In Proceedings of the Fourth European Workshop on Fuzzy Decision Analysis and Recognition Technology, Dortmund, 1999
A Comparative Study of B-Spline Fuzzy Controller
and RBFN

Jianwei Zhang, Wali Baqai and Alois Knoll
Faculty of Technology, University of Bielefeld, 33501 Bielefeld, Germany
Phone: ++49-(0)521-106-2951 Fax: ++49-(0)521-106-2962
Email: zhang@techfak.uni-bielefeld.de

Abstract

Using of B-Spline functions as membership functions (MFs) in a fuzzy controller is an
efficient method in data modelling and rule extraction. Als alternatives to the B-spline MFs,
radial basis functions, e.g. Gaussian functions, are also often used in building neuronal
models, which is called radial basis function network (RBFN). In this paper we present the
results of comparing these two models by testing a numerous of analytical functions and
checking how closely the trained models converge to the original functions. The B-spline
fuzzy controller (B-FC) with equidistant distributed B-splines performs well in most cases,
and B-FC optimised with genetic algorithm (GA) performs best in all cases.

Keywords

Radial Basis Function, B-spline, Genetic Algorithm, Function Approximation

1 Introduction

Fuzzy controller is an important model for abstraction complex data thanks to its interpretability
and function approximating capability. However, the choice of MF affects how precise the fuzzy
controllers are able to approximate functions. In [4] the common MFs like triangles, trapezoids
and other set functions were employed and compared. In our previous work [5] we showed the
advantages of using B-splines as MF. We compared splines and a fuzzy controller with SISO
(single-input-single-output) and MISO (multi-input-single-output) structures. An alternative to
the B-spline is the Gaussian function. Neuro fuzzy models with Gaussian functions as MF form
the popular radial basis function network. This paper will first briefly introduce the principle
of constructing RBFN and B-FC, then discuss the problem of automatical optimisation B-FC
with genetic algorithm. The main purpose of this paper is to compare of B-FC with RBFN in
relation to function approximation.

2 RBFN

2.1 The Popularity of RBFN

RBFNs were first introduced by Broomhead and Lowe in the paper titled Multivariable function
interpolation and adaptive networks [1]. Also they proposed a procedure for designing a layered
adaptive network which implements the method of RBFN. The use of the network for solving the
XOR problem and prediction of chaotic time series were demonstrated. Although the basic idea
of RBFN was developed 30 years ago under the name method of potential function, the paper
by Broomhead and Lowe has opened a frontier in the neural network community. In 1989,

exactly one year since the publishing of the paper of Broomhead and Lowe, Moody and Darken
published their paper titled Fast learning in network of locally-tuned processing units [3]. This
type of network proposed in the paper was intended by Moody and Darken as an alternative
network architecture to the popular Multi-Layer Perceptron (MLP). The nodes called locally-
tuned processing units were designed to emulate the function of some biological neurons in human
brain. So the architecture of RBFN was derived from two different approaches. Broomhead and
Lowe deduced the network architecture from the RBF methods used mainly for interpolation
problem, while Moody and Darken derived the network from the inspiration of human brain.

2.2 Definition

RBFN has a similar form to the MLP in that it is multi-layer, feed-forward network. However,
unlike the MLP, the hidden units in the RBFN are different from the units in the input and
output layers. The hidden units of a RBFN contain “Radial Basis Functions”, a statistical
transformation based on a Gaussian distribution from which the networks name is derived.
Each basis function in the hidden layer has two parameters “centre” and “radius”.

2.3 Radial Functions

Radial functions show the characteristic

feature that their response decreases or in- 08 |- 1
creases with distance from a central point.
A typical radial function is the Gaussian os | |
(Fig. 1). Its parameters are its centre c
and its radius o. A Gaussian radial func- 0a b i

tion decreases monotonically with distance
from the centre.

