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Abstract

The development of a robotic system interacting with a human instructor re-
quires not only highly-skilled sensorimotor coordination and action planning but
also the capability of understanding and communicating with a human being in
a natural way. A typical application of such a system is interactive assembly. A
human communicator sharing a view of the assembly scenario with the robot in-
structs the latter by speaking to it in the same way that he would communicate
with a human partner. His instructions can be under-specified, incomplete and/or
context-dependent.

After introducing the general purpose of our project, we present the hardware
and software components of a robot agent necessary for interactive assembly tasks.
The architecture of the robot agent with two stationary robot arms is discussed. We
then describe the functionalities of the cognition, scheduling and execution levels.
The development tool used for modularly realising these functionalities is presented.
The implementation of a learning methodology for a general sensor/actor system is
briefly introduced.

Key words: human-robot interface, cognition architecture, sensor-based control,
skill learning, multiple sensor/actor systems

1 Introduction

In the Technical Computer Science research group of the University of Biele-
feld, a two-arm robotic system is being developed. The general goal of this
system is to model and realise human sensorimotor skills for performing ma-
nipulation and assembly tasks. This requires a comprehensive set of actuators
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and sensors, which perform functions similar to those of the human armes,
hands and perception channels (i.e. vision, touch, acoustics). To organise the
interaction of the complex sensor and control subsystems, sensor data cannot
be acquired and processed independently of the movements of the actuators
and the human partner. It is mandatory that these perceptions and actions be
performed simultaneously and in view of the task the actuators will perform.
This is the reason, therefore, that the three major components of an intelli-
gent robot system, i.e. perception, planning and control, are considered syn-
ergetically instead of separately. In this way complex, cooperative behaviours
involving sensors and actuators can be realised.

The development of our robotic system is closely linked to the on-going in-
terdisciplinary research program of the project SFB! 360 “Situated Artificial
Communicators” at the University of Bielefeld. The SFB 360 is aimed at the
discovery of linguistic and cognitive characteristics of human intelligence for
communication purposes. The results of the project are to be transferred to
several application domains, one of which is the emulation of human cognitive
principles for information processing systems, [6]. The primary example for
demonstrating the usefulness of these newly developed techniques is the robot
system mentioned above, whose numerous sensor and actuator modules can
be used as a test-bed for investigating the interaction between human “nat-
ural” communicators and machine systems in the real-world. Furthermore it
will be used for validating the complete concept by integrating different lin-
guistic and cognitive components. As a basic scenario, the assembly procedure
of a toy aircraft (constructed with “Baufix” parts, see Fig. 1) was selected. A
number of separate parts must be recognised, manipulated and built together
to construct the model aircraft. Within the framework of the SFB, in each of
these steps, a human communicator instructs the robot, which implies that
the interaction between them plays an important role in the whole process.

One challenge of this research
program for robotics is to au-
tomate the process of multi-
sensor supported assembly by
gradually enabling the robot
and sensor system to carry out
the individual steps in a more
and more autonomous fashion.
A fully automatic assembly,
however, presupposes a precise
task description; unfortunately,
not much work has been done

Fig. 1. The assembly of a toy aircraft.

1 Collaborative research unit funded by the Deutsche Forschungsgemeinschaft
(DFG).



in this potentially very fruitful

area of robotics research. While simulated robot agents are becoming a popular
research theme, e.g. [7], few work on communicative agents realised with real
robots has been reported. A recent project was performed with the KAMRO
system [2], in which a natural language interface was used as the “front-end”
of an autonomous robot.

2 System Overview

Our robot system has been developed for meeting the demands of flexible
“fixture-less” assembly. Its hardware configuration enables a high-speed of the
(partly massive) data flows inside the system and the possibility for adding
further actuator and sensor components. The structure of the software was so
designed as to ensure the compatibility of different program modules to make
the whole system work without collisions and deadlocks. The robot control
architecture combines the functional modules of perception, planning, control
and the human interface.

2.1 Hardware Configuration

Fig. 2. Two-arm robot system in an assembly scenario.

