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Abstract

This paper proposes an approach for solving multivari-
ate modelling problems with neuro-fuzzy systems. Instead
of using selected input variables, statistical indices are
extracted to feed the fuzzy controller. The original input
space is transformed into an eigenspace. If a sequence of
training data are sampled in a local context, a small num-
ber of eigenvectors which possess larger eigenvalues pro-
vide a good summary of all the original variables. Fuzzy
controllers can be trained for mapping the input projection
in the eigenspace to the outputs. Implementations with the
prediction of time series validate the concept.

1 Multivariate Problems in Modelling

For efficiently modelling complex data, it is desirable
that not only the extracted model should approximate the
training data as precisely as possible and without overfit-
ting, but also the model be human-understandable, e.g. in-
terpretable with fuzzy linguistic rules. However, it is well-
known that general fuzzy rule descriptions of systems with
a large number of input variables suffer from the problem
of the “curse of dimensionality”. In many real applications,
it is difficult to identify the correct influential factors and
reduce their number to the minimum. A general solution to
build fuzzy models is not only interesting from a theoret-
ical point of view, but also practical meaningful since the
application of fuzzy systems could then be extended to a
wider range of complex modelling/prediction problems.

In the recent literature on neuro-fuzzy modelling and
machine learning, some standard benchmark problems
with “middle”-dimensional input spaces are frequently dis-
cussed and simulation results are presented. As train-
ing data set for nonlinear system identification, the Box-
Jenkins gas furnace data [2] is often studied and compared.
The furnace input is the gas flow rate ����, the output ����
is the ��� concentration. At least 10 candidate inputs
are considered: ��� � ��� ��� � ��� � � � � ��� � ��� ��� �

��� � � � � ��� � ��. If all of them are used, building a fuzzy
controller means to solve a 10-input-1-output problem. If
each input is defined by 5 linguistic terms, this would re-
sult in a fuzzy rule system of about 10 million rules. The
modelling and prediction of financial markets are based on
much more influential factors which are hard to differenti-
ate since they are inter-related.

2 Existing Solutions

Two main methods examining the multivariate problem
are “input selection” and “hierarchy”.

Input Selection One implemented approach is “input se-
lection”, [4] and [3], which is in principle an ex-
perimental method to find the most important input
variables among a large number of them. There
are two obvious problems with such a procedure.
First, all the other less influential inputs are dis-
carded, which means an information loss for the con-
troller. Secondly, the combinational number of lower-
dimensional fuzzy controllers for a system with thou-
sands or even millions of inputs is still too large to
enumerate and to evaluate.

Hierarchy The solution with hierarchical structure as-
sumes that the input information can be classified into
groups, see [5] for an example. Within each group the
inputs determine an intermediate variable, they can
be decoupled from inputs of other groups. To realise
such a grouping, there exists no general automatic ap-
proach but heuristics based on fusion of physical sen-
sors.

If a fuzzy controller is only observed at each moment
in time, the only input information to the controller comes
from the whole set or a selected subset of the input vari-
ables. This kind of information is called horizontal index.
Both “input selection” and hierarchical structure consider
only the horizontal indices. They presume that inputs are



independent and give no priority or importance of the se-
lected input variables.

3 The System Concept

3.1 The Neuro-Fuzzy Model

Depending on how “local” the measuring data are and,
therefore, how similar the observed input patterns appear,
a more or less small number of eigenvectors can provide a
sufficient summary of the state of all input variables. Our
experimental results show under the most diverse condi-
tions that it is very likely that three or four eigenvectors
provide all information indices of the original input space
necessary for the control and prediction task. Moreover,
in the case of very high input dimensions, an effective di-
mension reduction can be achieved by principal component
analysis (PCA). This step is illustrated in the left part of
Fig. 1.
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Figure 1: The task based mapping can be interpreted as a
neuro-fuzzy model.

Eigenvectors can be partitioned by covering them with
linguistic terms (see the right part of Fig. 1). In the fol-
lowing implementations, fuzzy controllers constructed ac-
cording to the B-spline model are used [7]. This model
provides an ideal implementation of CMAC proposed by
Albus [1]. We define linguistic terms for input variables
with B-spline basis functions and for output variables with
singletons. Such a method requires fewer parameters than
other set functions such as trapezoid, Gaussian function,
etc. The output computation is very simple and the in-
terpolation process is transparent. Through comparative
studies, B-spline model generally achieves better approx-
imation capabilities and rapid convergence than the other
fuzzy models.

3.2 Dimension Reduction via PCA

Let us assume � sample input vectors ���� 	 	 	 � ��� with
��� � ���

�
� 	 	 	 � ���� originating from a pattern-generating

process. The PCA can be applied to them as follows:
First the (approximate) mean value �
 and the covariance

matrix� of these vectors are computed according to
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The eigenvectors and eigenvalues can then be computed
by solving

����� � ����

where �� are the 
 eigenvalues and ��� are the 
-
dimensional eigenvectors of�. Since� is positive definite
all eigenvalues are also positive. Extracting the most sig-
nificant structural information from the set of input vectors
��� is equal to isolating the first � (� � 
) eigenvectors ���
with the largest corresponding eigenvalues � �. If we now
define a transformation matrix

� � ���� 	 	 	����
�

we can reduce the dimension of the ��� by

��� � � �

���� ��
����� � �

The dimension � should be determined depending on
the discrimination accuracy needed for further process-
ing steps vs. the computational complexity that can be af-
forded.

