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Abstract— In this paper, a reliable, fast and robust approach
for static hand gesture recognition in the domain of a Human-
Robot interaction system is presented. The method is based on
computing the likelihood of different existing gesture-types and
assigning a probability to every type by using Bayesian inference
rules. For this purpose, two classes of geometrical invariants
has been defined and the gesture likelihoods of both of the
invariant-classes are estimated by means of a modified K-Nearest
Neighbors classifier. One of the invariant-classes consists of the
well-known Hu moments and the other one encompasses five
defined geometrical attributes that are transformation, rotation
and scale invariant, which are obtained from the outer-contour
of a hand. Given the experimental results of this approach in
the domain of the Joint-Action Science and Technology (JAST)
project, it appears to have a very considerable performance
of more than 95% correct classification results on average for
three types of gestures (pointing, grasping and holding-out) under
various lighting conditions and hand poses.

Keywords— Image Processing, Gesture Recognition, Bayes
Theory, K-Nearest-Neighbors, Hu Moments.

I. INTRODUCTION

The interaction between human and robot is definitely one
of the major issues in the 21st century. This is due to the
fact that although nowadays many tasks are being performed
merely by robots, however, there are many cases in which
robots either need the supervision and direction of a human-
being or they require collaboration with people to receive and
process corresponding data to start a transaction or finish an
assignment.

In some fields the interaction with humans is inevitable.
In entertainment, for instance, a good understanding of what
people want is important. Imagine a robot which is serving the
people at a bar as bar-tender. This robot needs to communicate
with people to see what their demands are and then carry out
the corresponding task. Another example would be in bomb
detection where the supervision of an expert is needed to
reduce the risk. Trying to address these needs, new methods
nave been sought to ease the process of communication. Not
every customer at a bar or every specialist needs to know how
to program a robot and insert the right instructions! Thus, a
natural way of interaction should be constructed so that the
robot can obtain the relevant data from the surrounding people.
Human-Robot Interaction or HRI addresses this need.

Regarding a normal relationship between two (or more)
people, they talk to each other, use gestures by means of parts

and poses of their body, use the tone of their voice for stressing
an issue or even make body-contacts like hand-shaking or
patting on each other’s back.

Gestures are, in fact, used for everything from pointing
at a person to conveying specific information or implying a
message. Researches indicate that gesturing does not only
embellish spoken language, but is an essential part of the
language generation process [9]. It happens very often that
one cannot simply express his or her feelings or opinions
without using additional gestures. Hand gestures, among other
necessary domains in HRI, play an important role, both as an
accompaniment to speech and as a means of input in their own
right. This paper focuses on the task of static hand-gesture

Fig. 1. Various static gestuers of a hand

recognition, viz., recognizing and classifying different hand
shapes of a human user. A static gesture means that the style
of the movement is of no value and all that matters is the shape
and orientation. Some static gestures are depicted in figure 1.
The whole process is in the context of a cooperative human-
robot assembly task.
Considering this objective, an approach is introduced that
operates based on classifying the gestures using two different
classes of invariants and then select the most likely gesture-
type by means of Bayesian inference rules.

In a nutshell, a Locally Weighted Naı̈ve Bayes (LWNB)
classifier, is used for two different feature vectors, one based
on some defined geometrical invariants and the other on Hu
moments. The output for each of these vectors is considered as
an uncertain suggestion with an estimated likelihood resulting
from the classifier. These priors are then combineds based
on Bayes inference rules. The certainty-factor according each
classification result is computed according to the performance
of each of the invariant-classes. The approach is thoroughly
expounded in IV-E.

In this paper, first the JAST project will be discussed which



helps us determine our application domain, restrain the ex-
pectations and understand the requirements. Then some related
works in the area of gesture recognition and similar approaches
to the sub-tasks of image segmentation and classification are
listed. Afterwards, our gesture recognition approach for the
JAST human-robot dialog system will be introduced in great
length and finally, the experimental results and conclusion will
be provided.