The physical set-up of our system consists of the following components (Fig. 2):

Main actuators: Two 6 d.o.f. PUMA-260 manipulators are installed over-
head in a stationary assembly cell. A third robot arm is currently being in-
stalled around the assembly area for extending the work space of the robot



system and aiding in very complex assembly operations. On each wrist of the

manipulator, a pneumatic jaw-gripper with integrated force/torque sensor

and “self-viewing” hand-eye system is mounted.

Computer system: A multi-computer system consists of robot controllers,
UNIX-workstations, Linux and Windows-N'T PCs for actuator control, sen-
sor data acquisition, and data processing.

Sensors:

- Three 6 d.o.f. commercial JR3 force-torque sensors are installed on the
robots’ wrists. They are used for detecting contact, force control as well
as two-arm coordination.

- Two miniature colour cameras (Panasonic WV-KS152), each of which is
mounted next to the robot gripper. Their function is to perceive local
information for fine-manipulation, like grasping, searching a hole, etc.

- Multiple cameras, some of them articulated, are installed around the as-
sembly table. Their tasks are to build 2D /3D world models, to supervise
gross motion of the robot as well as to trace the hand and viewing direc-
tion of the human instructor.

A microphone is connected with a voice recognition system, IBM Via-

Voice, to recognise human speech instructions.

2.2  Software Organisation

On the lowest level, the main actuators of the our system are controlled by
Multi-RCCL/RCI (Robot Control C Library/Real-time Control Interface), see
[3]. With this library, multiple robots can be synchronised and can run in
interpolation cycles as short as 10 ms. The high-speed communication between
the sensor systems and the robot task-level control is realised using parallel
buses.

The motions of the two robot manipulators are controlled by the main con-
trol program, which runs on one UNIX-workstation. Image processing, speech
recognition and simulation programs communicate with the main control pro-
gram through sockets. The generated motion steps of the two manipulators are
sent to the “trajectory generator”, which computes the exact joint values for
each control cycle. Through a bus adaptor, joint data are further transferred
to the joint controllers of the two PUMA-robots.

The control of the robot is divided in two parts. The first part is the real-
time position and joint control of the robot, which is distributed over both
the joint controller and the Unix-Workstation running the main control pro-
gram. The other part is the programming environment, which includes the
high-level software of basic skills of the robots, the communication with the
robots and the human partner. We are currently implementing a framework



called OPERA (Open Environment for Robot Applications) to create software
for the robot agent, which will be explained in more detail in section 4. To pro-
gram an assembly sequence, multiple modules are needed. These modules are
loaded dynamically from the environment and include different complex pa-
rameterised movements, which are defined as basic primitives for the assembly
scenario.

3 Control Architecture

In order to achieve the main objective described in section 1, the system
adopts the interactive hierarchical architecture according to Fig. 3. A Human
Communicator (HC) is closely involved in the whole assembly process.

3.1 Cognition Level

Our robot agent integrates research results from speech recognition, linguistic
analysis, intention detection, etc. of different projects within the SFB. The
robot system must understand not only the simple verbal instructions, but
also to detect the context-related ambiguity with profound linguistic analysis.

The system and the HC interact through natural speech (and in the near fu-
ture with hand-gestures). First, an instruction is spoken to the robot system
and recognised with the ViaVoice speech engine. In our current system, Vi-
aVoice recognises only sentences, which the pre-defined grammar allows for. In
practice, hundreds of grammar rules can be used. If the recognition succeeds,
the results are forwarded to the speech analysis module. In Fig. 3, speech
recognition and analysis are both included in the “Speech Reception” box.

By their very nature human instructions are situated, ambiguous, and fre-
quently incomplete. In most cases, however, the semantic analysis of such
utterances will result in sensible operations. An example is the command:
Grasp the left screw. The system has to identify the operation (grasp), the
object for this operation (screw), and the further specification of the objects

(left).

