2015 IEEE 18th International Conference on Intelligent Transportation Systems

DEPART: Dynamic Route Planning in Stochastic
Time-Dependent Public Transit Networks

Peng Ni'?2, Hoang Tam Vo, Daniel Dahlmeier
'SAP Innovation Center

Abstract—While providing intelligent urban transportation
services is one of the key enablers for realizing smart cities,
existing transit route planners mainly rely on static schedules and
hence fall short in dealing with uncertain and time-dependent
traffic situations. In this paper, by leveraging a large set of
historical travel smart card data, we propose a method to build
a stochastic time-dependent model for public transit networks.
In addition, we develop DEPART'— a dynamic route planner
that takes the stochastic models of both bus travel time and
waiting time into account and optimizes both the speediness and
reliability of routes. Experiments on real bus data set for the
entire city confirm the quality and accuracy of the routes returned
by DEPART in comparison to state-of-the-practice route planners.

I. INTRODUCTION

Intelligent urban transportation systems are becoming in-
creasingly important for commuters in smart cities. Finding
optimal routes, the fundamental problem in road and public
transit networks, has been extensively studied. Specifically,
several techniques based on the classical Dijkstra algorithm
have been proposed in recent decades to speed up system
response time [1]. The underlying assumption of traditional
route planners is that means of public transportation such as
buses follow a fixed schedule. However, this does not really
hold in a realistic transit network since bus arrival times are
largely dependent on real traffic conditions which are highly
stochastic and time-dependent. Hence, the results returned by
static route planners are often inadequate in real world and
cause user dissatisfaction.

Motivation. We take Singapore’s bus network as an exam-
ple. The bus network is the backbone of public transportation
in Singapore and accounts for sixty percent of the total public
transportation trips [15]. Popular route planners in Singapore,
such as Google Maps and Gothere.sg, have two major draw-
backs. Firstly, the query results are the same no matter whether
the departure time falls in peak or off-peak hours. Secondly,
the travel times estimated by these route planners are not that
accurate. For example, Gothere.sg returns a travel time of 30
minutes for a journey consisting of 30 bus stops. In practice,
based on the historical travel smart card data collected from
the bus network this journey takes at least 50 minutes due to
passengers boarding and alighting time at each stop.

Related Work. Loui [14] is the first to formulate the prob-
lem of finding optimal paths in generic stochastic networks by
minimizing utility functions. Nikolova et al. [18] and Lim et
al. [12], [13] further extend the work and focus on stochastic
road networks. In [24], Wu et al. propose an approach to
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model risk-taking behavior based on the theory of stochastic
dominance, and use it to find optimal paths for different utility
functions. Overall, the above researches are specially proposed
for stochastic road networks, while we target at stochastic time-
dependent public transit networks.

The researches in [10], [16] study the least expected time
paths in stochastic time-dependent (STD) networks, while Sun
et al. [22] focus on finding the most robust paths instead.
Overall, these proposals assume that the stochastic travel time
follows a discrete random distribution. In our work, the travel
time is modeled after practical smart card data and fit into
a continuous distribution. Another research direction in STD
networks is to find an optimal routing policy, which is a
hierarchical decision scheme that specifies which bus to take
next at each decision node. Gao [7], [9] and Chabini [8]
consider link wise and time wise stochastic dependencies of
travel times. Wu et al. [23] incorporate real-time information
into routing policies in STD networks. However, the above
researches only consider bus travel time and ignore waiting
time. On the contrary, bus networks with stochastic waiting
time are studied in [4], [2], while the travel time is assumed to
be deterministic. Our proposed dynamic route planning system
advances these proposals by considering both waiting time and
travel time in public transit networks.

Challenges. To provide a practical route planning system
that can effectively deal with uncertain and time-dependent
characteristics of urban traffic, several challenges need to be
addressed. Firstly, the stochastic model of bus travel time
and waiting time have to be carefully devised so that transit
networks ensure first-in-first-out (FIFO) property, i.e., buses
do not overtake each other, which is unlike road networks
where faster drivers can arrive early even if departing late.
It is noteworthy that a network without FIFO property may
not have optimal substructures, i.e., the concatenation of the
shortest paths from A to B and from B to C is not necessarily
the shortest path from A to C. In fact, it is shown that there
is no optimal substructure in a general STD network [10].