II. JAST

A. Project Definition

JAST stands for Joint-Action Science and Technology. The
projects aims to address the need for a robot acting in a
cognitive environment, in which different modules collaborate
coherently with each other to achieve a certain goal and
successfully perform a specific task. The overall goal is
to investigate the cognitive and communicative aspects of
jointly-acting agents, both human and artificial. In JAST, an
autonomous robot (see figure 2) which consists of different
modules, communicates with a human to assemble a wooden
construction. This means putting and installing different pieces
of Lego R©-like material to build up a wooden airplane for
instance. For further information, one can visit JAST’s official
website1.

Fig. 2. The JAST robot, environment and gestuers

To accomplish this task, the robot should be able to recog-
nize (image processing), pick-up and handle objects (robotics)
in different shapes and sizes and also communicate with a
human being. To communicate in a natural way the robot needs
to be capable of listening and talking (speech processing),

1Please visit http://www.euprojects-jast.net/

recognizing gestures and position of its partner (gesture and
face recognition) and expressing its feeling through facial
mimics.

The input channels of the system consist of speech recog-
nition, object and gesture recognition, robot sensors, and
face tracking; synthesized speech, head movements and face
gestures, and robot’s arms actions are the system outputs.
Based on these channel and the final goal, six input-output
modules are defined, some acting as an autonomous agent
and some as reasoning or coordinating components: speech
recognition, object recognition, head tracking, robot (arms of
the robot), iCat (head and face of the robot) and gesture
recognition.

B. Recognizing Gestures

Object and gesture recognition in JAST are both performed
on the output of a single camera which is installed directly
above the table looking downward to take images of the scene.
The output of this process is sent to a multi-modal fusion
component [3], where it is combined with any spoken input
from the user to produce combined hypotheses representing
the user’s requests. Three different gestures are required to be
distinguished in the context of gesture recognition (as depicted
in figure 2).

Pointing Gestures are those shapes of one’s hand, which
are used to point at an object. Obviously the index finger will
be used by either the right or left hand. Grasping Gestures
are used to demonstrate the action of taking something. This
is usually combined with the dialog stating “I am going to
pick up this object”. The index finger along with the thumb
are used for this purpose. Holding-out Gestures are a sign of
asking for something, particularly an object.

III. RELATED WORKS

There exist numerous methods that have been developed
recently to perform a successful gesture recognition. Most of
these systems use model-based approaches, whereas some of
them exploit invariant-classification methods. The invariant-
based approaches consist of two main steps: Extraction of
invariants and classification of gestures based on those invari-
ants.

A. Segmentation & Extracting Invariants

Invariants are shape descriptors extracted from an image
that are independent of the viewpoint [13]. Using invariants for
recognition greatly simplifies the process of object recognition
because it allows objects to be compared with reference mod-
els regardless of the orientation. Obviously, before extracting
invariants, it is necessary to segment the recognized image to
extract the relevant objects or regions of interest and to omit
the irrelevant data.

For hand-gesture recognition, some researchers have tried
to perform the early segmentation process using skin-color
histograms [16], [5]. The problem with this approach is that



they do not operate well in cases when there are some other
objects in the scene with the same color as skin color, or where
the hand has other colors than the predefined one. In the target
JAST application, the background is static and can easily be
eliminated and therefore, the concentration can be mainly on
the geometric characteristics of the objects.

Zhou et al. [16] used overlapping sub-windows to extract
invariants for gesture recognition , and characterized them with
a local orientation histogram feature description indicating
the distance from the canonical orientation. This makes the
process relatively robust to noise, however, much more time-
consuming indeed. Kuno and Shirai [7] defined seven invari-
ants to do hand gesture recognition, including the position
of the fingertip. This is not practical when we have not only
pointing gestures, but also several other gestures, like grasping.
However, the invariants they considered inspired us for our
defined invariants.

