
Deployment Calculation and Analysis for a
Fail-Operational Automotive Platform

Klaus Becker, Bernhard Schätz, Christian Buckl
fortiss GmbH

Guerickestr. 25, 80805 Munich, Germany
Email: {becker, schaetz, buckl}@fortiss.org

Michael Armbruster
Siemens AG, Corporate Technology

Otto-Hahn-Ring 6, 81739 Munich, Germany
Email: michael.armbruster@siemens.com

Abstract—In domains like automotive, safety-critical features
are increasingly realized by software. Some features might even
require fail-operational behavior, so that they must be provided
even in the presence of random hardware failures. A new
fault-tolerant SW/HW architecture for electric vehicles provides
inherent safety capabilities that enable fail-operational features.

In this paper, we introduce a formal model of this architecture
and an approach to calculate valid deployments of mixed-critical
software-components to the execution nodes, while ensuring fail-
operational behavior of certain components. Calculated redeploy-
ments cover the cases in which faulty execution nodes have to
be isolated. This allows to formally analyze which set of features
can be provided under decreasing available execution resources.

Keywords—Fault-Tolerance; Fail-Operational; Deployment;

I. INTRODUCTION AND MOTIVATION

Embedded systems are often operated in safety-critical
environments, in which unhandled faults could cause harmful
system failures. Hence, safety-critical systems have to react on
faults properly. Many current safety-critical systems for mass-
markets, like vehicles, handle faults by invalidating faulty data
and avoiding harm by going into a fail-safe state. However, this
may cause the loss of provided features. This is not acceptable
for features that require fail-operational behavior.

To increase their dependability, systems must be able to
resume affected features without any service interruption. If
system resources get lost due to hardware failures, runtime-
reconfiguration can be applied to efficiently use the remaining
resources. As the remaining resources may become insufficient
to provide the full set of features, the explicit deactivation of
some features would allow to keep alive the subset of features
with the highest demand with respect to safety, availability and
reliability. We use these terms as defined in [1].

However, in current automotive E/E architectures, reconfig-
uration is substantially restricted by Electronic Control Units
(ECUs) tailored to their provided features, and inflexible
communication buses. This heterogeneity prevents a system-
wide mechanism to increase the feature reliability by resuming
relevant software on other ECUs after hardware failures.
Additionally, the integration of new features becomes more
and more complicated due to increasing feature interactions.
These and more challenges are for instance discussed in [2].
It is stated that a substantial revision of the vehicles HW/SW
architecture can reduce its complexity to an adequate level.

We propose a new centralized HW/SW platform for vehi-
cles, capable to overcome the mentioned shortcomings. The

platform provides inherent safety properties and supports fail-
operational features without requiring mechanical fallbacks. To
avoid harm, faulty hardware is isolated from the remaining
system. Affected software is resumed on intact hardware.
Extensions to the feature-set after sale are supported in a Plug-
and-Play manner.

In this paper, we address the calculation and analysis of the
deployment of software components to the execution nodes
inside the proposed architecture. To provide fail-operational
features, software components are deployed redundantly. How-
ever, with a rising number of software and hardware units,
this configuration becomes more and more complex and hard
to manage manually. We therefore provide an automated
configuration support for deployment decisions, ranging from
a semi-automated to a fully-automated approach. Our approach
is based on a formal system model and a set of formal con-
straints that describe the validity of deployments with respect
to the safety-concept. Model and constraints characterize an
arithmetic problem that can be solved by SMT-solvers.

The main contribution is an approach to calculate and
analyze different reconfigurations of the deployment to become
active after execution nodes become isolated. The set of active
software components – and thus also the set of provided
features – is automatically reduced when the remaining sys-
tem resources become insufficient to provide the initial set
of components. Components are deactivated based on their
priorities, which can either be assigned manually or derived
automatically. Our approach allows to formally analyze at
design-time if the desired system and feature properties can
be fulfilled, like which set of features can still be provided
after one or multiple isolations. Analyzing the deactivations of
single features allows to analyze the entire system degradation.

In section II we present the basic concepts of the proposed
platform. Section III shows the main contribution of this paper,
which is a formal model and a constraint-based approach to
calculate valid deployments and to analyze which features
can be provided after isolations of execution nodes. The
applicability is shown by a little example from the automotive
domain. Related work is discussed in section IV and the
conclusion and future work is given in section V.