02

2.4 Learning in RBFN

0 L L
-1 -0.8 -0.6

In order to obtain a solution for a given

problem with a RBFN, it is essential to de- Figure 1: Gaussian h = exp(—(¢; — $)2/2(7i2)-
fine the proper network architecture. The

architecture of RBFN is determined by the number of nodes in each layer and the location of the
function centres. The determination of the number of nodes in the input layer and output layer
is easy but the determination of number of hidden nodes and location of the function centres
require various techniques for different problems. The selection of the number of basis functions
in the hidden nodes will have a significant influence on the performance of RBFN especially,
when using large training data set. There are some techniques for determining the number of
basis functions: a) One basis function for each training data point, b) Random selection of
basis functions, ¢) Uniform selection of basis functions, d) The k-mean cluster algorithm, e) The
Max-Min distance algorithm.

The most natural choice to find the number of basis functions is to let it equal to the number
of training data points. The advantages of this solution are: it is simple; the choice of Gaussian
centres is uniquely determined; it fully utilises each training simples. However, there are also
many problems associated to this method, e.g. computation costs and over-fitting problem. On
the other hand RBFN used Gaussian basis functions optimised with the k-mean clustering are
not particularly well suited to neuro fuzzy modelling. We used uniform selected basis functions
with constant radius and ability to change the position of Gaussian centres. This kind of RBFN
is well suited to compare it with equidistant distributed B-FC MFs.

3 B-Spline Fuzzy Controller

3.1 Definition of B-Splines

B-Spline basis function are piecewise polynomial, producing models with a response of a desired

smoothness. The universe of discourse of each input is divided into a number of subintervals,

where each subinterval is delimited by so called knot which determines the position of each

B-Spline. The order of these local polynomial is defined by the order of B-spline, denoted by k.
The B-spline N ;41 of degree k with knots Ay, ..., X\j1441 is defined as (Fig. 2):

k+1

:) = (O . (Aitj — $)’i
Nig1(®) = Nigrr1 — Ni) jZO HIEE?)(AHJ il (1)

piecewise constant piecewise linear
1 1 1 1
o8 o8 o8 piecewise quadratic o8 piecewise cubic
o6 o6 o6 o6
= = = =
= = = =
= = = =
0.4 0.4 0.4 0.4
02 02 02 02
©° T £] ©° T 3 x] ©° T) % % . ©°
input knots input knots input knots input knots
(@) k=1 (b) k=2 () k=3 (d) k=4

Figure 2: B-splines of order one to four.

3.2 Properties of B-Splines

B-spline basis functions possess many desirable properties ideal for representing fuzzy MFs. The
important properties of the B-spline functions are :

Partition of unity: > o N; x(z) = L.

Positivity: Ni g1 > 0 for all z
Local Support: Nigy1 =0 if z & [N, Niyry1]
. -\ A _
Recursion: Niji1(z) = /\f+zil>\i Ni(z) + #%NH,L[((L‘)

3.3 Output of B-FC

The output of a single-input-single-output (SISO) B-FC is the unique representation of B-splines.
n

y=>_ diNik(x) (2)
i=0

where N; j(z) denote the linguistic terms of each input defined by B-splines and d; are called
control or de-Boor points. The variable n denotes the number of basis functions. This model
can be interpreted as a fuzzy system of Tagaki-Sugeno type.

3.4 Learning in B-FC

The learning procedure of B-FC control points is based on the gradient descent approach. An
error function is defined:

1
E = §(Desi7“ed_Value — FC_Output)? (3)

In each learning step the B-FC is modified with:

0y, = (Desired_Value — FC_Output) - Ny (4)

3.5 Finding optimal Knot Vectors

The choice of knot vector has a significant influence on the B-spline function and hence on the
resulting of B-FC. Fundamentally, three types of knot vectors are used: uniform, open uniform
and non-uniform. In a uniform knot vector, individual knot value are evenly spaced. The open
uniform knot vector has additional knot values at both ends which depends on the order k£ of
B-spline. The task of finding optimal knot vectors to fit the training data becomes a non-linear
minimisation problem. To solve this problem we follow a strategy of problem splitting. We first
consider the underlying model §(\) and then compute the B-spline coefficients. To estimate the
knot positions we use GA instead of using constrained least-square methods. GAs are both,
theoretically and empirically proven to provide the means for efficient search, even in complex
spaces. Therefore each individual, in example each B-FC with its special knot point distribution,
represents one point in search space.