Normalized Zernike moments [15] of an image can also
be used as effective invariants. In some similar approaches,
the watermark of an image is generated by modifying the
invariant-vector. For example, Lizhong Gu and Jianbo Su [4]
tried to use Zernike moments along with a hierarchical classi-
fier to classify hand-gestures. This method is not appropriate
for the JAST project, since there is not a high degree of
freedom for the hands due to the limited space for movements
and actions.

B. Classification

Classification is a method to assign a class to a point (or
vector in spaces of more than one dimensions) in an N-
dimensional space. The classes may be predefined and learned
beforehand (supervised learning), or may be extracted auto-
matically based on a similarity metric (unsupervised learning).

K-nearest neighbors (KNN) classifiers has a good perfor-
mance when the attributes of a system are linearly separable.
It finds the K nearest (already classified) vectors to the input
vector. The class which most vectors in those K neighbors
belong to is chosen to be the right class of the input vector.
K-nearest neighbors with distance weighting (KNNDW) is an
improvement which has been proved to perform better than
KNN in many cases [10]. In this method, the contribution of
each neighbor to the overall classification is weighted by its
distance from the point being classified. The classes are then
assigned with a likelihood value based on a simple naı̈ve Bayes
approach.

The most relevant work to our classification approach
addressed in this paper has been performed by Frank et al. [2]
which introduces a Locally Weighted Naı̈ve Bayes (LWNB)
classifier. Their evaluation shows that LWNB outperforms
KNN and KNNDW when K is big enough.

C. Bayesian Inference

Different classification results can be combined optimally
based on Bayesian inference. Availing Bayesian theory in

decision making has been used in many fields and applications
like market prediction [1], motion detection [14] or advisory
systems [11]. Making the final decision can be optimally
performed, when there are several suggestion involved, all of
which based on uncertain hypotheses. Oliver et al. [12] have
shown how one feature vector (observation) can be fed into
two different classifiers and in what way a Bayesian approach
can be exploited to combine the results.

IV. GESTURE RECOGNITION APPROACH

A. Pre-processing

The background subtraction is carried out by applying an
adaptive threshold in order to differentiate object-pixels from
the background-pixels of the images delivered by the camera.
A static or dynamic threshold can be used to perform this
task, as described in [8]. In the domain of the JAST project,
a minimum and a maximum threshold based on evaluation of
a multi-dimensional color histogram are defined to extract the
binary image (as demonstrated in Figure 3). For the second
step, the already classified pixels are grouped into blobs, which
are bounded segments that eventually turn into regions of
interest (ROI).

The grouping procedure is performed by connecting neigh-
boring pixels by means of a recursive algorithm. After having
performed the grouping process, a bounding-box is assigned
that defines the borders of each group (or segment) which
constructs our ROI entities. These ROI entities are then sent
to object- or gesture-recognition modules to be processed.

Fig. 3. An ROI circumscribing a gesture and the region to process

Since the user’s hand is always entering the scene from the
bottom part of the table, obviously merely those ROIs which
end up at that particular position might contain a gesture.
These eligible ROIs will be sent to the gesture recognition
module.

B. Extracting Invariants

1) Definition: To increase the performance, two sets -or
classes- of invariants are used in unison2. One set contains
invariants that are specifically defined for the gesture recog-
nition module of the JAST project and are called defined

2All the operations from now on are performed on the ROI-image received
from the pre-processing module.



invariants from now on. The other set consists of the first
six Hu moments.

2) Defined Invariants: Once the regions of interest (ROIs)
have been identified as described in the preceding section, the
next step is to extract some meaningful geometric invariants
from the binary image to be used for the classification.

The set of invariants is defined as below. Note that all
the attributes have been defined in a way that makes them
transformation, rotation and scale invariant.

1) Length of outer-contour
Normalized by division by the square root of the area.

2) X-gradients
The number of direction-changes in x (first dimension)
direction when exploring the outer-contour.