II. SYSTEM ARCHITECTURE AND SAFETY CONCEPT

A. System Architecture

In this paper, we discuss the deployment calculation for a
scalable and uniform platform that was developed with the aim

1

to reduce the complexity of automotive HW/SW architectures.
The main platform characteristics are:

• A simplified hardware & network structure with a
scalable set of execution nodes.

• A homogeneous communication system for the highly
available transfer of critical real-time data based on
industrial standards (e.g., Ethernet).

• Integrated mechatronics components (smart actuators
and sensors), such as wheel hub motors with integrated
steering, braking and damping.

• A runtime environment (RTE) that can execute both
highly available, safety-critical software as well as
non-safety-critical functions side-by-side.

• Plug-and-play capability to update or extend the ve-
hicles safety-critical features by retrofit new software
and modern sensors/actuators after purchase.

The vehicles hardware architecture is composed by a
scalable set of central execution nodes (also called Duplex
Control Computers (DCCs)) and a set of peripheral execution
nodes providing the physical sensing and actuating (also called
Smart-Aggregates). The DCCs are connected to each other
and to the Smart-Aggregates by redundant switched Ethernet-
Links. The DCCs assemble the Central Platform Computer
(CPC). We assume homogeneous DCCs for flexibility in the
deployment. Fig. 1 shows an example system architecture.

DCC
1

A3 A2 A1 A4 A5

A6 A7 A8
A9

Central Platform
Computer (CPC)

Aggregates
Network

Links

DCC
3

DCC
2

DCC
4

Fig. 1. Example instance of the proposed hardware architecture

The proposed system has two different power supplies red
and blue. Each execution node is supplied by either the red
or the blue one. Hence, if one power-supply gets lost, only
a subset of the execution nodes gets lost and the residual
nodes can continue the operation. These basic properties have
also been described in [3]. As scheduling policy, we follow
the concept of logical execution times [4], meaning that
the software components are executed within cycles. Each
execution node provides a certain budget of time per cycle that
can be used to execute application software components. In
this paper, we assume a simplified model in which all software
components are scheduled with the same rate in each cycle.

B. Fault-Model

According to ISO 26262 [5], we use the following terms. 1)
Fault: abnormal condition that can cause an element or an item
to fail, 2) Error: discrepancy between a computed, observed
or measured value or condition, and the true, specified, or
theoretically correct value or condition, 3) Failure: termination

of the ability of an element to perform a function as required,
4) Fault-Model: representation of failure modes resulting from
faults, and 5) Random Hardware Failure: failure that can occur
unpredictably during the lifetime of a HW element and that
follows a probability distribution.

In this paper, we consider random hardware failures that
lead to isolations of execution nodes. According to e.g. [6],
we further consider Fault-Containment Regions (FCR) as the
set of subsystems that share one or more common resources
and that can be affected by a single fault.

We consider the vehicle as a set of FCRs. All FCRs have
precisely specified linking interfaces in the domains of time
and value including a link-specific fault-model. We describe
the link-specific fault-models per FCR as far as it is helpful
to understand the deployment model, presented in section
III. The relevant FCRs are 1) execution nodes including its
communication-links to data sinks, 2) application software
components including its communication-links to data sinks,
and 3) power supplies.

We define for each FCR a fault-model with the states
correct zc, faulty zft, faulty but passivated zfp and faulty out
of control zooc. A random hardware failure with a failure-rate
λ leads to the transition from zc to zft. The failure detection
and passivation mechanisms within the faulty FCR but also
within the receiving FCR lead to a transition from zft to zfp.
A passivated FCR does no longer harm the system operation.
Anyhow, the functionality of the passivated FCR will no more
be available. Only in case that the failure cannot be detected
neither by the faulty FCR itself nor by the receiving FCR,
we assume that this faulty FCR behaves fully out of control
and thus, a correct system-operation can no longer be ensured.
Out of control zooc means that the faulty FCR can neither
be passivated nor controlled. With regard to ISO26262 this
is equivalent to the fact that any safety-goal can no more be
reached.

In this paper, we assume a state-transition time of 0s
and a sufficient failure detection coverage. Sufficient means
that the probability of any FCR to be in state zooc will be
acceptably low to meet the quantitative safety-requirements
of the ISO26262 [5]. Only if these assumptions are true, the
deployment-considerations shown later in section III can be
applied in a reasonable manner.