Secondly, it is challenging to properly incorporate the
speediness of a route, i.e., the expected travel time, with its
reliability, i.e., the standard deviation of the travel time. Most
of researches done in this area use a mean-risk model [13],
[19], [17] which combines the mean and variance of the travel
time as a single linear objective function whose coefficients
are usually determined in a heuristic manner. Thirdly, the
routing algorithm needs to take into account that the travel
time between two bus stops is not equal to the sum of travel
times of each pair of consecutive stops between them. More
specifically, the sum of the travel times from consecutive stops
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S1 to S2 and from S2 to S3 is smaller than the travel time of
S1 to S3 due to the time taken for passengers boarding and
alighting at the middle stop S2. In other words, the bus travel
time lacks of component aggregation property.

Contributions. In order to address the aforementioned chal-
lenges, we build a stochastic time-dependent model with FIFO
property for a bus network based on the collected travel smart
card data, and propose an algorithm that can deal with the
aggregated error of travel time and incorporate the reliability
of a route as part of the output. The main contributions of this
paper are as follows:

e To the best of our knowledge, this is the first work to provide
a practical solution to route planing problem in a stochastic
time-dependent public transit network, and take both travel
time and waiting time into account.

We propose a method to build a stochastic time-dependent
transit network that enforces FIFO property where the travel
time is modeled as a time-dependent continuous distribution
function.

We introduce a new algorithm that solves the lack of
component aggregation property of bus travel time and
optimize both the speediness and reliability of the returned
routes.

We develop DEPART — a dynamic route planner and evaluate
the system with the real bus network of the entire city.
The results confirm the quality and accuracy of its returned
routes in comparison to other state-of-the-practice route
planners.

The remainder of the paper is organized as follows. In
Section II, we present an overview of our proposed dynamic
route planner. We introduce a model for FIFO stochastic time-
dependent public transit networks in Section III. In Section IV,
we describe our algorithm which is specially designed to
work with stochastic time-dependent networks. We evaluate
the system in Section V and conclude the paper in Section VI.

II. SYSTEM OVERVIEW

In this section, we present an overview of DEPART — our
proposed solution to dynamic route planning in time-dependent
public transit networks which recommends routes adapted to
traffic situations. Figure 1 illustrates the overall architecture of
the system.

The system leverages both dynamic and static data sources.
The former includes historical travel smart card data from
which information is extracted to build stochastic models for
the bus travel time and waiting time in the form of probability
distributions (see Section III). The latter includes information
of bus stops and static schedule of bus lines. These public
transportation information are used to create a time-dependent
graph representing the entire bus network (see Section IV-A).
The stochastic models of bus travel time and waiting time
are associated as costs of the edges in the time-dependent
transportation graph.

The created stochastic time-dependent graph constitutes the
core data structure in our routing engine. Given a query sub-
mitted by a user which basically consists of origin, destination,
and departure time, the system runs an optimization algorithm
to find routes with the least expected travel time and the highest
reliability (see Section IV-B).
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Fig. 1. Architecture of DEPART — a dynamic route planning system.

III. MODELING A FIFO STOCHASTIC TIME-DEPENDENT
PUBLIC TRANSIT NETWORK

In this section, we first describe the collected travel smart
card data. Then, we present our method to extract information
from those data and build basic stochastic time-dependent
models for bus travel time and waiting time. Finally, we
propose modifications to the basic models in order to enforce
FIFO property in a transit network.

A. Travel Smart Card Data

The public transportation system in Singapore is fully
integrated with travel smart card. The collected data comprise
of the recorded usage of all bus lines in Singapore for three
months in 2011. Every row in the data set consists of a
recorded trip of a commuter. The trip starts when the smart
card is used to tap in the vehicle and ends when the passenger
taps out. The format of a trip record is the following: [ Bus

Line, Start Station, End Station, Boarding
Time, Alighting Time, Trip Distance, Trip
Date 1.