3.5.1 Knot Placement with the Genetic Algorithm
We used the GA introduced by Holland [2] but with the following modifications (see [6]):

e We used gray coding instead of standard binary code.

e Instead of using of fitness-proportional selection it has advantages to use tournament
selection. This selection scheme draws ¢ individuals (2 < & <) with a probability ﬁ from
the current population and copies the individual with the best fitness into the mating pool.

e To dodge the effect of the increasing probability along the descendent chromosome-string
we used uniform crossover. This kind of crossover has no positional and a high distri-
butional bias, so that a high blending rate between participant chromosomes is granted.
This leeds to an algorithm producing permanently solutions which explore new locations
by bridging even great distances of the search space.

To minimise §(\) each individual consists of n knot vectors, where n is the problem dimension.
Each encoded knot vector consists of 32 knot points and a so called activation string of 32 bit
length. Which knot points are in use to define the current model is encoded through the
activation string. Activated knots are represented by 1 and inactivated knots are represented
by 0. Every knot point is encoded by 16 bit and therefor each knot point can be placed on its
concerning input interval [a,b] with an accuracy of 31z X (b — a). The fitness values for each
individual is simply computed by determine the coefficients by solving the overdetermined linear
system.

4 Architecture of RBFN and B-FC

The architecture of B-FC is determined by the number of the input/output variables and number
of the membership functions which are used in the context of specifying linguistic terms. The

number of membership functions can depend on the order of the B-splines. It is assumed that
linguistic terms are to be used to cover the universe of an input variable. They are referred
as real linguistic terms. In order to maintain the partition of unity, some more basis functions
should be added at the both ends. They are called marginal basis functions, defining the virtual
linguistic terms. In case of order 2, no marginal basis function is needed, where in case of order
3, two marginal basis functions are needed, one for the left end and another for the right end.
In general case of order n (n > 2), 2n — 4 marginal basis functions are needed.

The architecture of the RBFN is determined by the number of the nodes in each layers and
the location of the basis functions, where the input, hidden and output layer are fully connected.
The hidden nodes activation values are determined by feeding the weighted sum of an input to
a Gaussian function. Each hidden unit is associated with Gaussian function with centre and
radius parameters. A comparison between Gaussian basis functions and B-splines is now given:

e Gaussian functions do not produce a partition of unity, while B-splines do. Hence the nor-
malisation of Gaussian basis functions is liable to change their shape producing unexpected
effects.

e Gaussian functions are infinitely differentiable and integrable wheres B-splines are piece-
wise polynomial.

e Gaussian functions do possess a localised response, but are not spatially compact, while
B-splines are and hence a fixed number of basis functions contribute to an output.

5 Simulation Results

We trained both RBFN and B-FC with different number of analytical functions to approximate
different functions (see [4]):

filz) = 3z(z—1)(z —1.9)(x —0.7)(z + 18) (5)
for —2<x<2
(z —0.2)(z — 0.7)(z + 0.8))
(z+1.4)
for —1<z<1
folz) = 100(z + 0.95)(z + 0.6)(x + 0.4)(z — 0.1)(z — 0.4)(z — 0.8)(z — 0.9) (7)
s = (z + 1.7)(z — 2)2
for —1<2<1
fi(z) = 8sin(10z? 4 5z + 1) (8)
for —1<z<1
(x—0.2)(z — 0.7)(z + 0.8))
(x+14)(z—1.1)z+0.7
for —1<2<1
folz) = 10 (6—5\95\ 1 e3le=08]/10 | e—10|x+0.6\> (10)

for —1<z<1

fao(z) = 10tan1<

fs(z) = 10tan1< (9)

(11)

The number of basis functions has a significant influence on convergence of both RBFN and
B-FC. To show this influence we trained them with 6, 8, 10, 12, 14, 16, 18 and 20 basis functions
to approximate the function f; and fg.