With the help of a hand-gesture the operator can further disambiguate the
object. The system may then use the geometric knowledge of the world to
identify the right object. Other situated examples are: insert in the hole above,
screw the bar on the downside in the same way as on the upside, do it again,
etc.

The output of the analysis is then verified to check if the intended operation
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Fig. 3. Control architecture of the communicative robot agent.

can be carried out. If in doubt, the robot agent asks for further specifications
or the right to pick an object by itself. Once the proper operation is deter-
mined, it is is given to the coordination module on the next level. The final
result of this level consists of an Elementary Operation (EO) and the objects
to be manipulated with the manipulation-relevant information such as type,
position/orientation, colour, pose (standing, lying, ...).

An EO is defined in our system as the an operation which does not need any
further action planning. Typical EOs are: grasp, place, insert in, put on, screw,
regrasp, alignment (for an illustration of them see Fig. 6 below).



3.2 Scheduling Level

On the scheduling level, an assembly task of the toy aircraft, or an aggregate
of which, is decomposed into a sequence of primitive robot operations. The
final decision about the motion sequence depends on the instructions of the
human user as well as the generated plan. The coordination module should
not only be able to understand the human instructions, but also to learn from
the human guidance and improve its planning abilities gradually.

The coordination module on the scheduling level receives an EO from the cog-
nition level. By referencing the robot/assembly state, the coordination module
chooses the corresponding basic primitive sequence for the operation. This se-
quence is a script of basic primitives for implementing the given EO. The task
here includes planning of the necessary trajectories, choosing the right robot
or robots and basic exception handling. The screw operation, for example, is
based on the following (simplified) script:

(1) Find contact between screw and nut.
(2) Find the thread and insert the screw.
(3) Find the notch point.

(4) Screw in.

Other sample primitives are: Find the hole in a ledge; Adjust hand; Close hand,
Get location; Move to location.

Sequences are executed by the interpreter, which activates different skills on
the next level, execution. The interpreter also receives an event report that
is generated by the execution level. If the event is a failure detection, the
interpreter has to handle this exception and to inform the monitoring module.
The monitoring module updates the robot/assembly state. If it is found that
the robot agent can re-do the operation, the coordination module will try
again. Otherwise, the monitoring module asks the human communicator how
to handle the exception and waits for an instruction. After the execution of
each operation, the world model is updated.

If the operation is a simple intervention instruction such as “stop!”, it is di-
rectly forwarded to the interpreter and activates the corresponding motion
command.

3.8 Execution Level

The interpreter on the scheduling level uses the assembly skills provided by
the execution level to perform a sequence. In our approach a skill is a powerful



command (a sequence of robot actions). The complexity of the skills can range
from opening the hand to collision-free control of the two arms to the meeting
point. Advanced skills are composed of one or more basic skills. Generally, we
classify three different kinds of skills:

Motoric skills: Motoric skills are single robot movements, which are pro-
vided by most commercial robots. Some examples are: Open and Close
gripper; Drive joint to; Drive arm to; Rotate gripper; Move arm in approach
direction; Move camera.

Sensor skills: A sensor skill takes one or more sensors and generates useful
information for the scheduling level or other sensorimotor skills. These skills
are divided into two groups: skills with real-time sensing (force control and
visual servoing) and skills that use sensors in a non real-time environment.
Typical sensor skills are: Get joint; Get position in world; Get force in ap-
proach direction; Get torques; Check if a specific position is reachable; Take
a camera picture; Detect object; Detect moving robot; Track an object.

Sensorimotor skills: A sensorimotor skill is an encapsulation of sensing
(processing of sensor feedback) and action (trajectories). The main types
of force-sensor based skills can be: Force-guarded motion; Force-supervised
contact finding; Force-controlled rotation; Force-balanced two-arm carrying;
Maintaining force along a motion on a surface.

Vision-based motion skills are: Vision-guided gross movement to a goal po-
sition; Visual servoing of the gripper to optimal grasping position; Appearance-
based fine positioning; etc.

