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Abstract— The increasing traffic and the increasing number
of sensors both in cars and in the infrastructure pose new
challenges but also create new opportunities for traffic control.
If the sensor data in various states of interpretation and
aggregation could be shared and reused, it would be possible
to minimize accidents and improve the traffic situation. In
this paper we describe an approach to automatically configure
sensor data fusion systems across the boundaries of independent
subsystems, where information on all levels can be exchanged.
The basis for this is a formal description of all required
meta-information that enables the reasoning for automatic
configuration.

I. INTRODUCTION

An ever increasing number of sensors are being installed
in the car and in the infrastructure. If we want to use
this information for traffic monitoring and control we need
to be able to aggregate the information available on the
fly. As different vehicles enter a given area, a completely
new set of participants in an overall system emerges that
has never before been composed in exactly this manner. In
order for the individual vehicles and the overall system to
perform optimally, the sensor data need to be exchanged and
integrated. We need a new solution for dynamic and adaptive
sensor data fusion able to switch fully automated between
different sensor configurations.

In this paper we present the background, the ideas and the
solution approaches for our smart, adaptive data aggregation
system, for short SADA.

A. Purpose of SADA

SADA could be seen as a generic fusion system. We
develop a new way of doing fusion. Our objective is to
adapt the fusion process at run time to the sensors and
the applications available. In SADA the per se independent
subsystems team up to form one larger system. As an
example, look at a car that needs to be parked in a road side
parking spot (see Fig. 1). Assume the car B doesn’t have
appropriate sensors itself, so it uses the ultrasonic sensor
of the car in front of the parking spot, and a camera that
is mounted in the infrastructure and optimally perceives the
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parking spot. The information on the distance from the curb
and from other cars is calculated from the data of those
sensors and transmitted back to the driver (or to the software
module that actually parks the car automatically). In this
paper, we explain how we want to make it possible that
subsystems can configure themselves automatically.

Fig. 1. Application Example Parking

B. Related work

SADA is not the first attempt to make cars exchange infor-
mation with other cars and with the infrastructure. Basically,
a car radio does it, receiving traffic information and thus
informing the driver. This information concerns reports like
traffic congestions, weather conditions or construction sites.
The same type of information is also sent digitally over the
radio data system. Navigation systems use information from
the infrastructure, i.e. the GPS signals and traffic information
via radio. Navigation applications in smart phones use GPS,
too, and in addition receive information over the wireless
phone and also send information back to the infrastructure.
Even car to car information exchange has been investigated
in research projects like SimTD, Ko-FAS, Drive2X, Testfeld
Telematik [1].

The topic generic data fusion was also part of the sub-
project ProFusion 2 of the EU project PReVENT. There,
the focus was mainly on a generic data store for data
fusion applications. Adaptive or even context sensitive data
fusion methods were not considered. Subsequent EU projects
dealing with traffic safety focus on concrete data fusion
algorithms but without picking up the subjects adaptivity and
context sensitivity [2].

Also, higher aggregated information has been used within
one car. Traditionally an application was very much vertically
integrated, each one using its own sensors and its own
processor. Meanwhile there are attempts to reuse the higher



level information like tracks and occupancy maps across
applications.

C. What is new in SADA
The projects mentioned above use a fixed catalog of

information types that are transmitted between subsystems.
SADA aims to reuse the information even further. It will add
flexibility to the exchange of information inside a car as well
as between cars and the infrastructure. It will allow the use
of all kinds of information at all levels of aggregation. This
is only possible as long as the information formally specify
its content as meta-information. That means, for a sensor,
the data produced in a given environment depends on the
physical properties of the sensor and on the properties of
that environment. Therefore, information about the sensor
and the environment is required to interpret the sensor data
in a meaningful way. Today, this kind of information does
not have a formal definition or at least is not usable automat-
ically. But a fusion engineer needs to take this information
into account to tune a sensor data fusion system and meet
the quality requirements of a given application.

Today, data fusion systems are designed with a particular
purpose in mind. Each application is implemented com-
pletely independently of others. The classic development of
sensor fusion is therefore expensive. SADA will explicitly
model the formal properties of sensors and environments
and use this explicit knowledge to automatically adjust the
sensor fusion algorithms. This will result in a generic fusion
system that can meet the requirements of any application.
Furthermore, the information transmitted between cars and
infrastructure today is only high level. SADA will allow
including all levels of aggregated data, from raw sensor
readings to entire scene models, inside one car as well as
between cars and infrastructure. This flexibility can only be
achieved when the meta-information and its formal models
are available along with the sensor data.

