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Abstract—In this paper, a LiDAR based vehicle detection
approach is proposed with the goal of utilizing range information.
The proposed approach is based on two phases: a hypothesis
generation phase to generate the potential regions and a hypoth-
esis verification phase to recognize the corresponding vehicles.
In contrast to appearance based vehicle detection systems, the
proposed approach solely relies on the range information and
achieves a close performance to the state-of-art. Furthermore, the
proposed approach is adaptable to the environment constrains in
contrast to vision based techniques, e.g. light intensity and fields
of view.

Performance of the proposed approach is evaluated on a large
public dataset in urban environment.

I. INTRODUCTION

Vehicle detection system has become an important task for
advanced driver assistance systems (ADAS) in last decade.
With the help of computer vision techniques, various algo-
rithms for vehicle detection have been investigated. The work-
flow of vision based vehicle detection system is to segment
Regions Of Interest (ROI) and classify objects within those
regions [1]. Khammari et. al.utilize a gradient and Adaboost
algorithm to detect vehicles based on the cameras [2]. Miller
et. al. [3] and Paragios et. al. [4] have achieved their goal by
applying gabor filtering and adaptive contour algorithm. In [5],
vehicle detection is addressed by utilizing profile symmetry
and shadows underneath a vehicle. In recent years, various
features are utilized to recognize vehicles, e. g. HoG features
[5], Haar-like features [6], SURF features [7] and optical flow
[8]. However, such methods suffer from variations in light
intensity and limited fields of view.

LiDAR is widely utilized for object detection which pro-
vides high precision range information with wide fields of
view. Furthermore, LiDAR is invariant to illumination offering
shape information for targets tracking [9], [10]. In [11], a
LiDAR based environment perception system is proposed for
autonomous vehicle. Ogawa et. al. propose an approach for
pedestrian recognition using an in-vehicle LiDAR [12]. On the
other hand, multi-class object recognition in static scenes are
also well studied [13]. However, the challenge is that LiDAR
measurements suffer from association and classification issues,
in the form of points cloud data.

Integration LiDAR and cameras for object detection has
attracted the attention of research communities [14], [15].
Premebida et. al. propose an approach which fuses data

from LiDAR and cameras for vehicle tracking [16]. Fawzi
Nashashibi et. al. combine data from LiDAR and cameras for
object detection by utilizing a transferable belief model [17]. A
HOG-SVM based classification system has also been proposed
by Spinello et. al. to detect objects [18].

In practice, fusion based vehicle detection systems include
two steps: (1) range information is first acquired by LiDAR to
provide the potential objects’ positions; (2) the corresponding
positions are projected to the image plane for recognition with
vision techniques. The above steps are combined with the
name of classic LiDAR-Vision recognition system.

In our earlier work [19], we presented a vehicle detection
system based on the fusion result from the camera and LiDAR.
The proposed system detects potential vehicles by utilizing
the cameras while the LiDAR is utilized to eliminate the false
detections, in contrast to the classic LiDAR-Vision recognition
system. However, the proposed approach suffers from the
vision limitations since the detection is relied on the camera.
Light intensity and limited fields of view often exists during
the whole process.

In this paper, vehicle detection solely relies on range infor-
mation for the purpose of addressing environment constrains.
Our approach also consists of two phases: a hypothesis gener-
ation phase and a hypothesis verification phase. In generation
phase, the Difference of Normal (DoN) operator [20] is applied
to segment the 3D points cloud into the potential clusters, e.
g. vehicle, pedestrian, bicycle and lamp, et. al. In verification
phase, the Random Hypersurface Models (RHM) [21] is pro-
posed to estimate the clusters’ shape parameter. Furthermore,
the Support Vector Machine (SVM) [22] is implemented to
classify the clusters as vehicle and non-vehicle objects.

The contributions can be concluded as follows: First, a
completely LiDAR based vehicle detection framework is pro-
posed. Range information from LiDAR is solely utilized to
overcome the environment constrains. Second, shape param-
eter for object recognition is proposed. In this paper, RHM
is applied to extract potential objects’ shape parameter for
vehicle recognition.

The proposed approach is evaluated under real traffic sce-
narios provided by an off-the-shelf platform [23]. The related
suites of sensors contain a Velodyne LiDAR, a stereo camera
and an IMU sensor. The experiment indicates that the proposed
solution achieves high reliability for vehicle detection in urban



environment.
The remainder of this paper is structured as follows: Sec.