Events: The skills on the highest level can also signal an event to the coor-
dination level. These events can be for example: A force exceeds a defined
threshold; A camera detects no object; Singularity; Collision; etc.

4 OPERA — The Development Framework

OPERA is a framework and programming environment for integrating various
software modules. This environment facilitates the programming of reusable
software modules and allows the composition of sequences based on these
modules. It is an engineering tool as well as the realisation of powerful sensor-
based task-oriented operations.

4.1 Architecture of OPERA

OPERA features are:

e Complete hiding of the robot command language and support of human
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Fig. 4. Architecture of OPERA.

comprehensible commands.

e Task-oriented programming with sensor-based operations.

e A combination of programming, testing and runtime environment with a
graphical user interface for easy programming (without compile cycles),
testing and sensor monitoring.

e A clear and comprehensible interface for programming with as few restric-
tions as possible to make changes/enhancements of skills or their parame-

ters.

e An object-oriented design for simple reuse of code.
e A single interface for all robot models.

e Mechanisms to reorder the control flow without direct human interaction.
e A large set of predefined skills.

4.2 Architecture Description

The architecture of OPERA (Fig. 4) is divided into three main parts: modules,
robot control, and programming and working environment.

Modules: The functionality of OPERA is based on modules. Each module
represents a single operation which adds to OPERA’s functionality. A mod-
ule is loaded on demand and the whole environment has access to this
module. All other parts of the system, i.e. other modules, can use the new
functionality. The functionality of a module need not be a skill of a robot,
it can also be an operation of another part of the assembly system. The
combination of a module and a parameter-set for this module is called a



command. The concept is to implement sensor-based operations as mod-

ules, and task-oriented operations as sequences of commands. At presence,

OPERA supports the following types of modules:

Interactive modules provide the methods described above. All robot skills
are implemented with this type.

Run modules are called when they are loaded. These types of modules are
used to enhance the GUI or to monitor sensor values.

Ezception modules handle a predefined exception and are called when this
exception is “thrown” by another module. Exceptions can be interven-
tions from the HC, errors from the robot or the notification that there
is a special situation during an assembly operation.

Robot modules provide the interface to the robots.

Robot control: The interface to the robots is realised through an abstract
robot class. The methods of this class are low-level robots commands like
move to as well as higher level commands like compliant motion. Through
this class, we completely hide the real interface to the robots and can control
various robots. Additionally, there is an abstraction from reality possible in
that the robot class need not represent a real robot. The class can also be
a virtual robot, which in reality is an agent system with the functionality
realised by two or more real robots. This robot class contains methods from
simple absolute or tool oriented (e.g. “move in normal direction”) to force
controlled (screwing [8]) movements.

Programming and working environment: This part is the user interface
of OPERA and contains the following components:

Blackboard: Global information is stored on a blackboard. Each module
can load from or store data on the blackboard under a specific name.
Information stored on this blackboard can be displayed interactively.
The blackboard is used for information which must be shared between
several modules (e.g. world model, robot position, robot state).

Sequence Interpreter: Modules can be composed of a sequence of commands,
which are executed by the sequence interpreter. These sequences can be
stored, loaded and run. To compose a sequence, the user chooses the
needed modules step by step and edits the parameter set. Due to the
pre-initialisation of the parameter classes, the user need not know the
possible command settings. Loops and conditions are provided. It is
also a powerful tool for testing.

User interface: The environment provides the input/output facilities for the
whole system (see Fig. 5).

4.8  Application of OPERA

The various skills on the ezecution level are realised through modules. Through
the facility of inter-module calls the hierarchy of the skills can be mapped di-
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rectly into programs. The scheduling level is a combination of the blackboard
and the sequence interpreter. The robot and assembly states are stored on
the blackboard for global access. After choosing the right sequence of basic
primitives the interpreter executes the corresponding script, which is a se-
quence of commands. If an event occurs on the ezecution level, the interpreter
is interrupted and the responsible event-module is called, which handles the
exception. An event from the HC, such as “stop”, is forwarded directly to the
interpreter and the robot control to stop the current motion as quickly as pos-
sible. Additionally an event is thrown to handle this situation with a special
sequence or module. Altogether, the system has a set of sensor-based robot

commands and can implement many assembly tasks with just a few advanced
operations.