C. Safety & Redundancy Concept

Fault-tolerance is the ability of a system to maintain control
objectives, despite the occurrence of a fault [7]. To achieve
this, we deploy multiple instances of application software
components in a redundant manner to the execution nodes.
This enables the system to absorb loss of execution nodes and
results in features being fail-operational, meaning that features
can continue operation in the presence of a limited number of
random hardware failures.

In the safety concept of the proposed platform, applica-
tion software components (ASWCs) are grouped to so called
ASWC-Clusters. These clusters get deployed to the execution
nodes of the system. Those ASWCs belong to the same Cluster
that have the same Automotive Safety Integrity Level (ASIL)
and the same requirements to behave fail-operational.

2

Each ASWC has multiple safety goals, while each safety
goal has an assigned fault-tolerance time (FTT). The smallest
of these FTTs is the so called minFTT of an ASWC.
Likewise, the minFTT of an ASWC-Cluster is the smallest
minFTT of the ASWCs that are mapped to this cluster.

Each cluster has at least one deployed instance that is active
as a so called master. If the cluster is required to be fail-
operational, a second instance is deployed as a hot-standby
or cold-standby slave (also known as hot/cold spare). The
decision to create a hot- or a cold standby slave depends on the
minFTT of the cluster compared to the fault-recovery time
(FRT) of the proposed platform.

We neglect here the time that is required to switch a cold-
standby slave to become a master. With the proposed platform,
a maximum switchover time can be verifed. We actually aim
on a switchover-time of max 50ms. In this paper we assume
the FRT to be a defined constant as it can be shown that a
max FRT can be proven. Due to asynchronities and different
fault-detection times depending on the faulty FCR, the actual
FRT can be less than the maximum value we assume herein.

Depending on the required level of fail-operationality,
additional inactive instances of a cluster are deployed, meaning
that they are only in memory but not executed. Hence, we
differ between activations (active deployments, ASWCs are
executed) and allocations (inactive deployments, ASWCs are
not executed, only in memory). An inactive allocation may
become active if this is required after isolations.

Different constraints have to be fulfilled by a deployment
to be valid. For instance, if an ASWC-Cluster has a master and
a hot-standby slave, master and slave have to be deployed onto
two execution nodes with different power-supplies to avoid that
both instances get lost simultaneously when a power-supply
fails. If the execution node of the master gets isolated, the slave
becomes the new master and if required, a passive instance
becomes the new hot-standby slave.

III. DEPLOYMENT CALCULATION AND ANALYSIS

We define the system properties and the deployment prob-
lem as shown in the following sections.

A. Formal System and Deployment Model

Definition 1 A Vehicle V = 〈F, SA, HA,Φ〉 comprises a set
of Functional Features F , an Application Software Archi-
tecture SA, an Execution Hardware Architecture HA and a
Configuration Φ.

Definition 2 An Application Software Architecture SA =
〈S, SC〉 is composed by a set S = {s1, ..., sn} of Application
Software Components (ASWCs) and a set SC = {sc1, ..., scq}
of ASWC-Clusters with sci ⊆ S while ∀i, j : sci ∩ scj = ∅
and

⋃ q
i=1 sci = S. We describe the mapping of s ∈ S to

sc ∈ SC with α(s) −→ {sci ∈ SC | sci contains s} and
α(sc) −→ {si ∈ S | si is mapped to sc}.
Definition 3 The set of functional features F = {f1, ..., fm}
contains the features of the vehicle that can be recognized by
the user. A feature is realized by one or more ASWCs and the
involved Sensors and Actuators, while each ASWC contributes
to realize one or more features. For s ∈ S and f ∈ F , we

define this relationship as χ(s) −→ {fi ∈ F | s contributes to
realize fi} and χ(f) −→ {si ∈ S | f is partly realized by si}.
Definition 4 An Execution Hardware Architecture HA =
〈E,L〉 comprises execution nodes E and communication links
L = E × E between these nodes. The set of execution nodes
E = EC∪EA is composed by a set of central execution nodes
EC = {e1, ..., ek} and a set of peripheral Smart-Aggregate
nodes EA = {ek+1, ..., el} with attached physical Sensors
and Actuators. The set EC is also called the Central Platform
Computer (CPC).

Definition 5 The Configuration Φ = 〈δP (SC), δA(SC),
δ(SC)〉 defines how ASWC-Clusters SC are deployed to
execution nodes E, either passively (δP) or actively (δA). For
sc ∈ SC, we define δP (sc) −→ {ei ∈ E | sc is in memory of ei,
but not executed on ei}, δA(sc) −→ {ei ∈ E | sc is in memory
of ei and executed on ei} and δ(sc) = δA(sc) ∪ δP (sc).