Configuring a state of the art sensor data fusion system
involves many manual steps: i) selecting the sensors to use,
ii) selecting and configuring the preprocessing steps and
filters; iii) selecting and configuring the inference method;
iv) defining the control flow (what to do when). SADA
aims to implement a system that can perform these steps
automatically. The sensor fusion system should configure
itself, depending on the task and on the available resources.

II. COOPERATIVE FUSION PLATFORM
In order to better explain the differences between a usual

sensor data fusion process and the SADA approach, we
briefly summarize the general structure of our cooperative
fusion platform in section A. Its modifications and extensions
are described step by step.

A. General fusion architecture
1) Classical view: In the classical view of a sensor data

fusion system (Fig. 2), a sensor captures properties of the
environment and produces sensor data.

The information flow is seen as going from the environ-
ment over the sensor to the sensor data.

Environment
Physical
Sensor

Sensor Data

Fig. 2. Classical view of Sensor Data

2) Separation of Sensor and Environment: For the au-
tomatic generation of an algorithm to interpret the sensor
data, the meaning of the data needs to be understood by
the machine. This understanding need to be based on prop-
erties of the environment and on properties of the sensors,
independent of one another, as explained in more detail in
section B. The next stage to achieve a cooperative fusion
platform leads to the generation of a Measurement process
that follows the so called measurement model (see section
B) to generate the expected sensor data for the application.
With that in mind we represent a basic architecture of a
sensor data fusion system as shown in Fig. 3.
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Fig. 3. The basic architecture of a sensor data fusion system

3) Generic Inference: In the basic architecture, usually
the Data Fusion part is tailored to the properties of physical
sensors and environment and to the requirements of the
representation of the environment, given by the application.
On the other hand our cooperative fusion platform has a
number of generic inference algorithms available to be used
to perform the data fusion. We name it Generic Inference.
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Fig. 4. Architecture of a cooperative fusion platform

This Generic Inference needs to be adapted to the type
of the internal environment representation, which in turn
is specific for the application. This means that the way
the sensor data is interpreted by the algorithm needs to be
adjusted to the requirements of the application. These are
parameters that also depend on the properties of the sensors



and of the environment. In the architecture proposed for the
cooperative fusion platform (see Fig. 4), the collection of
these parameters to be applied by the fusion algorithm is
called the Fusion Model.

4) Simulation: One central task of the engineers in devel-
oping a sensor fusion system is to determine the way that
the sensor data are interpreted with respect to the resulting
representation of the environment. This involves a lot of
experimentation. If the configuration of a fusion system is
to be done automatically, experimentation in the real world
generally is not an option. One way out of this is the use
of simulation. In the SADA approach, the properties of the
sensors and the properties of the environment are modeled
in sufficient detail such that a simulation will produce the
same (or sufficiently similar) sensor data as result from real
world measurements. This simulation uses a measurement
model, described in more detail in B.4. The simulation is
illustrated in the top left corner of Fig. 5. The models and
the simulation algorithm can be (and need to be) validated
by experiments.

5) Obtain the Fusion Model by Machine Learning: The
Fusion Model is determined in a way that the resulting
Internal Environment Representation is as close as possible
to what the application needs. What the application needs is
expressed in an ideal Target Internal Representation which
is derived directly from an Environment Model, taking into
consideration the requirements of the application (see Fig.
4).

Physical
Sensor
Model

Environment
Model

Simulation

Simulated
Sensor Data

Generic
Inference

Internal
Environment

Representation

Optimize
Fusion
Model

Target
Internal

Representation

Internal
Representation

Type

Fusion
Model

Direct
Derivation

Fig. 5. Machine Learning of the Fusion Model

With this target and the simulation of sensor data, the
parameters in the Fusion Model can be optimized in such a
way that the Generic Inference produces an Internal Envi-
ronment Representation as close as possible to the target. In
other words, the Fusion Model is obtained from the task by
Machine Learning.

6) Creating instances of sensor data fusion systems: In a
cooperative fusion platform for each application, a specific
instance of a sensor fusion system according to Fig. 5 needs
to be created. A new fusion topology is generated for each
application based on the availability of sensors. This is
done using the information of the formal models (section
B), higher level information and semantic descriptors of
the instances corresponding to the modules of the SADA
architecture.