B. Information Extraction From Travel Smart Card Data

The key information to extract from the data is the estimat-
ed travel time and its variance between any two stops of a bus
line during each time interval of a day. Another information
needed is the estimated bus waiting time. However, the smart
card records only points out when the passenger boarded the
bus at a bus stop and not when the passenger actually arrived
at that stop and waited for the bus, it is therefore impossible
to extract the waiting time information directly from the data.
Instead, we estimate these two sets of information as follows.

In order to get the first set of information (i.e., travel time
between any two stops including boarding and alighting of
passengers in the middle), we treat every record of the data
as a sample point. It reveals what are the boarding/alighting
stops and what is the boarding time and total travel time for
that trip. We group all records according to the start stops,
alighting stops, and bus line number. To further place every
trip in a unique time interval within a day, we use the midpoint
of that trip, which is defined as the point in time that is in the
middle between the start time and end time of the trip. In this



way, we are able to classify the extreme case of a trip starting
just at the end of a time interval, however, mainly taking place
during the next interval. From all entries within a single group,
we are then able to extract the mean and standard deviation of
the corresponding travel time. Finally, we estimate the waiting
time by figuring out the frequency of bus arrivals of the same
bus line at a given stop during a time interval.

TABLE 1. NOTATIONS FOR MODELING BUS TRAVEL AND WAITING
TIME

;L{_ & mean of travel time between stop ¢ and k in time interval j

o—fw k standard deviation of travel time between stop ¢ and k in time interval j

TZJ & time for a bus to travel from the i-st stop to k-th stop in time interval j

M number of buses for the whole day

R number of time intervals the day is split into

Ry length of a time interval

I frequency of buses starting during time interval j

w? expected waiting time at the i-th stop during the j-th time interval

B" the time when bus m is at stop @

C. Basic Models for Bus Travel Time and Waiting Time

1) Estimation of transit times from station to station: For
each of the time intervals in a day, the distribution for the
transit times is extracted from the data. This aims at modeled
rush hour situations slowing down the buses and thus achieving
a realistic congestion temporal profile. The travel time of a bus
from the ¢-th stop to the k-th stop during time interval j can
be fit into a log normal distribution as in Equation 1, which
has the best Anderson-Darling goodness of fit tests on the

data [11]. T log N(ud i |
ik ™ 108 (.Ui,kvai,k) (H

The parameters needed for the distribution, namely the mean
and the deviation, are then extracted from the data by finding
all samples that have the same starting stop, ending stop,
bus number and are within the respective time interval. The
result of this process is a lookup table containing information
about the distribution parameters of all possible stop to stop
combinations for all time intervals of the day.

2) Estimating Bus Waiting Time: We first extract the times
BT, which is the time when bus m is at the first stop in its
scheduled route. Then, in order to get the estimated arrival
time of the bus at other stops we add the mean travel time:

Bp' =B+, ()
In order to estimate the frequency of buses arriving at a stop
during a specific time interval j we define the function f that
tells us if the estimated arrival time of a bus is within the
chosen time interval within a day:

f(B".j)=1 if B"€j 3)
f(B",j) =0 if B"¢j Q)
Then, the frequency of bus arrivals at a station can be defined

as the number of buses that are expected to arrive during this
period divided by the length of the time interval:

M L

) — E= 5

f; 7 5)

The expected waiting time at a bus stop for a specific time
interval can be calculated as:

o)
w; =

of) ©)
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D. Building a FIFO Stochastic Time-Dependent Network

As discussed above, time-dependent travel time and waiting
time are step functions. More specifically, for both weekday
and weekend, a number of time intervals are predefined and
data are aggregated based on which time interval they fall
into. Then, for each time interval, continuous distributions of
bus travel time and waiting time are calculated. For example,
as shown in Figure 2, the mean travel time between time
interval [9:00, 9:30] is 35 minutes, while traveling between
[8:30, 9:00], which is in peak hours, takes up to 45 minutes.
Hence, if two users U1 and U2 start their journeys at 8:59 and
9:01 respectively, their expected travel times would be 45 and
35 minutes.