Our deployment approach can either be applied to ASWCs
or to ASWC-Clusters. The motivation to think in Clusters and
not in single ASWCs is that the definition of Clusters reduces
the complexity with regard to the amount of combinations to
be considered for deployment and master-slave switchovers.
Furthermore, the ASWCs within a Cluster have a kind of
stronger binding to each other. Thus, we aim on a deployment
of ASWCs which are bound to one cluster within the same
ECU. An example for a binding quality is data-transport delay.

ASWCs might contain invisible sub-components and inter-
nal communication channels. We don’t model external commu-
nication channels between ASWCs in this paper for simplicity.

B. Fixed Properties of the Deployment Model

Each ASWC si ∈ S is defined by several properties.
Property wcet(S) → N+ defines the Worst-Case Execution
Time. Property asil(S)→ {0..4} defines the Automotive Safety
Integrity Level (ASIL) of an ASWC [0: Quality-Management
(QM), 1: ASIL-A, 2: ASIL-B, 3: ASIL-C, 4: ASIL-D]. Prop-
erty failOp(S)→ N0 defines the fail-operational level [0: non
fail-operational, n: si has to be provided after n isolations].
The minimum of the fault-tolerance times of an ASWC for its
different safety goals is defined by minFTT (S)→ N+.

As defined in section II-C, the vehicle property frt(V)→
N+ defines the fault-recovery time of the vehicle V. The frt
has influence on if the slaves are deployed as hot or as cold-
slaves, depending on their minFTT .

For execution nodes e ∈ E, the following properties are
defined. The property totalT imeBudget(E) → N+ defines
the budget of time that is provided in each cycle to execute the
ASWCs. We assume here that ASWCs are executed in every
cycle. The property powerSupply(E) → {0, 1} defines the
power supply of the execution node [0: Blue, 1: Red]. Finally,
the property isolated(E) → {0, 1} defines if the execution
node ei ∈ E is isolated in the current solution instance. We
do not model the amounts of required and provided volatile and
non-volatile memory here for simplicity. These are handled in
a similar manner than the WCET and the time-budget.

C. Solution Properties of the Model

In this section we describe the model-properties that rep-
resent the solution of the deployment problem.

3

The properties of ASWC-Clusters sc ∈ SC depend on
the mapped ASWCs. Properties asil(SC) → {0..4} and
failOp(SC) → N0 define the ASIL and the fail-operational
level of a cluster. It’s ensured by constraints that ∀si ∈ α(sc) :
asil(sc) = asil(si) and failOp(sc) = failOp(si). Property
minFTT (SC)→ N+ is the minimum of all the minFTT (si)
for si ∈ α(sc). The property sumWcets(SC) is defined to
be equal to

∑
si∈α(sc) wcet(si).

For execution nodes e ∈ E, usedT imeBudget(E) → N0

is defined to be equal to
∑
scj∈SC | e∈δA(scj)

sumWcets(scj),
which is the sum of the wcet(s) of those ASWCs that are
active in the schedule on node e. A constraint ensures that
∀e ∈ E : usedT imeBudget(e) ≤ totalT imeBudget(e).

Notice that the decision if an ASWC-Cluster instance
becomes a master or a hot-standby slave is done at runtime
by a Platform-Management component of the RTE of the
proposed vehicle platform. This is, because there are also other
reasons beside node-isolations that may lead to the deactivation
of a master. Hence, the calculated master/slave deployments
as shown in this paper are not used as predefined runtime-
configuration, but at design-time to statically analyze the fail-
operational runtime-behavior. It can be analyzed under which
circumstances it is possible at runtime to keep a master resp. a
slave alive in the presence of faults that lead to node-isolations.

D. Deployment Constraints and Problem Solving

To define the set of valid deployments, we setup an
arithmetic model of the system properties and the deployment
constraints. We implemented the deployment calculation and
analysis by defining the model with arithmetic calculations
and simple functions like Sums, Implications and if/then/else
relations. We do not list the detailed constraints in this paper
for space reasons. The model can be solved for instance by an
SMT-Solver like Z3 [8].