3.3 Off-line and On-line Phases

The working systems implements two phases: off-line
training and on-line evaluation. In the off-line phase, a se-
quence of training input patterns and their corresponding
outputs are used. In the on-line phase the input pattern is
transformed into the eigenspace and is then processed by
the fuzzy controller. The controller output is the system
prediction (Fig. 2).

4 Implementations

In the following implementations, linguistic terms of
the eigenvectors are defined by B-spline basis function of
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Figure 2: The training and the application of the PCA
neuro-fuzzy controller.

order three. The output value of each rule is represented as
a fuzzy singleton which is called control vertex in the B-
spline fuzzy controller. The control vertices are adaptively
determined by minimising the “Root Mean Squared Error”
(as in [4]) for the supervised learning.

4.1 Prediction with Box-Jenkins Data

296 data in form of ������ ����� are first transformed
into the form ����� � ��� ��� � ��� 	 	 	 � ����� ��� �

��� 	 	 	 � ��� � ���� �����. The computed eigenvectors are
shown in Table 3(a), the eigenvalues of each eigenvectors
are depicted in Fig. 3(b). The projection of the data into
the eigenspaces constructed by the first two and first three
eigenvectors can be found in Fig. 4(a) and (b).

The first, second, third and fourth eigenvector are de-
fined by 10, 7, 7 and 5 linguistic terms respectively. The
RMS (also MS) training errors achieved with the first three
eigenvectors are listed in Tab. 1.

RMS (MS) Error
epochs 1 2 3

100 0.73 (0.533) 0.22 (0.048) 0.25 (0.063)
1000 0.71 (0.504) 0.19 (0.036) 0.20 (0.04)
10000 0.71 (0.504) 0.19 (0.036) 0.17 (0.029)

Table 1: RMS (MS) training error by using 1, 2, and 3 first
eigenvectors if all 296 data are used for training.

4.2 Comparative Results
In [6], Table 2 was summarised as the comparison re-

sults for solving the Box-Jenkins gas furnace data. By
comparing Tab. 1 and Tab. 2, it can be seen that as ex-
pected, the training error achieved with the first two eigen-
vectors is less than that achieved with all the above models,

0.001

0.01

0.1

1

10

1

(a) Eigenvalues

�� �� �� �� ��
���� �� -0.158 0.074 0.239 0.354 0.602
���� �� -0.149 0.204 0.233 -0.015 0.291
���� �� -0.134 0.310 0.081 -0.382 0.115
���� �� -0.117 0.372 -0.164 -0.419 0.288
���� �� -0.099 0.386 -0.413 -0.044 0.228
���� �� -0.084 0.361 -0.582 0.531 -0.222
���� �� 0.477 -0.334 -0.295 0.136 0.523
���� �� 0.487 -0.015 -0.236 -0.263 0.141
���� �� 0.480 0.278 0.053 -0.225 -0.248
���� �� 0.457 0.501 0.448 0.362 -0.017

(b) Eigenvectors

Figure 3: The important eigenvectors and eigenvalues of
the Box-Jenkins data.

and with the first three or four eigenvectors, the error can
be still reduced significantly. The RMS error is also less
than that achieved by the ANFIS model with input selec-
tion in [4]. Fig. 5 shows the result achieved by using four
eigenvectors.

Model Input Rule No. MS Error
Tong’s ���� ��� ���� �� 19 0.469
Pedrycz’s ���� ��� ���� �� 81 0.320
Xu/Lu’s ���� ��� ���� �� 25 0.328
Chiu’s TSK 2 ���� ��� ���� �� 3 0.146
Chiu’s TSK 3 ���� ��� ���� ���

���� �� 3 0.072
[6] GA-fuzzy ���� ��� ���� �� 25 0.257

Table 2: Comparison of different models derived using the
Box and Jenkins gas furnace data, excerpted from [6].

In this way, the dimension of the local perceptual
space is reduced to a manipulable size of a subspace. If
the eigenvalue of each selected eigenvector, noted as � �
(� � �� 	 	 	 � �), is covered with B-spline basis functions,
noted as � �

�� ���
, the rule can be written in the form:
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Figure 4: Distribution of the data in the 2D and 3D
eigenspaces.

IF (�� IS ��

�����
) and ... and (�� IS ��

�����
)

(INPUT IS ��		
����������� )
THEN (
����� is ���������� )

Each rule corresponds to a supporting point for the in-
terpolation in the eigenspace, see Fig. 6. Our experiment
showed that with a few eigenvectors, a correction of the
robot hand can be attained.
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Figure 5: RMS errors of modelling the Box-Jenkins data
with four eigenvectors. 148 data are used for training and
148 data for checking.
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Figure 6: The application phase is an interpolation process
if the control vertices have been learned.

5 Discussion

The main advantage of the proposed approach to “input
selection” is that less information is lost after the dimen-
sion reduction for problems with correlated input training
data. Even if the training data are not correlated at all,
the projection in the eigenspace provides also information
which input variables have larger variance. These variables
can be good candidates for the inputs to be selected. There-
fore, no “trial-comparison-select” procedure is necessary.

To generally deal with the high-dimensional input
space, the solution based on the low-dimensional fuzzy
controllers would need the partition of the complete high-
dimensional input data set into clusters, within which the
data are correlated to a large degree. Such a partition would
be intrinsically fuzzy, since there are no crisp bound-
ary between two continuous “situations”. A “behaviour
arbiter” coordinates multiple simultaneously active local
controllers to achieve a high-level task and can be realised
with a set of meta-rules like: “IF ��������� ����������

IS ��� �� THEN Apply Controller ��.”
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