To achieve the goal of a cooperative fusion platform the
complete fusion process in SADA is divided and redesigned
into logical modules. Modules are made data driven. This
modularization helps to achieve the configuration of the
system on the fly, as the modules can be inserted and
removed on demand. The modules are described semantically
to facilitate the automatic reconfiguration of the system. As
an example of how it works, starting from the available re-
sources (e.g., an ultrasonic sensor measurement), a reasoner
component selects applicable instances of pre-processing and
inference algorithms (e.g., a grid update algorithm) to pro-
duce the desired internal representation (e.g., an occupancy
grid map). A planner composes these applicable instances to
create the fusion system.

B. Higher level information and context information

If a sensor fusion system is to be configured automatically,
no engineer will set up parameters or feed it with the suitable
sensor models and environment models. But a program can
take over what the expert engineer does if the knowledge
is made available and understandable by the program. The
information need to be written beforehand and must be
independent of the application. In SADA a distribution of
such information is planned to be carried out either directly
between SADA participants (e.g., vehicles) or via a central
backend system.

The problem is that such information comes from different
domains. The manufacturers of sensors know about the prop-
erties of their sensors. The developers of fusion algorithms
know about the scope and properties of their algorithms. Ap-
plication developers define what kind of representation of the
state of the world they prefer. All this information needs to
be brought together to design a sensor fusion system. In the
following sections different information domains that need
formal description to enable fully automated configuration
of a fusion system are described.

1) Sensors: Sensors are an integral part of any data fusion
system. The interpretation of the sensor data depends on
the sensor physical properties and also on the processing
algorithms they incorporate. This information is a key part
to implement a fusion system. For instance, for a camera we
need to know the focal length, pixel counts, pixel sizes, radial
distortions, and field of view. For the radar sensor: opening
angle, range, carrier frequency, modulation, pulse length and
pulse shape, etc. These parameters are best known by the
respective manufacturers.

2) Smart Sensors: It is not only the physical properties
of the hardware that need to be described. This can be
understood following the example of the radar sensor. In
a radar sensor, the raw signals are processed already in the
sensor to reduce the amount of wrong measurements and to
get rid of noise. This processing depends on assumptions
done about the environment. A radar sensor that has been
designed to return tracks (which means a vehicle tracked
over time) from a measurement on a highway will return
nothing but noise if operated in a closed room that contains
much metal. The exact algorithm is in general considered



a trade secret of the manufacturer. However for the fusion
engineer it is very important to understand the behavior of
the sensor.

One might think that these are two different aspects of
a sensor: the hardware and the processing software. In this
regard the sensor actually consists of two parts, the raw data
acquisition part and the raw data processing part. This type
of sensor, that contains preprocessing software is therefore
often called smart sensor or intelligent sensor.

The designer of the overall system needs to understand the
measurements returned by the sensor and, therefore, both
parts. As a special case comparable to a smart sensor, in
SADA so-called “virtual sensors” are considered, too (see
[3]).

3) Environment: Along with both the physical properties
of the sensor as well as the data processing steps, the
properties of the environment influence crucially the sensor
data and the conclusions that might be drawn from the data.
For example, if a laser scanner is placed in the desert and
does not return any measurements, probably there are no
obstacles to be detected. On the other hand, if a laser scanner
is placed in a mirror maze and also does not return any
distance there, this should be not interpreted like there are
no obstacles. The properties of the environment need to be
also described and formal modeled. It should be possible
to describe the environment properties that determine how
sensors perceive this environment. For radar sensors this
depends both on the geometry (to a large extent) and on
the reflectance.

4) Measurement model: The measurement model says,
given an environment, which sensor data will be returned
from the sensor. Since the measurement model depends on
both the sensor properties and the environment properties,
neither the sensor experts alone nor the environment mod-
eling experts alone can create the appropriate measurement
model.

5) Generic Fusion algorithm: In SADA the uncertainty
that is associated with any sensor data is expressed via
probability density functions and fused with probabilistic
inference algorithms. To select the appropriate algorithm for
an application, based on its requirements, we need to add the
meta-data that will allow a system automatically to select the
right algorithm for an application. In SADA we concentrate
on the most general algorithms. One very basic and often
used algorithm is the Kalman Filter (see Section III.b).
Another very generic class of sensor data fusion algorithms
is the probabilistic graphical model, especially the factor
graphs. We use GTSAM for the solution of the factor graph.
For more detail refer to [4].