3) Y-gradients
Same as above, for changes in y direction.

4) Gradients-deviation
Normalized deviation of gradient points divided by the
square root of the area.

5) Furthest distance
Normalized distance of the furthest gradient point from
the center of the gesture divided by the square root of
the area.

Gradients are in fact semi-rotation invariant, since their value
would be replaced by 90 degree rotation.

3) Hu Invariants: Hu moments [6], are scale, translation
and rotation invariant. Hu derived these expressions from
algebraic invariants applied to the moment generating function
under a rotation transformation. In this work, only the first six
moments are used, because the seventh moment, which is the
skew-invariant one, appears to add no values to the recognition
results.

4) Extraction Approach: Considering defined invariants,
the gradients are first computed from the extracted outer-
contour of the hand and their geometrical attributes (the last
two invariants) are derived from their locations.
Since the shape and length of one’s arm (viz., how deep it
is in the scene) is immaterial, to extract the invariants, only
a specific and predefined area of the upper part of the ROI
(which is supposed to be the hand) is processed. The cropping
distance, x is estimated due to the average size of a hand. This
estimation can be availed, since the distance of the camera
from the table is constant.This cropped area is depicted in
Figure 3.

Supposing that there are M defined invariants and L Hu-
moments, we have two vectors with M and L dimensions,
which are five for the defined invariants and six for the Hu-
moments in our experiment.

~dfInv = {a1, a2, . . . , aM}
~huInv = {h1, h2, . . . , hL} (1)
L ∈ {1, . . . , 7}

These invariant-vectors are added to the training pool together

with their corresponding type of gesture, if the system is in its
training phase (Section IV-C), or will be fed into the classifier
to find the likelihood of each of the gesture-types (Section IV-
D).

C. Training the Classifier(s)

Obviously, before performing the classification, a training
pool should be created for each of the invariant-classes. It
is recommended that the data is produced by different users
under various lighting conditions in order to increase the
robustness. Each training instance is labeled with its corre-
sponding gesture type. The gesture types are defined as:

~C = {c1, c2, . . . , cZ} (2)

where Z is the total number of gesture types which is three in
this application. Extending the gestures can be simply done by
adding the corresponding training data to the pools. Assuming
there are N vectors in the training pool (meaning that we have
N samples), each vector is defined as:

Invfn(m) = {df0, df1, . . . , dfM} (3)
Invhn(l) = {hu0, hu1, . . . , huL} (4)

with: df0, hu0 ⊆ ~C,
m ∈ {1 . . .M} ∧ l ∈ {1 . . . L} ∧ n ∈ {1 . . . N},

where Invf is a defined invariant-vector and Invh represents
the vector of the Hu moments and the first element of each of
them (df0 and hu0) represents the label of their class.

After constructing the two pools for labeled vectors, the
classification can proceed.

D. Classification: LWNB

The classification algorithm is basically the same for both
invariant-sets. Therefore, the general algorithm is discussed
here, which will be applied to both defined and Hu invariant
vectors and the recognition will result from both outputs based
on Bayes inference rules (see IV-E).

In our application, the well-known K-nearest neighbors al-
gorithm is used as our classifier, with two modifications. First,
before performing the classification, the elements of the given
vector (the invariants) are weighted based on their influence on
the process. The proper weights have been extracted off-line
based on empirical findings.

The second modification is performed after finding the K
nearest neighbors. Instead of simply calculating the distance of
each vector in the space and choose the number of the found
vectors among the first K nearest ones, for each (training)
vector (node) of a class, a weight is assigned to that node
based on its distance to the input vector. The probability of a
class is then based on the weights of that class in the first K
neighbors.