Fig. 3 and 4 show the results of function approximation with RBFN in relation on number of
Gaussian functions. Fig. 3 demonstrates the approximation to fy with 6, 8, 10 and 20 Gaussian

Function Approximation

+

+
P
>

N
+

Ry

o

Output: -, Target: +
Output: -, Target: +

15 T T T T T T
8f N
% 4
%
i
1 T t 10k
6 5 + +
+ T +
4 + L
4 |+
ar \
. + \ o+ + .
\ +
g Nl * + g
<3P18 4 / |+ £}
g] \ / \ + 5
= 4 % \ + N\ bt
" 4 \ & 7\ -
g of | \ i X 1 3
=3 + * / 18
° + + [+ H
-2 4/ \ / 4
/ N/ +
+ RN +
Py P
MR .ot AR
(A -+ .
s\ A oy 1
4 \iﬁ t 4 + +
+ 5+ e+
gl g L L L L L it L i -
-1 -0.8 -0.6 -0.4 -0.2 o 0.2 04 06 0.8 1 -1 -0.8 -0.6 -0.4 -0.2 [0.2 0.4 06 0.8 1
Input Input
(c) n=10 (d)yn=20

Figure 3: Demonstration of the effects of the number of basis function (n) on the convergence
of RBFN for f4. A sample of 200 data points are used.

functions and Fig. 4 the results of RBFN for fg with 6, 8, 10 and 20 Gaussian in comparing to
results of B-FC with 10 and 20 B-splines.

Table 1 represents the mean square error (MSE) of RBFN and B-FC with different number
of basis functions. We used equidistant distributed B-splines of order 3 for B-FC. The radius
of Gaussian functions was fixed with ¢ = 1. Typically the radius is chosen according to the
equation:

o=— (12)

where m denotes the number of Gaussian basis functions and d is the maximal distance between
the chosen centres. This ¢ = 1 should guarantee that the Gaussian functions are neither too
flat nor too steep.

In Table 2 we represent the approximation results of B-FC with 12 equidistant distributed
B-spline of order 3 and RBFN with 12 Gaussian basis functions.

The convergence of B-FC can be improved by using the above described genetic algorithm to
optimise the knot vectors, where parameter sittings were chosen as crossover probability = 0.75,
mutation probability = 0.0005, i = 40 and £ = 3. A maximum generation index of 200 was used
as stop criterion. The MSE of each adapted B-FC represents the average MSE of 3 runs. To
show these improvement we compared the B-FC with optimal knot vectors with RBFN (Table

Function Approximation Function Approximat tion
T + T

0.2 0.4 06 08 1 -1 -08 -06 -04 02 0 0.2 04 06 08 1

1 -08 -06 04 02 o
Input Input

(a) RBFN with 10 Gaussian (b) RBFN with 20 Gaussian

(c) B-FC with 10 B-splines (d) B-FC with 20 B-splines

Figure 4: Demonstration of the effects of the number of basis function on the convergence of
RBFN for fs. (e) and (f) show the results of B-FC with 10 and 20 B-splines. A sample of 200
data points are used.

3) and the best results achieved in [4] (Table 4).

6 Conclusions

We have described the architecture of neuro-fuzzy models with Gaussian MF's, which form the
popular RBFN and those with B-spline MFs, the B-FC. B-FC with equidistant distributed B-
splines and B-FC with genetic adaption to optimal distribution of B-spline MFs are applied.
Both neuro-fuzzy models were compared with RBFN theoretically and empirically.

