,(Q) is positive definite which makes
s (@ é) " é)f;(x) (45) (49) a GEVP. Considering the dimension of matridés
’ ’ Q@ and V, one has that a shrunk SMR matrix is obtained
and letU; be the SMR matrix ofu, with the power vector after the power vector transformation in (46). Moreover,
¢1(n, dy) ® dp(ng, dy), V be the SMR matrix ob with the  any monomial of the power vecteti(n, d%) @ ¢p(ng, d‘e!) ®



é1(n, d?) is included in the monomial set of the power vector The above result gives a necessary and sufficient condition
(¢1(n, d3) ® ¢p(ng, dy)), which directly implies that matrix for verifying the tightness of the lower bound pf. This
H has full rank. From Lemma 4, one hés > 0 if Q >0 result is demonstrated by the following example.

andV > 0, which completes this proof. O

Note that the last constraint in (49) is called the linear- IV. AN ILLUSTRATIVE EXAMPLE
fractional LMI. For more details of the formulation of the Computation is carried out using MATLAB R2014a on
GEVP, please refer to [6]. a standard laptop with a 2.3GHz Intel Core i7-4712MQ

processor and an 8GB DDR3 RAM.

D. Tightness Investigation > ) ) i
Consider a 2-dimensional non-polynomial system

The last theorem gives a useful strategy to compute a ,
guaranteed lower bound gf, for a specific truncation degree . 12— 0im 0022 — 523 — si
. ; = - — — sin
k. Naturally one may ask: Is this lower bound tight? The 1 2+ 2 281 0%z (1)
following theorem is proposed to answer this question. G =1 20915 — 4
Theorem 3:Let @, R, S anda be the optimal values of 2= 1+ 22
@, R, S and« in the optimization (49), and define

— 50119 — €2

with g1 = g2 = 1, Cl = Sin(xl), CQ =1-—¢€%2,0= {9 S
D(Q.R.8,6) = éls(Q) + U1 (Q, R, S) + L(a). (52) R0 <0 <1 05<6 <2 07+03 <3} Letus
consider the estimation problem of the RDA by selecting

Then, a necessary and sufficient condition fqr = p* is the rational Lyapunov function via (32) as

that there exists &z, 0) € T where
T ={(z,0) € R} x R™ : vi(z) =

¢1(n, d%) @ ¢p(ng,dy) € ker(T') ando(z,0) = 0}.
The lower bound:; can be obtained by solving the GEVP
Proof: (Sufficiency) Let us recall that the largest estimate, (49). The result of computation is shown in Tab. | subject
of the RDA can be obtained by(c) where to different truncation degreds We compare this approach
p= sup v(z) st o(z,60) =0. (53) with the method of polynomial Lyapunov functions and
wE€R},6€6 choose a quadratic Lyapunov functien(z) = 2% + 3

[28]. The result shows that, by contrast, both the unitary
sublevel setY(1) and the largest estimate of the RDA are

x%—l—x%—f—x‘{—x%w%—i—x%
2+ xy — 222 + 222 + 422

(55)

Let the optimum of (53) b& andf. From (25), one has

w(Z,0) =0, Vpum(Z) — pvgen(Z) = 0. (54) much _smaller than the proposed approach by using)
- (see Fig. 2).
In addition, let us observe that
0 < (TLQ.R 5,a)(i(n, d2) @ dp(ng, dv)) TABLE |
(50).(52) B R ’_ N T PATO> g THE LOWER BOUND;, FOR SOME VALUES OF TRUNCATION DEGRE®:
= u2(z,0) + w1 (z,0) AND THE CORRESPONDING COMPUTATIONAL TIME.
(44é45) —(1—|—A6) (Mvden( ) Unum( )) ( é)
+w(z,0) — s(z,0)Ta(d) — r(z,0)Tb(0). i 1 2 3 4 5
Sincea(d) > 0 andb(d) = 0, it follows that
eus (%, 0) + ui (7, 0) Lk 0.784 1.142 1.307 1.327 1.348
< —(142e) (uvden(i) - vnum(i))q(i‘,@) t[s] 6.214 7.764 8.358 9.945 8.863
+w(z,0)
(54)
= 0, Then, we would like to check whether the tightness of

which directly yields that(+)TT(Q, R, S, a Y the lower bound is established. By using the condition (52)

o (1 dg)) _yO yTaking inté*g\ccéuQnt thd_foig, (jelgr:lidérﬁ)n?e from Theorem 3, one obtains that the tightness is estallishe
p\'%0» g - _ ! ; % int 5 — T N —

one hasp)(n, d¥) @ ¢,(ng, d¥) is in the null space of. with i = p* at pointz o (_2-39_97_2-863) and 6 =
(Necessity) Let us SUDDOS@(TL, d;) ® ¢p(n§7 dg) c (0416, 0737, 0174, 2146) Wherel € T

ker(I'), it follows that V. CONCLUSION AND FUTURE WORK
0 = QRS 04)(¢1( Y) @ ¢p(ng, dy)) For uncertain rational polynomial systems and non-
(52),(51) —(1+ /\e)(lﬂe Vden(Z) — Uy (T )q (z,0) polynomial systems, a novel approach is proposed to com-

pute the largest estimate of the RDA. A criterion based
+u(E,0) - s(z,0)" (9) —r(z,0)"b(0). on SOS conditions is proposed for establishing whether a
Then, taking into account that(z,0) = 0, a(d) > 0 and sublevel set of a rational function is in the RDA. Then,
b(#) = 0, one hasvu(z) = py. It further implies thaty* < by introducing a new class of SMR for the set of locally
v(Z) = pg, wWhile uy is a lower bound ofu*, i.e., ux < p*. parameter-dependent SOS and a transformation of power
Thus, one hag™* = . O  vector, the lower bound of the largest estimate of the RDA
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Fig. 2. The computational results: The solid blue line and liee
indicate the bounds of the largest estimate of the RDA byqusinand  [16]

vg, respectively; the solid yellow line and green line indéicétte bounds of
the unitary sublevel set by using and w2, respectively; the dashed lines
indicate v(z, #) = 0 with k=5 for somef € ©.

can be calculated via a quasi-convex optimization comgjsti [18]
of a generalized eigenvalue problem for a selected rational
Lyapunov function. Lastly, the tightness of the obtained!°!
lower bound can be established by a necessary and suffici
condition, which consists of checking the value of the
derivative of Lyapunov function and checking whether ?2 1
power vector is in a linear null space.

Future effort will be devoted to designing a less conser-
vative convex approach to further enlarge the lower bourld?!
of x* by using variable rational Lyapunov functions, e.g.{»3
searching a Lyapunov function with the largest volume of
the sublevel se¥(c) (see [4], [23] for the case of polynomial 24]
Lyapunov functions). Moreover, we are interested to dqyelo[
this approach combining with other robust verification meth[25]
ods, such as reachability analysis methods and contracti%]
theory methods [29], [30].
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