II briefly describes the hypothesis generation phase. Sec.
III introduces more details about the hypothesis verification
phase. Sec. IV presents experimental results under traffic
scenarios. Finally, the paper is concluded in Sec. V.

II. HYPOTHESIS GENERATION PHASE

In hypothesis generation phase, LiDAR points where po-
tentially represent objects are clustered. Various methods
have been developed for points cloud segmentation. However,
meshing or connectivity is required for unorganized points
cloud which increases the challenges [24].

Difference of Normals (DoN) operator is proposed since
it directly estimated surface normal map of an unorganized
points cloud [20].

A. Overview on DoN

DoN is a multi-scale operator which is approximate to the
Laplacian of the Gaussian (LoG) operator [25]. It is widely
used in segmentation, 3D edge detection and planar region
segmentation.

B. Mathematical Background

Assuming a is a point in points cloud A, two unit point
normals n̂(a, rl), n̂(a, rs) are calculated with different radii
where rl > rs. Therefore, the Difference of Normals operator
for point a is defined as:

∆n̂(a, rs, rl) =
n̂(a, rs)− n̂(a, rl)

2
(1)

where rs, rl ∈ R, and n̂(a, r) is the surface normal estimation
at point a, given the support radius r.

Applying ∆n̂ to the whole points in A is a vector map where
a DoN operator is assigned to each point, given the radii rs
and rl. In addition, the operator’s norm is always within the
range [0, 1] since each DoN is the normalized sum of two unit
normal vectors.

C. Applying DoN for Segmentation

After calculation, an important task is to consider the DoN
as a salience operator to pre-filter the points cloud, with the
goal of searching isolate points belong to the scale of interest.
A number of objects or regions with good isolation are left
within the points cloud. In this paper, Euclidean distance
threshold clustering algorithm is applied to segment the results
[26].

Fig. 1 illustrates the work-flow of applying DoN operator
for points cloud segmentation [20]. As shown in Fig. 1, each
cluster in the scenario is assigned a random color while
represent as the vehicle, lamp, trees and windows, et. al.

The potentially objects are generated while the correspond-
ing points are utilized to estimate the shape information. In
this paper, only clusters on the ground plane are considered
as the potential objects.

III. HYPOTHESIS VERIFICATION PHASE

The hypothesis verification phase is implemented with the
same procedure in our previous work [19] which also consists
of two steps: the parameter estimation and object classification.
Shape parameters is calculated by the Random Hypersurface
Model while the classification is implemented with the Support
Vector Machine.

A. Parameter Estimation

• Random Hypersurface Model
In this section, Random Hypersurface Model (RHM) is

utilized to calculate the shape parameter based on the range
measurements. [21].

Fig. 2 illustrates that the RHM considers the measurement
as a randomly scaled element of the shape boundary while the
representation of the corresponding measurement is given by

mk + s · (S(pk)−mk) (2)

where s is considered as a random draw from the range [0, 1].
The measurement lies on the object boundary only in condition
of the scaled factor equal to 1.

In Fig. 3, r(φ) is considered as a radial function which
calculates the distance from the boundary to the center on
angel φ, in the form of the polar representation [27]. The
mathematical model of the measurement is given by:

S(pk) = {s · r(b̄k, φ) · e(φ) +mk|φ ∈ [0, 2π], s ∈ [0, 1]} (3)

where e(φ) :=

[
cosφ
sinφ

]
is the unit vector with angle φ. The

radial function r(b̄k, φ) is the expansion of Fourier series in φ.
Considering r(b̄k, φ) as a periodic function with corresponding
period [0, 2π], the expansion of the Fourier series is given by

r(b̄k, φ) = a0k +

NF∑
j=1

ajk cos(jφ) + bjk sin(jφ) (4)

where b̄k = [a0k, a
1
k, b

1
k, . . . , a

NF

k , bNF

k ]T is the the shape
parameter vector.

In Hypothesis verification phase, Fourier coefficients with
lower indices represents rough shape information whereas
higher indices consists of more information.

• Bayesian State Estimator
The goal of the Bayesian state estimator is to calculate the

shape parameter according to the measurements on objects’
surface.

In Bayesian estimation, yk is considered as the noisy
measurement which originated from the source zk

yk = zk + vk (5)

where vk is the measurement noisy which considered as the
zero-mean Gaussian distribution.