By using B-splines as MFs in B-FC the design parameters are given by the order, number
and distribution of basis functions. Due to the local support of B-splines it is possible to modify
the data locally. It has been shown that genetic algorithm is capable to find optimal knot
vectors and hence, less knot points are necessary to perform aa sccurate output than B-FC with
equidistant distributed B-splines. This results in better generalisation abilities and smaller rule
bases. We trained the RBFN and B-FC with different number of basis functions to approximate
different functions. We scored each test in terms of MSE. The B-FC with equidistant distributed
B-splines performed very well in most cases. In comparison with the results in [4], the B-FC
with adapted B-splines provides the best results in all cases.

Function f1 | Functionf2 4§ | Function f3]

OO

A /
\ corresponding B-spline distribution

(a) fi-fs

o
©® & AN o N s
N ——

14+

. | Function f5 1l Function {6
Function f4 i 1 1

1 1wt

| |

A
\ corresponding B-spline distribution /

(b) fa- fe

obhbhNonvso®

T Ema
S A NoNs O ®
T

Figure 5: Demonstration of genetic adaption to optimal B-spline

References

1]

2]

3]

[4]

[6]

D.S. Broomhead and D. Lowe. Multivariate functional interpolation and adaptive net-
works, Complex Systems, 2:321-355, 1988

Holland, J.H. Adaption in Neural and Artificial Systems. Ann Arbor, MI: University
of Michigan Press,1975

E. Moody and C. Darken, Fast learning in networks of locally-tuned processing units,
Neural Computation 1, pp. 281-294, 1989.

S. Mitaim and B. Kosko, What is the Best Shape for a Fuzzy Set in Function Approz-
imation, Signal and Image Processing Institute, Department of Electricle Engineering-
System, University of California, Los Angeles, California. Published in IEEE Interna-
tional Conference on Fuzzy Systems, 1996.

J. Zhang and A. Knoll. Constructing fuzzy controllers with B-spline models - princi-
ples and applications. International Journal of Intelligent Systems, 13(2/3):257-285,
Feb./Mar. 1998.

J. Zhang, I. Renners and A. Knoll, Genetic Adaptation to Optimal Membership Func-
tions for Modelling with B-Splines, Report AG Technical Computer Science, Faculty of
Technology, University of Bielefeld, 1998.

Table 1: MSE of RBFN with different number of Gaussian and B-FC with equidistant distributed

n 6 8 10 12 | 14 16 18 20
RBFN | 16.5 11 8.5 8 | 7.6 7 76 | 2.6
B-FC | 17.3 | 15.34 | 10.98 | 4.95 | 1.4 | 2.346 | 0.76 | 0.17

B-splines for f,

Table 2: MSE of B-FC with 12 equidistant distributed B-spline of order 3 compared with RBFN

Function f2 f3 fa | f5 f6
B-FC 0.02 | 0.0005 | 0.0008 | 4.9 | 0.04 | 0.6
RBFN 0.05 | 0.001 0.001 8 | 0.21 | 0.68

with 12 Gaussian

Table 3: MSE of B-FC with 12 adapted B-spline of order 3 compared with RBFN with 12

Function | f; f2 f3 fa f5 f6
B-FC 0.007 | 0.00003 | 0.000048 | 0.03 | 0.0002 | 0.012
RBFN 0.05 0.001 0.001 8 0.21 0.68

Gaussian
Function | Rules Used Membership Function

Equidistant B-splines | Adapted B-splines | Best of [MiKo096] | RBFN
f 12 0.02 0.007 0.08 0.05
fo 12 0.0005 0.00003 0.02 0.001
I3 12 0.0008 0.000048 0.002 0.001
fa 12 4.9 0.03 0.1 8
f5 12 0.04 0.0002 0.01 0.21
fe 12 0.6 0.012 0.1 0.68

Table 4: MSE results from [MiKo096] in comparison to results of an equidistant distributed

B-spline network, results of a genetic modified B-spline network and RBFN.