In fact, there are two issues with step functions of time-
dependent travel time. Firstly, the travel time estimation is not
logical as discussed in the above example: with only two-
minute difference in departure time, the expected travel time
difference is as much as 10 minutes. Secondly, in this scenario,
the FIFO property of a transit network is violated, i.e., user U1l
starts earlier but ends up arriving later than user U2. Similar
issues are also applied to the stochastic bus waiting time which
is dependent on the time intervals within a day.

To solve the above issues, one way is to use moving time
windows around every time point and build distributions for
that point. However, this approach is either memory expensive
if all distributions are to be stored or computationally expen-
sive if the distributions are computed on the fly for each query.
Instead, we use 30-minute intervals within a day and maintain
the distributions for each time interval. Based on our analysis,
this length of time intervals is sufficient to capture different
traffic patterns such as peak and non-peak hours.
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Fig. 2. Linearizing step-functions of time-dependent travel times.

Next, we propose a method to linearize the step functions
of time-dependent travel time and waiting time. Specifically,
instead of choosing the best matching time interval that the
given departure time falls into, we take the best matching and
the second best matching intervals, then use their weighted
average as the expected travel time. With the above technique,
a linear function is created between any two neighboring time
intervals. In this way, the travel time across time intervals
during a day follows a continuous piece-wise linear function
instead of step functions. Applying this to the above example,
user Ul departing at 8:59 and user U2 departing at 9:01
are now expected to travel 40.3 minutes and 39.7 minutes
respectively, which follows the FIFO property. The similar
linearization approach also applies to the waiting time.



After linearizing the step functions of travel time and
waiting time, the FIFO property is guaranteed as long as
the slope of the linear function is greater than —1, which
intuitively means that by departing ¢ units of time later, the
expected travel time shortened should not be larger than ¢.
Thus, departing later results in arriving at the destination at a
later time too. We did Monte Carlo experiments [3] and the
results confirm that when the FIFO property is guaranteed, the
optimal substructures of shortest paths also hold for linearized
log normal continuous distribution functions.

IV. STOCHASTIC ROUTE PLANNING IN TIME-DEPENDENT
NETWORKS

In this section, we first describe how to construct a time-
dependent transportation graph [20], given the static informa-
tion including bus stops and schedules of bus lines. Then,
we introduce an algorithm that can deal with the lack of
component aggregation property of travel time, and optimize
both speediness and reliability of routes.

A. Time-dependent bus network model

Since there can be multiple bus lines serving the same
bus stop, we create nodes of two types in a transportation
graph, namely transfer nodes and route nodes. Specifically,
a physical bus stop S corresponds to a single transfer node
ts and multiple route nodes, e.g., rfgl, e rgc if there are k
different bus lines serving that bus stop. A route returned to
users always starts from an origin transfer node and ends at a
destination transfer node.

There are three categories of edges in this transportation
graph. The edge from a transfer node ¢; to a route node rﬁ
represents a bus boarding process, and its associated cost is
the expected waiting time w! at bus stop i of bus line . The
edge from a route node rﬁ to a transfer node ¢; represents the
alighting of a commuter and we assume its associated time
cost is 0. The edge from a route node 7! to another route node
ré— of the same bus represents the bus traveling process, and
its associated cost is the bus travel time Tl-l’ ; between stops ¢
and j of bus line /. Both the bus waiting time w! and travel
time T! . are stochastic and time-dependent as we modeled in

- iy
section III.
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Fig. 3. Time-dependent transportation graph.

Figure 3 illustrates a simple time-dependent transportation
graph, where two bus lines [; and /5 run between bus stops
A and B. In this case, a stop (say, A) is modeled as a sinlgle
transfer node (i.e., t4) plus two route nodes (i.e., rfj and 737).

The edge from ¢4 to 1"2 represents a boarding process, and
the cost of the edge is the expected waiting time for bus line
l1. The reversed edge 7‘2 to t 4 means alighting and the cost is
0. The edge from rfg to rg shows the traveling of bus line [y
from bus stop A to B, and its associated cost is the expected
travel time between the two stops.