According to (5), defined invariant-vector has M dimension
and Hu invariant-vector has L dimensions respectively. We



have defined the distance-weighting vector for each of the
invariant-classes as:

~wdf = {wdf1, wdf2, . . . , wdfM}
~whu = {whu1, whu2, . . . , whuL} (5)

Consequently, the distance between the two input invariant-
vectors inf and inh and the nth training-node of their corre-
sponding training pool can be computed in Euclidean space
as:

dist(Invfn, in
f ) =

√√√√√ M∑
m=1

(
Invfn(m)− inf (m)

)2

wdfm

dist(Invhn, in
h) =

√√√√ L∑
l=1

(Invhn(l)− inh(l))2

whul
(6)

The distance is indeed normalized, so that all the values be
between 0 and 1.

In the next step, Kf defined invariant vectors and Kh

Hu invariant vectors with the shortest distance from their
respective input vectors are selected from the training pools
( ~Invfn and ~Invhn) for both invariant-classes. These selected
vectors are called ~sInvfn and ~sInvhn respectively.

~sInvf kf = { ~sInvf 1, . . . , ~sInvfKf } (7)
~sInvf kf ∈ { ~Invf 1 . . . ~InvfN}
~sInvhkh = { ~sInvh1, . . . , ~sInvhKh} (8)
~sInvhkh ∈ { ~Invh1 . . . ~InvhN}

with: kf ∈ {1, . . . ,Kf} ∧ kh ∈ {1, . . . ,Kh}

The first elements of each of these vectors, sInvfkf (1) and
sInvhkh(1) are, in fact, the label of the class they belong
to (according to (5)). Hence having cf and ch as variables
corresponding to classes as:

cf (kf) = {sInvfkf (1)} (9)

ch(kh) = {sInvhkh(1)} (10)

At this level, the naı̈ve Bayes probability (likelihood) of each
class can simply be computed:

p(Cf (z)) =
PKf

kf=1 δ(C
f (z),cf (kf))PKf

y=1

(11)

p(Ch(z)) =
PKh

kh=1 δ(C
h(z),ch(kf))PKh

y=1

(12)

z ∈ {1 . . . Z} (13)

where δ is defined as

δ(u, v) =
{

1 if u = v
0 otherwise (14)

and z represents the index of each class (implying the type of
gestures).

The simple interpretation of this formula is that the likeli-
hood of each class is the number of vectors which belong to

that class among the K selected vectors, divided by the total
number of K, viz., Kf or Kh depending on the invariant-class
(defined or Hu). This likelihood, however, does not take the
different distances of each node into account. This means that
the number of class-nodes found is used for the probability,
regardless of what the distance of each node from the input
vector was.

To take advantage of the effect of distances and improve
the results, we add weights to the selected nodes (neighbors).
Considering each node as t, this weight wB(t) = f(dst) is a
function of the already computed Euclidean distance dsx of
each node and can be any monotonically decreasing function.

In this application, functions like f(dst) = 1 − dt or
f(dst) = (dst)−p for various p were examined and the best
function appeared to be:

wB(t) = f(dst) =
1− dst
1 + dst

(15)

Using these weights, a locally weighted naı̈ve Bayes proba-
bility can be defined by weighting equations 12 and 13 as

p(Cf (z)) =

∑Kf

kf=1 wB(xkf )δ(Cf (z), cf (kf))∑Kd

y=1 wB(y)
(16)

p(Ch(z)) =
∑Kh

kh=1 wB(xkh)δ(Ch(z), ch(kf))∑Kh

y=1 wB(y)
(17)

z ∈ {1 . . . Z}

The likelihood of each class is now available for both defined
and Hu invariant-vectors. One possibility is to choose one of
the methods and make a decision based on the result of its
pertinent classifier.

c( ~Inv) = argmaxz=1,...,Zp(C(z)) (18)
~Inv ⊂ ~huInv, ~dfInv

According to the experimental results, Hu invariant-vectors
resulted in a maximum of 93 % of correct classification. This
rate was 91 % for the defined invariants approach.

E. Recognition based on Bayes Decision Theory

1) Combination Possiblity: So far the likelihood of each
class, based on the given vector for both defined and Hu
invariants (moments), has been estimated.