E. Example of an Initial Deployment

In this section we show an application of our approach on
a simplified example from the automotive domain. Consider
the following functional features and ASWCs:

asil(si) /
Feature fi ASWCs si of χ(fi) failOp(si) /

wcet(si) in ms
f1 : Infotainment s1 : Infotainment QM / 0 / 2
f2 : Energy- s2 : RemainingDrive- A / 0 / 0.7

Management RangeEstimation
s3 : EnergyEfficiency- A / 0 / 0.3

Assistant
f3 : ADAS-A s4 : AdasSwc1 C / 0 / 1.7

s5 : AdasSwc2 D / 1 / 1
f4 : ADAS-B s5 : AdasSwc2 D / 1 / 1
f5 : Manual s6 : ManualAccelerate D / 3 / 1

Driving s7 : ManuelBrake D / 3 / 1
s8 : ManualSteer D / 3 / 0.5

The features f3 and f4 are placeholders for some Advanced
Driver Assistance Systems (ADAS), like an ACC or automatic
parking. Notice that feature f3 is realized by two ASWCs with
different properties and ASWC s5 contributes to realize two

features f3 and f4. Feature f3 is non fail-operational, as not
all si ∈ χ(f3) are fail-operational, but f4 is fail-operational.

In this example, five ASWC-Clusters {sc1, ..., sc5} are
established. Due to the constellation of the properties asil(si)
and failOp(si), the ASWC-Clusters are: α(sc1) = {s1},
α(sc2) = {s2, s3}, α(sc3) = {s4}, α(sc4) = {s5} and
α(sc5) = {s6, s7, s8}. Notice that ASWC s5 is only in one
cluster, although it contributes to two features.

Considering a CPC with 4 execution nodes (DCCs) as
shown in Fig. 1, a valid initial deployment for the example
is shown in Fig. 2. The colors (red/blue) of the execution
nodes denote their attached power-supply. We assume here
that minFTT (si) < frt(V) for all fail-operational ASWCs.
Hence, hot-standby slaves are required. As provided exe-
cution time of the execution nodes per cycle, we assume
totalT imeBudget(ei) = 4ms. As visible in Fig. 2 at the
values of usedT imeBudget(ei), no time-budget of any exe-
cution node is exceeded.

e1 (DCC 1)

usedTimeBudget:
3.5 ms

e2 (DCC 2)

usedTimeBudget:
3 ms

e3 (DCC 3)

usedTimeBudget:
1.7 ms

e4 (DCC 4)

usedTimeBudget:
3.5 ms

sc5 (HotSlave)
asil: D
failOp: 3
sumWcets: 2.5 ms
ASWCs: s6, s7, s8

sc4 (Master)
asil: D
failOp: 1
sumWcets: 1 ms
ASWCs: s5

sc1 (Master)
asil: QM
failOp: 0
sumWcets: 2 ms
ASWCs: s1

sc4 (HotSlave)
asil: D
failOp: 1
sumWcets: 1 ms
ASWCs: s5

sc5 (Inactive)
asil: D
failOp: 3
sumWcets: 2.5 ms
ASWCs: s6, s7, s8

sc3 (Master)
asil: C
failOp: 0
sumWcets: 1.7 ms
ASWCs: s4

sc5 (Inactive)
asil: D
failOp: 3
sumWcets: 2.5 ms
ASWCs: s6, s7, s8

sc2 (Master)
asil: A
failOp: 0
sumWcets: 1 ms
ASWCs: s2, s3

sc5 (Master)
asil: D
failOp: 3
sumWcets: 2.5 ms
ASWCs: s6, s7, s8

Fig. 2. Initial deployment for the example

The Z3 SMT-Solver [8] calculated the initial deployment
in 125ms on a 2 GHz Core i7. This is the time for the check()-
operation, not the time for setting up the model and constraints.

F. Reconfigurations after Isolations

Let ECf ⊂ EC be the set of isolated execution nodes.
For all ei ∈ ECf , we set isolated(ei) = 1. It is ensured by
constraints that no ASWC-Cluster is activated anymore on one
of the isolated execution nodes.

Definition 6 A Platform-Availability-Graph (PAG) is a di-
rected acyclic graph G = (V,E). Each vertex V represents
a set of alive central execution nodes ECa = EC \ ECf . The
edges E describe a transition between two vertexes, meaning
that some ei ∈ EC move from ECa to ECf . A transition happens
due to an isolation or if a power-supply disappears.

Fig. 3 shows an example CPC containing 4 central execu-
tion nodes (DCCs) and the two power-supplies (red and blue).