Note that the cost can be multi-dimensional. More specifi-
cally, in our stochastic model, both bus waiting time and travel
time have two dimensions, namely a mean (speediness) and a
variance (reliability). In general, we define a k-dimension cost
c as an array of k cost elements [c[0], c[1], ..., c[k — 1]]. The
plus operation, ¢ = ¢1 + ¢, is defined as c[i] = c¢1[i] + ca[i]
Vi € [0, k — 1]. The compare operation, ¢; < cg, is defined to
be ¢1[i] < eofi] Vi € [0,k — 1] and Im, s.t. ¢1]m] < co[m)].

When combining two log normal distributions, the aggre-
gate mean can be calculated by the sum of individual means.
However, the aggregate variance requires solving a convolu-
tional integral [6]. The research in [21] proposes another way
to calculate the aggregated distribution of a complete path
given distributions of each path segment. In our case, the
complete path is unknown until the routing algorithm comes
to its completion. With every path segment explored by the
algorithm, a new distribution needs to be calculated, which is
computationally expensive. Thus, we use the sum of variances
as an approximate indication for the reliability of routes.

B. Modified Multi-criteria Shortest Path Algorithm

As we consider two criteria (speediness and reliability)
in our route planning system, we mainly use multi-criteria
shortest paths algorithm [5] but adapt it to handle the lack of
component aggregation property of bus travel time as discussed
in Section I. Here, instead of simply adding the total cost at the
current node and the cost of its out going edge as in the original
algorithm, which causes the bus travel time’s increasing error
problem, we invoke a subroutine get AccurateCost to find
the correct cost without any aggregation error.

Algorithm 1 shows the steps to get the accurate travel time
cost between two nodes. The intuition is that aggregation error
happens only when the query is between two route nodes, not
for transfer nodes. Line 3 and 6 test if the query is made from
a transfer node to a route node or the other way round. In both
cases, taking the corresponding bus waiting time or cost 0 will
do. However, if the query is made between two route nodes, as
shown in line 8, a special handling is needed. To solve the lack
of component aggregation property problem, we keep tracing
backwards for predecessors and find the first non-transfer node
n4. The path from this node to the current node includes all
boarding and alighting information for the intermediate bus
stops. Thus the accurate cost is calculated by the cost of node
N, plus the travel time between n,, and current node.

A simple example that illustrates how to get accurate cost
is shown in Figure 4. A bus serves three subsequent stops
A, B and C. Starting from the transfer node ¢4, the cost for
route node 74 is simply a 7-minute waiting time. From 74 to
rp, a 2-minute travel time is added normally. However, when
the algorithm reaches node r¢, instead of adding another 2-
minute to existing cost (cg + Tr,c) and getting 11 minutes,
the algorithm finds the first non-transfer node r 4, and the cost
is calculated by c4 + T'4,c, which ends up to be 12 minutes.



Algorithm 1: getAccurateCost

Input: label [, edge e, ., departure time ¢ at source
Output: cost ¢,

1 cost ¢, = l,,.getCost()

2 node n, = l,,.getNode()

3 if n, is a transfer node and n,, is not then

/* a boarding process */
4 COSt Cyyy = €4,1.getWaitingTime(t + ¢,,.mean)
5 Cy = Cy + Cy
6 else if n, is a transfer node and n,, is not then
/* an alighting process */
7 Cy = Cy
8 else
9 label [,
/* get last non-transfer node 7N */
10 label I; = I,
11 while n, = l;.getNode() is not a transfer node do
12 Zw = lz
13 label I; = pm.getPredecessor(l;)
14 end
15 cost ¢y = Ly.getCost()
16 Cp = Cy F €y p-getTravelTime(t + ¢,,.mean)
17 return c,

tac(9) = 2

AT e

[12, ra]

[0, Null] [12, rc]

Fig. 4. Dealing with travel time’s lack of component aggregation.

V. EXPERIMENTAL STUDY
A. Experimental Setup

The data used for building stochastic models of bus travel
time and waiting time are collected from real smart card inte-
grated bus network in Singapore and comprise of the recorded
usage of all bus lines in a period of three months. A trip by
a commuter recorded in the data set starts when the smart
card is used to tap in the vehicle and ends when the passenger
taps out. We compare DEPART — our proposed dynamic route
planning system with Google Maps? and Gothere.sg®, which
are among the favorite route planners in Singapore. We are
interested in the accuracy as well as the quality of the routes
returned by these systems.