5 Learning Assembly Skills

In section 3.1 we summarised some typical EOs. The robustness of these op-
erations mainly depends on the quality of the different skills.
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(d) Put a part in (e) Screw (f) Alignment

Fig. 6. Examples of Elementary Operations.

5.1 Learning by Practising — an Approach for Acquiring Skills

Up to now, several sensor-based skills have been acquired with an automatic
learning method. We view the problem of skill learning as finding an opti-
mal mapping function from sensor pattern to robot motion. Since in most
cases such a direct mapping function is non-linear, we adopt an adaptive B-
spline model for the learning process [10]. For vision-guided fine-motion, the
appearance-based approach by using dimension reduction with PCA (principal
component analysis) was proposed in [9].

5.2 Grasping

To grasp an object at an arbitrary position and orientation, the main sen-
sor data come from a vision system. The important vision-based skills are
multicamera-guided gross motion [5] and optimal grasping using a hand-eye
system [4].
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5.3 Finding a Hole

A frequent operation for connecting parts is screwing. This simple operation
may fail if the exact position of the hole is unknown. Fig. 6(d) shows a typical
situation. To find the hole, we developed an approach using visual learning [8].
Fig. 7 shows the visually guided position correction with the learned controller.

Fig. 7. Correction sequence guided by a hand-camera.

5.4 Screwing

Screwing with two arms is a frequently used operation in our assembly sce-
nario. In order to realise the skills for screwing under diverse uncertainties, we
proposed an on-line reinforcement learning method in [12]. After repeatedly
practising a specified skill in the real world, a controller can find the optimal
compliance parameter by itself.

5.5 Assembly of the “Elevator Control” and the “Fuselage”

The assembly of the first aggregate, the “elevator control” (Fig. 8(a)) and
the “fuselage” (Fig. 8(b)) of the Baufix toy aircraft, has been successfully
performed under a subset of natural language instructions, [1,11].

6 Future Work

Future work on the development of the communicative situated robot agent
can be summarised as follows:

Scaling the robot skills to 3D aggregates: The complex manipulation tasks
cannot succeed until multiple sensors are applied simultaneously. To enhance

13



(a) The “elevator control” (b) The “fuselage”

Fig. 8. Two aggregates made by our interactive assembly system.

the robustness, a manipulation skill should be applicable to similar but var-
ied geometry, colour or illumination conditions. Neuro-fuzzy approaches are
promising for skill adaptation and skill transfer.

Learning an assembly sequence: In the current implementation, no plan-
ning module has been integrated yet. In the future, the robot agent should
not always need to be told the explicit assembly sequence. We will investi-
gate how the robot can learn from the assembly sequences it has carried out
and plan subgoals by itself. The robot should be able to differentiate between
meaningful long-term memory and state-recording short-term memory. The
functional modules in our future architecture will be more closely coupled
than the case at the moment.

Planning: The robot can show more assembly intelligence if it can not only
generate action sequences based on memory but also plan robot-independent
assembly steps by using structural models, disassembly knowledge or by
reading illustrated instructions. Furthermore, scheduling of multiple robots
for an EO needs planning skills for resource management. Planning collision-
free motion for uncalibrated multiple arms to a meeting point will need
the integration of geometry-based path planning and vision-based on-line
control capability.

Comprehensive human-robot communication: Real understanding of nat-
ural continuous speech of human involves various aspects of psycholinguis-
tics, dynamic naming, dynamic knowledge representation, etc. Other types
of human perception such as gesture recognition, intention detection by ob-
serving motion sequence will help the robot disambiguate both in the speech
and visual recognition domain. The results of the parallel research work in
the framework of the SFB 360 will be further integrated into our architec-
ture. More comprehensive situated dialogues will be performed between our
robot agent and the human communicator.
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