When considering only one fault, the PAG looks like shown
in Fig. 4. The vertexes are labeled with the Ids i of the alive
nodes ei ∈ ECa . The edges are labeled with the Id i of that
ei ∈ ECf which has recently been isolated resp. with the power-
supply (R,B) that has recently been broken down.

4

DCC
1

DCC
4

DCC
2

DCC
3

Blue
Power Supply

Red
Power Supply

B R

Ethernet

Fig. 3. An example Central Platform Computer (CPC) with 4 DCCs

1,2,3,4

2,3,4 1,3,4 1,2,4 1,2,3 1,3 2,4

-1 -2 -3 -4 -R -B

Fig. 4. Example PAG considering only one fault

The validity of deployments after a transition in the PAG
is ensured by arithmetic constraints. For instance, these con-
straints ensure that the mapping of ASWCs to clusters is not
changed during a PAG-transition. Furthermore, it is ensured
that the previous allocations or activations of ASWC-Clusters
to execution nodes are not changed unnecessarily during a
PAG-transition. To do this, some solution properties of the
former deployment are used as fixed properties for the follow-
up deployment, when a PAG-transition is calculated.

To cover deactivation scenarios that might be required after
isolations of central execution nodes, each sc ∈ SC has
additionally the following properties:

• hotStandbySlaveReq(SC)→ {0, 1}: indicates if a
hot-standby slave is required. The valuation is derived
by considering minFTT (sc) and frt(V)

• hotStandbySlavePresent(SC) → {0, 1}: indi-
cates if a required hot-standby slave can be established

• masterPresent(SC) → {0, 1}: indicates if the
master can be established or not

In order to decide about the deactivation order for
the ASWC-Clusters, each ASWC-Cluster has assigned
the properties prioPointsMaster(SC) → N+ and
prioPointsHotSlave(SC) → N+ storing priorities of ac-
tively deployed instances of the cluster.

We calculate the sum of the priorities of all active instances
of ASWC-Clusters and use these priorities and their sum to
construct an order in which the instances of the clusters should
be deactivated in case system resources become insufficient.
We do this by maximizing the sum of the priorities. The
clusters with the lowest priority get deactivated first. We derive
the priorities depending on asil(SC) and failOp(SC). We
set prioPointsMaster(sc) = asil(sc) + failOp(sc) + 2
and prioPointsHotSlave(sc) = asil(sc) + failOp(sc) + 1.
Hence, clusters with lowest ASIL will get deactivated first.
However, the priorities could also be set differently.

G. Example of a Deployment after an Isolation

Fig. 5 shows the follow-up deployment for the case that
DCC1 becomes isolated in the initial deployment (cf. Fig. 2).

e1 (DCC 1)

ISOLATED

e2 (DCC 2)

usedTimeBudget:
3 ms

e3 (DCC 3)

usedTimeBudget:
2.5 ms

e4 (DCC 4)

usedTimeBudget:
3.5 ms

sc5 (Inactive)
asil: D
failOp: 3
sumWcets: 2.5 ms
hotStandbySlaveReq: 1
hotStandbySlavePresent: 1
ASWCs: s6, s7, s8

sc4 (Inactive)
asil: D
failOp: 1
sumWcets: 1 ms
hotStandbySlaveReq: 1
hotStandbySlavePresent: 0
ASWCs: s5

sc1 (Master)
asil: QM
failOp: 0
sumWcets: 2 ms
hotStandbySlaveReq: 0
hotStandbySlavePresent: 0
ASWCs: s1

sc4 (Master)
asil: D
failOp: 1
sumWcets: 1 ms
hotStandbySlaveReq: 1
hotStandbySlavePresent: 0
ASWCs: s5

sc5 (Inactive)
asil: D
failOp: 3
sumWcets: 2.5 ms
hotStandbySlaveReq: 1
hotStandbySlavePresent: 1
ASWCs: s6, s7, s8

sc3 (Inactive)
asil: C
failOp: 0
sumWcets: 1.7 ms
hotStandbySlaveReq: 0
hotStandbySlavePresent: 0
ASWCs: s4

sc5 (HotSlave)
asil: D
failOp: 3
sumWcets: 2.5 ms
hotStandbySlaveReq: 1
hotStandbySlavePresent: 1
ASWCs: s6, s7, s8

sc2 (Master)
asil: A
failOp: 0
sumWcets: 1 ms
hotStandbySlaveReq: 0
hotStandbySlavePresent: 0
ASWCs: s2, s3

sc5 (Master)
asil: D
failOp: 3
sumWcets: 2.5 ms
hotStandbySlaveReq: 1
hotStandbySlavePresent: 1
ASWCs: s6, s7, s8