B. Experimental Results

1) The accuracy of expected total travel time: We first
select 30 trip instances that cover peak and off-peak hours in
both weekdays and weekends from the historical smart card
data. The total times taken by these trips range between 30

Zhttps:/maps.google.com
3http://gothere.sg/maps

and 60 minutes. Each selected trip includes the information
of departure time, arrival time and an origin-destination (O-D)
pair. The historical total travel time can be calculated from the
arrival and departure times, which is taken as the ground truth.
Then, we query the comparing route planners for the same O-D
pair given the same departure time to get the total travel time
of the optimal route returned by these systems. Finally, we
use root-mean-square error (RMSE) to measure the accuracy
of the returned total travel times.

TABLE II. ERROR OF EXPECTED TOTAL TRAVEL TIME IN MINUTES
AM peak | PM peak | AM off-peak | PM off-peak | Weekend

DEPART 8.0 6.5 39 4.5 2.3

Google 15.4 20.0 55 4.5 7.5

Maps

Gothere.sg 28.8 32.7 17.4 14.2 20.9

The experimental results are shown in Table II. As can be
seen, Gothere.sg suffers from the largest error. On average, its
returned travel time is 20 minutes different from the real value,
and it tends to underestimate the real travel time. Google Maps
does relatively well for weekday off-peak hours and weekends
when the errors are just around 6 minutes. However, its travel
time estimation for peak hours drops sharply and the error is as
high as 15 to 20 minutes. In comparison, DEPART provides
the highest accuracy in all cases. The errors are constantly
below 10 minutes. Further, the travel time estimation for peak
hours achieves similar accuracy as off-peak hours. The results
confirm that DEPART can effectively deal with the uncertain
and time-dependent characteristics of urban traffic.
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Fig. 5. Dynamic route recommendation.

2) The ability to dynamically rank candidate routes de-
pendent on departure times: Existing route planners such as
Google Maps and Gothere.sg are static in the sense that they
return the same routes in spite of different departure times. In
contrast, DEPART recommends routes with better quality due
to its ability to calculate routes that are more adapted to traffic
conditions. For example, there are two paths shown in Figure 5.
Bus 700 goes by the right path which is the main road. Bus 167
goes by a side track path on the left. When traveling at 14:30
pm on a weekday, both routes take less than 15 minutes and
bus 700 is slightly faster. Thus, DEPART recommends bus 700
traveling by the main road. Nevertheless, when the departure
time is 18:30 pm, the expected travel times of bus 700 and bus
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167 increase to 22 and 18 minutes respectively. This means
that the previously faster route 700 on the main road turns out
more likely to be congested and takes 20% longer travel time.
In this case, DEPART dynamically recommends bus 167 to the
user as an alternative during peak hours.

3) The ability to consider the reliability of paths: Since
the traffic network is stochastic in nature, the expected travel
time is not always reliable. To optimize both the speediness and
reliability of routes, our route planning system utilizes multi-
criteria algorithm and finds both least expected travel time and
most reliable routes. For instance, there are two routes from
downtown to a fencing club as shown in Figure 6. Historical
data show that during evening peak hours the upper route going
through the main road takes 15% longer travel time than the
lower route, but its variance is only 20% of the faster one.
Both routes are returned by DEPART since they are better in
either expected travel time or reliability of the route. If a user
has a fencing class to attend and does not want to miss it
by any chance, he should take the slightly longer but more
reliable route. Other users without strict deadlines may prefer
the expected faster route.
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Fig. 6. Speediness vs. reliability of routes.
VI. CONCLUSION

In this paper, we have proposed DEPART — a practical
route planning system that can effectively deal with uncertain
and time-dependent characteristics of urban traffic. We extract
bus travel and waiting time distributions from smart card data
and build a FIFO stochastic model for the bus network. We
introduce a new algorithm that solves the lack of component
aggregation property of bus travel time. Experimental results
on bus network confirm that DEPART is able to recommend
routes that are more adapted to traffic situations. Our future
research includes devising an online route planning algorithm
that leverages the real-time feed of bus arrival times.
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