6) Internal representations: The most popular internal
representation types, known as environment representations,
for the automotive applications are occupancy grid maps and
track lists. The properties of the internal representations also
need to have a semantic formal description. This is, e.g.,
in a track list position and orientation in a two dimensional
plane. In order to be machine readable it needs to be formally
stated to which coordinate system this refers. Very often it

is the vehicle kinematic coordinate system, which is located
at the center of the rear axle, with the x-axis pointing into
the driving direction, which needs to be said.

C. Description with semantic models

There are different aspects that influence the decision
on how to formally represent the additional information
mentioned in the previous section B. They can be roughly
characterized by the concepts pairs: descriptive vs. func-
tional; complete vs. incremental and norms vs. ontologies.

1) Descriptive vs. procedural: A descriptive knowledge
model describes what a thing is, what properties of a thing
constitute the fact that a thing belongs to a certain class of
things, or that one class of things is a subclass of another
class of things. This is a more static view of what the world
is. In general the things in the world are organized in concept
hierarchies. A functional knowledge model says how new
information on the world can be derived from previously
known information.

2) Complete vs. incremental: A complete specification of
terms and concepts tries to describe all the aspects that might
become relevant in great detail. This needs to be made very
thoroughly. The incremental specification tries to describe the
terms and concepts as the need for them appears and checks
how consistent they are with the existing descriptions.

In practice this leads to hierarchical models that at the
top level only contain the basic information of a concept.
Each time something new needs to be described, i.e. some
other instance needs to be derived; this may depend on more
detailed information about the concept. This detail is then
added to the concept. With increasing detail, this results in
a concept hierarchy.

3) Norms vs. ontologies: Today the typical means to
provide for interoperability is defining norms and standards
and sticking to them. A norm is in general endowed with
some authority (government authorities, industry consortia,
etc.) Norms specify the terms and agreements on shapes,
functions, protocols etc. as precisely and completely as
possible, so that whenever somebody wants to use these
there is no more source of misunderstanding and no need
for further agreements. Machine readability is not yet wide
spread with norms.

For ontologies, machine readability is a basic feature.
There is a formal description language (OWL 2) with a wide
support and many related tools and technologies, like infer-
ence mechanisms, service detection and service composition.
The interoperability of different domains is supported by
upper ontologies. The trend is towards automated cooperative
knowledge processing.

D. SADA approach

In the SADA project, we strongly lean towards the formal
description of information using ontologies. However, the
available tools turned out not to be ideal for our project. The
available editors are not well suited for the joint development
of concepts and of operators (services, algorithms, etc) that
relate concepts with each other. It was also not possible to



define a concept incrementally using a hierarchical repre-
sentation. We also found that the available reasoners used
today, together with known ontologies, generally make an
open world assumption. The answer to a query is always
yes if a solution is possible, where for SADA a reasoner is
needed that returns a constructive proof relying on the closed
world assumption. Therefore, we need to improve the user
interface to support the interactive development of higher
level descriptions, support the definition and use of hierar-
chical models and integrate this with reasoners/planners that
are based on the closed world assumption.

1) Hierarchical concept definition: The concepts in
SADA are developed step by step and can be used at various
levels of specialization. As an example see Fig. 6, where a
car needs to estimate the position and orientation in a city
environment.

Fig. 6. Localization with landmark

In this example, a car needs to localize itself with respect
to world coordinates. The available resources are: 1) a
camera in the car, and the position and orientation (for
short: pose) of the camera w.r.t. the car are known; 2) a
landmark, and the pose of the landmark w.r.t. the camera can
be determined by some algorithm and 3) a communication
so that the car learns about the landmark and its pose w.r.t.
world coordinates from the infrastructure.

The high level description of this information is given with
the concept Pose3D. Fig. 7 shows an excerpt. This is similar
to the work of Stocker et al. (see [5]). In order to be useful the
reference coordinate system of the pose and the coordinate
system whose relative pose is described need to be stated
explicitly. So the first part says that a Pose3D has both a
Reference of the type CS3D and a Referent of the same
type, and that a CS3D has an identifier ID.

Fig. 7. Concept hierarchy

2) Planning: These descriptions of the resources are used
for planning to put the resources together to produce the
required information. As planner a for example a forward
production system can be used. As an easy example we

can formulate the operation Invert. It produces the pose of
the former Reference coordinate system w.r.t. to the former
Referent coordinate system (see Fig. 8). A similar operator
can be defined for the composition of poses on the same level
of detail. With these operators, the planner can produce the
pose of the car w.r.t. the world from the available resources.