Deactivated Masters: sc3

Deactivated Features: f3

Deactivated required hot-standby Slaves: sc4
prioSumAllSCs(V): 40
prioSumActiveSCs(V): 29

Fig. 5. Follow-up deployment after DCC1 has been isolated

While in the initial deployment all clusters can be deployed
as required, after the isolation of e1 (= DCC 1) the master
of cluster sc4 gets lost and its slave on e2 becomes the
new master. As failOp(sc4) = 1, no new slave is created
because it’s not required that sc4 is still present after the next
isolation. Furthermore, the slave of cluster sc5 get lost. As
failOp(sc5) = 3, an inactive instance of sc5 must be activated
to serve as new slave to prepare for the next isolation. The new
slave of sc5 can only be activated on e3, not on e2, because it is
not allowed that master and slave depend on the same power-
supply. However, to be able to execute sc5 on e3, sc3 has to
be deactivated as the sum of the WCETs of sc3 and sc5 would
exceed the time-budget of e3. The deactivation of sc3 forces
the deactivation of feature f3, as α(sc3) = {s4} ⊆ χ(f3).

The sum of priority points in the initial solution was 40.
The loss of the master of sc3 and the slave of sc4 forces
a loss of 11 priority points (prioPointsMaster(sc3) = 5,
prioPointsHotSlave(sc4) = 6). Hence, without DCC1 only
29 priority points can be provided by the system (cf. Fig. 5).

When this procedure is continued by isolating more DCCs
in arbitrary order, the cluster sc5 always has a master in-
stance, even if only one DCC is left. This is important as
failOp(sc5) = 3.

To calculate the follow-up deployment, 1.1s were spent
for checking 11 models that are unsatisfiable for priority point
sums 40 to 30, plus 90ms for checking the valid solution.

The designer can analyze the system’s fail-operational
behavior by considering the set of deactivated features for each
situation. This allows to formally analyze if all desired system
and feature properties can be fulfilled, without executing the
system. The initial deployment can also be changed manually
in order to analyze the systems feature availability depending
on different initial deployments.

5

IV. RELATED WORK

In this section, we discuss related work of deployment
approaches with focus on safety and fail-operationality.

In [9], the authors show an approach to analyze graceful
degradation. They use a utility function to measure the set of
active features. This can be seen as quite similar to our sums
of priorities. To reduce complexity, they group components by
defining subsystems based on the interfaces of components.
We group components by their dependability requirements.
This allows separation of mixed-critical components. The main
differences are that they consider a fail-silent fault-model,
while we consider fail-operational behavior of features. Fur-
thermore, we focus more explicitly on deployment constraints
that ensure fail-operational behavior. Another difference is
that we consider the explicit deactivation of components to
be able to keep alive other components that are required
to behave fail-operational. They consider a fixed hardware
configuration, while we consider a HW-Architecture whose
provided resources decrease after random hardware failures
due to execution node isolations.

In [10], the authors introduce a design methodology for
safety-critical systems, called SCRAPE (Safety-Critical Real-
Time APlications Exploration). In addition the fault-tolerant
data flow (FTDF) model of computation is introduced. The
SCRAPE design flow has 6 main steps. Our work is mainly
related to steps 4 and 5, namely the specification of Fault
Behavior and Mapping Constraints as well as the calculation
of a Fault-Tolerant Embedded Software Deployment. However,
with SCRAPE fail-silent execution platforms are addressed,
while we focus on ensuring fail-operational features. Addi-
tionally, we address the analysis about which feature-set can
be provided after certain random hardware failures.

In [11], fault-tolerant deployments with focus on the trade-
off between Performance and Reliability are optimized using
a MILP-Solver. However, the approach does not consider
mixed criticalities explicitly, and also at most 1 replication is
supported due to the single node failure model. The analysis
of deployments after hardware-faults is also not considered.

In [12], a dynamically reconfigurable vehicle control plat-
form supporting fault-tolerance is described. The reactivation-
and reallocation algorithms are executed during runtime as one
of the platform’s core-algorithms. However, only two clusters
of application components are supported. It is ensured that
at any time the most important cluster is executed with a
fail-operational behavior and that the last non-faulty execu-
tion node executes the most important cluster. Anyhow, the
presented work is limited to only two clusters whereas one
does not have any fail-operational requirement.