Fourier descriptors are considered as the state xk as follow-
ing



Figure 1. Overview of the pipeline in DoN segmentation [20]
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Figure 2. Random Hypersurface Model for an ellipse [19]

xk = Akxk−1 + wk (6)

where Ak denotes the identity matrix for the sake of the shape
parameter doesn’t drift against time, wk is the dynamic noisy
which considered as the zero-mean Gaussian distribution.

Combine (3) and (5) the closed form of the Bayesian
measurement model is acquired as following

yk =zk + vk (7)
=s · r(b̄k, φ) · e(φ) +mk + vk

:=h(xk, vk)
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Figure 3. Example for the shape of star-convex object [19]

where the state, the measurement noise and the measurement
are mapped to a non-linear condition. Finally, the Unscented
Kalman filter (UKF) is utilized to estimate the corresponding
states.

More details about the estimation process can be found in
our previous work [19].

Fig. 4 illustrates the shape estimation result based on the
RHM with a Bayesian estimator. As we can see, the Fourier
coefficients represent most details of the shape information
based on the measurements. The SVM is utilized to consider
the corresponding parameters for vehicle and non-vehicle
classification.
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Figure 4. Example for shape estimation [19]

Table I
PERFORMANCE OF THE PROPOSED APPROACH COMPARED TO

STATE-OF-ART

Author Proposed method Y. Li [28] L. Huang [9]
Detection rate 89.3% 91% 91.3%

B. Object Classification

Support Vector Machine (SVM) is proposed by Vapnik
[22] which focuses on the statistical theory of learning. The
general idea of the SVM is to calculate the optimal classifiers
for predicting the class of new data correctly under a set of
principles.

SVM has been widely utilized as a classification tool and
achieved huge success in various range of applications. In this
paper, the SVM is utilized as a classifier to distinguish vehicle
and non-vehicle objects according to the shape parameters.

IV. EXPERIMENT EVALUATION

In our experiment, the KITTI dataset is utilized to evaluate
the performance of the proposed approach. The platform
includes a large number of points cloud providing by the
Velodyne LiDAR. In KITTI dataset, each frame is manually
annotated 3D bounding boxes for vehicles, trucks, trams,
bicycles and pedestrians. For the purpose of classification,
there is a number of 5000 frames training data with 1893
objects are extracted to train the support vector (here we only
considered vehicle and non-vehicle objects according to their
labels, there is 2000 frames testing data for further evaluation).
The successful classify rate is 91% for the training data, which
illustrates that the shape parameter is a reliable vector for
classification. The false classifications may cause from the
orientation issue since the Fourier descriptors represent the
shape well only from rear side on 2D coordinates.

Table I expresses the overall performance of the proposed
approach compared to the state-of-art techniques, evaluated
by the testing data. We have to emphasize that the proposed
approach solely relies on LiDAR information comparing to
the vision based algorithms. Table I clearly illustrates that the

proposed approach performs a close performance to the state-
of-art systems for vehicle detection. Furthermore, our approach
is more adaptable to the environment constrains, e. g. light
intensity and fields of view.

The contributions of the proposed approach can be con-
cluded as follows:

First, a LiDAR based vehicle detection framework is pro-
posed which solely relies on the range information. In our
framework, LiDAR is utilized to overcome the environment
constrains in contrast to the vision sensors.

Second, shape parameter for object recognition is proposed.
Fourier descriptor is utilized to classify vehicle and non-
vehicle objects, which is first proposed in the related domain.

The experiment indicates that the proposed approach
achieves high reliability for vehicle detection compared to the
state-of-art techniques in urban environments.

V. CONCLUSION

It is a challenge to detect vehicles from points cloud data.
In previous work, LiDAR is often employed to detect objects
and generate hypotheses, whereas a vision based classifier is
responsible for object validation or classification. However,
in this paper, a LiDAR based vehicle detection framework
is proposed which solely relies on the range information. In
comparison to others, the proposed scheme utilizes the object’s
contour information for classification by using SVM, which
is first proposed in the related domain. The benefit of the
proposed approach is the adaptability in complex environment
constrains in contrast to vision sensors. The evaluation results
illustrate that the proposed approach achieves a close perfor-
mance to the state-of-art techniques, which has great potentials
in future autonomous navigation systems.
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