To find the best solution, first, the correctness-rate of both
approaches (defined and Hu) are extracted. Table IV-E.1 shows
the results for two invariant-classes. The weighting vectors of
the invariants have been chosen randomly and the results of
expectation-rate do not vary much given different weights:
According to Table IV-E.1, there is a low probability for
each gesture to be falsely recognized by both classifiers.
Therefore, we can take advantage of Bayes theory to increase
the expectation values.



Expectation Value Pointing Grasping Holding
Both Correct 0.7650 0.9600 0.9150
DfInv Correct 0.0300 0.0600 0.3000
HuInv Correct 0.5550 0.8250 0.0
Both False 0.2250 0.3150 0.0

Table 1. Classification results for both Defined and Hu approaches

2) Applying Bayes Inference to Classification Results:
Bayes inference rules are of great avail for making the best
decision regarding the type of the given gesture.

The certainty factors, or in other words, the likelihood
parameters of each invariant-class, considering one sample
gesture (Pointing), are shown in Table IV-E.2 (Table IV-E.1
shows the extracted values considering all gestures).

In this table, p(df) is the likelihood of the gesture being
correctly recognized using the defined invariants as the input
vector to the classifier. The same is true for p(hu). gsx is a
gesture with type x, which encompasses all z classes, with z
being 3. The three different types of gestures are symbolized
as gsp, gsg, gsh, standing for pointing, grasping and holding-
out gestures. In this table, however, only pointing gesture (gsp)
is addressed and the same thing applies to the other two class,
viz., gsg and gsh.

Based on the premises addressed above, p(df |gsx) implies
the likelihood of gesture x, when the given defined invariant-
vector is classified as gesture x. Given one of the two methods,

Likelihood Measures Pointing
Both Correct

p(df |gsp)p(hu|gsp)
p(df)p(hu)
DfInv Correct

p(df |gsp)p(h̄u|gsp)
p(df)p(h̄u)
HuInv Correct

p(d̄f |gsp)p(hu|gsp)
p(d̄f)p(hu)
Both False

p(d̄f |gsp)p(h̄u|gsp)
p(d̄f)p(h̄u)

Table 2. Likelihood parameters regarding pointing gestures gsp

to compute the total likelihood of gestures (e.g. Hu invariants),
the basic probability formula can be used, which in this case
is

p(hu) = p(hu|df) + p(hu|d̄f)
= p(hu)· (df) + p(hu)· (d̄f), (19)

knowing that the result of classifier for defined invariants is
independent of Hu invariants and vice versa. The likelihood
of a gesture can then be approximated by:

p(gsx) = p(hu|gsx)p(hu) + p(df |gsx)p(df) (20)
with: x ∈ p, g, h

This likelihood value is the final decision factor. Eventually,
the gesture with the highest (maximum) likelihood will be

adjudged the winner, viz, the most likely gesture.

c = argmaxx=1,...,Zp(C(x)) (21)
in this application Z = 3 hence x ⊂ gsp, gsg, gsh

In sum, the steps toward recognition can be listed as follows:

1) Extract the defined and Hu invariants.
Invariants are extracted and grouped into defined and Hu
vectors: ~dfInv and ~huInv.

2) Pinpoint the K nearest neighbors.
The K nearest nodes in the training pool for both
vectors are selected and weights are assigned to them
disproportional to their distance.

3) Find the likelihood of each gesture for each vector.
The likelihood of each gesture is computed based on the
weights of the K selected nodes. The calculation is done
by using a simple naive Bayes approach.

4) Select the most likely gesture via a Bayesian inference
approach. The likelihoods of both vectors are fed into a
Bayesian inference system and the most likely gesture is
selected according to the certainty factor of each vector
(invariant-class).