V. CONCLUSION AND FUTURE WORK

In this paper, we have shown a formal approach to calculate
deployments of mixed-critical functional features in a new
HW/SW architecture for vehicles. The work allows to analyze
the fail-operational behavior of features in the presence of ran-
dom hardware failures. It can be analyzed which features can
be uphold depending on the available set of execution nodes.
We defined a formal system model and ensured deployment
constraints by setting up an arithmetic input model for a SMT-
Solver, that calculates valid deployments.

As future work, we are going to include communication
channels between ASWCs into the model. In this context, we
are going to select optimal channels out from a set of channel-
candidates and optimize the deployment respective to minimize
the required network bandwidth. An end-2-end timing-analysis
with focus on the deployment options is also planned.

Furthermore, we want to treat the integration of new
software components into existing deployments during the use
case of extensions of the vehicle by new functional features
in a plug-and-play manner. Finally, we want to evaluate the
scalability of our approach based on the system layout of a
concept car that we construct.

ACKNOWLEDGMENT

This work is partially funded by the German Federal
Ministry for Economic Affairs and Energy (BMWi) under
grant no. 01ME12009 through the project RACE (Robust and
Reliant Automotive Computing Environment for Future eCars)
(http://www.projekt-race.de).

REFERENCES

[1] A. Avizienis, J. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Trans. on
Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33, 2004.

[2] S. Chakraborty, M. Lukasiewycz, C. Buckl, S. Fahmy, N. Chang,
S. Park, Y. Kim, P. Leteinturier, and H. Adlkofer, “Embedded systems
and software challenges in electric vehicles,” in Proceedings of the Con-
ference on Design, Automation and Test in Europe. EDA Consortium,
2012, pp. 424–429.

[3] S. Sommer, A. Camek, K. Becker, C. Buckl, A. Knoll, A. Zirkler,
L. Fiege, M. Armbruster, and G. Spiegelberg, “Race: A centralized
platform computer based architecture for automotive applications,” in
IEEE Vehicular Electronics Conference / Int. Electric Vehicle Confer-
ence (VEC-IEVC), 2013.

[4] T. Henzinger, B. Horowitz, and C. Kirsch, “Giotto: A time-triggered lan-
guage for embedded programming,” in Embedded Software. Springer,
2001, pp. 166–184.

[5] International Organization for Standardization, “ISO/DIS 26262-1 -
Road vehicles - Functional safety, Part 1 Glossary,” Technical Com-
mittee 22 (ISO/TC 22), Geneva, CH, Tech. Rep., Nov. 2011.

[6] H. Kopetz, “Fault containment and error detection in the time-triggered
architecture,” in Int. Symposium on Autonomous Decentralized Systems
(ISADS). IEEE, 2003, pp. 139–146.

[7] M. Blanke, M. Staroswiecki, and N. E. Wu, “Concepts and methods
in fault-tolerant control,” in Proceedings of the 2001 American Control
Conference, vol. 4. IEEE, 2001, pp. 2606–2620.

[8] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” Tools and
Algorithms for the Construction and Analysis of Systems, pp. 337–340,
2008.

[9] C. Shelton, P. Koopman, and W. Nace, “A framework for scalable
analysis and design of system-wide graceful degradation in distributed
embedded systems,” in Int. Workshop on Object-Oriented Real-Time
Dependable Systems (WORDS). IEEE, 2003, pp. 156–163.

[10] C. Pinello, L. P. Carloni, and A. L. Sangiovanni-Vincentelli, “Fault-
tolerant distributed deployment of embedded control software,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 27, no. 5, pp. 906–919, 2008.

[11] B. Boone, F. De Turck, and B. Dhoedt, “Automated deployment of
distributed software components with fault tolerance guarantees,” in
6th Int. Conf. on Software Engineering Research, Management and
Applications (SERA). IEEE, 2008, pp. 21–27.

[12] M. Armbruster, “Eine fahrzeugübergreifende x-by-wire plattform zur
ausführung umfassender fahr-und assistenzfunktionen,” Ph.D. disserta-
tion, Institute for Avionics Systems (Institut für Luftfahrtsysteme, ILS),
University of Stuttgart, 2009.

6