Fig. 8. Operator Invert

III. SMART DATA AGGREGATION ALGORITHMS
A. Generic Fusion Algorithms

The imperfection of data is the main challenging problem
of the fusion systems for which various approaches have been
proposed in [6]. General fusion algorithms use probability
theory to handle the uncertainties during the fusion process.
The Bayes filter is thus developed to estimate the state of a
dynamic system from observations. The well known Kalman
Filter (KF) is proposed as a special case of the Bayes filter
with the assumptions in linear Gaussian cases [6]. When
dealing with nonlinear systems, the Extended Kalman Filter
(EKF) [7] and the Unscented Kalman Filter (UKF) [8] are
often utilized. However, both filters can only handle simple
nonlinear filtering to a limited extent. To solve this problem,
the particle filter is proposed to the densities in the Bayes
filter based on random sample approximations [9].

B. Generic version of the Kalman Filter

The Kalman Filter can be considered as a Generic Infer-
ence algorithm. The information flow for one time step is
shown in Fig. 9.

Fig. 9. The generic Kalman Filter

The basic formulae are practically identical for a wide
range of applications. There are already products to support
the design of sensor data fusion systems based on this obser-
vation (BASELABS). To this purpose, the core Kalman Filter
algorithm is implemented in a way that different application
specific parts can be easily exchanged (i.e. the state spaces
for the tracks and the sensors). The compatibility of the
signals between these modules is then checked automatically,
based on the type declarations of the signals. Below the
connection to the higher level descriptions as suggested
above are explained.



C. State space and state prediction

The Kalman Filter tries to estimate the state of a system.
In the traffic scenario, this could be the poses of the vehicles
(including ego vehicle) and their velocities and accelerations,
poses of environment features and so on. In general, this state
is expressed with a vector or real variables. In terms of the
higher level model using a hierarchical concept, the state is
an instance of a concept. The function that predicts the next
state is an operator that produces a new instance (with a new
time stamp) from a given instance. For the Kalman Filter, it
doesnt really matter how this instance is derived in detail,
as long as it complies with the desired type. This type also
contains as one part the covariance of the predicted state.

D. Measurement prediction and measurement

Similar to the state prediction operator, there are mea-
surement prediction operators. Depending on the state, and
on the properties of the environment and of the sensors,
the expected measurement is derived (all of them again
described via concepts). In the Kalman Filter case, the
measurement prediction instance is characterized by a vector
of real numbers together with a covariance matrix.

A measurement is based on sensor readings, and in the
Kalman Filter the sensor readings need to be processed to
result in an instance of the same concept as the measurement
prediction is. The difference between the prediction and the
measurement is what is new to the system, also called the
Innovation.

E. Kalman gain and measurement update

Based on the innovation, another operator creates a new
instance of the concept of the state. There is a formula for
that for the Linear Kalman Filter and also for some other
cases, and there are generic implementations of this operator
(an easy sequence of matrix vector operations). The suitable
instance of this operator can then be selected from a library
or it might be generated by a code generator.

From the theory it is known that the probability distri-
bution function (pdf) of the state estimate after the mea-
surement update is more concentrated than the pdf of the
state prediction (i.e. before the measurement update). If the
perception goal is to have a state estimate with a concentrated
pdf, this meta information tells the planner that the Kalman
Filter produces this desired instance (of whatever concept is
encoded in the state in a special case).

F. Probabilistic Graphical Model

An alternative solution, compared to Bayes filtering tech-
niques, are graph based formulations. The benefit is the flexi-
bility to nonlinear models in contrast to Bayes filtering. It ad-
dresses the nonlinear issues by using optimization algorithms
such as Gauss-Newton iterations or the Levenberg-Marquardt
algorithm [10]. Many approaches have been developed like
the g2o framework [11] or the incremental iSAM [12]. How
probabilistic graphical models are used for sensor data fusion
can be seen in [13] or [14] for example.

IV. CONCLUSIONS
This paper presented an approach to automatically con-

figure a sensor data fusion system based on ontological
descriptions (for component selection and data flow) and ma-
chine learning (for parametrization). The resulting generated
process will equate that of state of the art fusion systems
using Kalman Filter or Graphical Model approaches.

The parallel development of the formalism for capturing
the hierarchical models and the inference is under way, and
the resulting editor/viewer supports rapid development of
the ontologies. Also, various approaches have been tested
for the higher level inference (SWIProlog with an extension
to track the successful predicates, and a forward production
rule system), with the result that the high level inference
is technically feasible. In parallel we investigate how these
developments can be related to the existing set of tools
and concepts for the semantic web (OWL 2, DL, service
description, service discovery etc.)
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