V. EXPERIMENTAL RESULTS

Availing Bayesian inference rules to combine the results
of our classifier for both invariant-classes always leads to a
better performance, as shown in Table 3. The table shows
the performance of each method for some random weighting
vectors. Understandably, the overall performance increases

Def. Kf Hu Kh Comb. Kc

87.62% 4 92.94% 6 94.00% 8
89.14% 13 92.94 % 5 95.01 % 7
92.54% 5 92.94 % 5 95.01 % 7
92.06% 5 93.46 % 5 95.01 % 7
91.04% 5 92.98 % 5 95.43 % 3
92.54% 7 93.46 % 5 95.43 % 2
90.50% 2 92.98 % 5 95.45 % 6
88.09% 2 92.98 % 5 95.45 % 2

Table 3. Performance results of Defined, Hu and combined invariants for
different K

when the decision is made based on the Bayesian inference
rules. It should also be noted that the results are more
influenced by the likelihood table (refer to IV-E.2) than the per-
formance of the classifier. By following the above mentioned
approach, 95.45 % correct recognition occures on average. The
performances of all three methods are depicted in diagrams of
Figure 4 and Figure 5.

Presumably, one can increase the overall performance even
more, by manipulating the likelihood values. This can be
performed by means of algorithms like maximum likelihood
estimation.

Running the full gesture-recognition process on a frame
takes less than 25 msec on average (usually between 24-
26 msec). Of this time, segmentation takes about 20 msec,



Fig. 4. Recognition Performance (95%)

Fig. 5. Recognition Performance (95.45%)

while the (gesture) recognition process together with the au-
tonomous segmentation module take approximately 4-6 msec.

VI. CONCLUSION

Using LWNB as classifier and combining its results for
two invariants-class, viz, defined and Hu invariants, together
with apt values for the parameters of the system, results in
a performance of more than 95.0% of correct recogintion for
three gestures.

To achieve these results, a testing pool with about 200
samples was constructed for all of the gestures (roughly 70
each), for a total of 500 samples in the training pool. The
training data were made by five persons (three boys and two
girls) in different lighting conditions. The testing data were

created by two people other than those, whose gesture were
represented in the training pool.

The results of each classifier given different weighting
vectors as well as their combination by means of a Bayesian
inference system were demonstrated for different values of Ks
(Kd & Kh). The X axis of these graphs represents the value
of the corresponding K for the K-nearest neighbor selection,
while the Y axis shows the percentage of gesture instances of
each type that were correctly recognized.

After trying various combinations of weights, LWNB classi-
fier provides a maximum of 91.58% correct results with wdf =
[12211] as the weighting vector. This result is intuitively
acceptable, as the range of invariants like contour length
or deviation is much wider than the number of changes in
gradients, hence, requiring higher weights for gradients in both
directions.

Selecting Hu-moments as an input vector, a performance of
93.46% correct classification was achieved, with a weighting
vector of whu = [443411] which is again intuitively reason-
able, putting a higher weight on the first four moments.

After constructing a recognition system based on the com-
bination of results by means of a Bayesian decision making
system, a performance of 95.45% correct classification was
achieved at Kc = 6 with wdf = [14423] and whu = [223311].
The likelihood values were calculated under Kd = 2 and
Kh = 5 respectively. Other combinations would also lead to
the same performance according to the values provided in table
3. The results can be viewed in figure 5. It should be noted
that to obtain the likelihood values, first both invariant-classes
are given to the classifer and the values are extracted based
on the performance at this pre-recognition stage. According
to the graphical demonstration of the performance, not only
the correct recognition rate increased compared to single
classifications, but also there were less fluctuations in the
results.

It is essential to keep in mind that the likelihood values
availed during the Bayesian inference are of high importance,
and presumably, an even better performance can be attained
by manipulating likelihood values by using methods like Max-
imum Likelihood Estimation. This will be further investigated
in future works. Extending the application for recognizing
more gestures as well as modifying the process to operate
in a 3D environment are other plans of us for the future.
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