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Abstract

To enable a two-arm manipulator system to perform
complex cooperating tasks such as carrying a rigid object,
establishing a contact to a surface, grinding, etc., a non-
linear multiple input system should be solved. We apply an
approach to on-line automatic learning of a B-spline fuzzy
controller. This controller model directly connects the sen-
sor inputs to the compensation motion. By using the adap-
tation of control actions in all possible situations through
practising of the robots in the real environment, uncertain-
ties of the robot-object model can be taken into account.
The compliant motion controller of the robot system can
be adapted to new situations in a short time thanks to the
on-line learning approach.

1 Introduction

This work discusses the problem of automatic learning
of a controller which guides the motion of one robot arm to
cooperate with the other one based on the wrist-mounted
force/torque sensor. Examination of this problem is mo-
tivated by applications such as transport of objects with
large size or heavy weight, and assembly of these objects.
The motion of the robots must be controlled so that neither
the objects nor the robots are damaged. For example, in
the two-arm transportation task, the measured forces and
torques on the two manipulator wrists should be kept as
small as possible, and in a two-arm grinding task, be kept
at a certain desired value.

A lot of research work on this problem employed the
approach of modelling the manipulator dynamics and com-
puting torques, e.g. [7]. If the dynamic model of a ma-
nipulator isa priori known, such an approach supplies an
explicit physical interpretation of the motion-force process
in form of differential equations. Therefore, stability of
such a control system can be analysed. Unfortunately, for
compliant motion control using industrial robots, neither
the parameters in the dynamic model of the robot is avail-

able nor is there a possibility to access the joint controller
directly.

Another important approach is the active1 two-arm co-
ordination based on forces and torques measured in the
Cartesian space, e.g. [8, 1]. The compliant motion is re-
alised by adjusting the stiffness of the controller using any
type of PID control, the second-order low pass filter algo-
rithm, or in frequency area. Since there are numerous un-
certainties in a real robot model, like backlash, object inter-
nal tension forces, the imprecise modelling of real inertia
parameters, etc., it is desirable that the stiffness of sucha
compliant motion controller can be automatically adapted
to different robots, objects and manipulation tasks.

Robot learning aims at generating robot software in an
evolutionary way. Recently, some work using learning has
been reported. Off-line supervised learning [4] must utilise
data from human demonstration, and it cannot be guaran-
teed that the optimal controller is trained even if the hu-
man instructor demonstrated his best skills. On-line learn-
ing does not need the extra training phase anymore. [5]
discussed the training of a fuzzy-neural controller for posi-
tion/force control through back-propagationand gave some
simulation results. To train a controller for contour track-
ing based on force feedback, [6] used a neural network
method. Reinforcement learning was applied in one-arm
pendulum swing-up problem [3].

In this paper we present a practical approach for learn-
ing the nonlinear relation of the forces/torques and the
compliant motion in the Cartesian space. For this pur-
pose, the B-spline model [9] is employed, which can be
classified into a neuro-fuzzy method. Its basic idea of par-
titioning input space with overlapping functions coincides
with the CMAC [2] principle. Our early experiments with
the B-spline model on numerous benchmark problems of
modelling and also in mobile robot behaviour learning [10]
have shown the good modelling capability of nonlinear re-
lations, smooth output and rapid convergence of learning.
In this work, the principle of B-spline controllers is applied
to the learning of compliant motion. Our experiments with

1In comparison with the passive approach with a RCC device.



real robot systems show their suitability in typical two-arm
coordination tasks.

2 System and Problem Description

We use two PUMA 260 industry manipulators hanging
faced down (Fig. 1). Each manipulator is equipped with
a force/torque sensor (type JR3 67M25A) that is mounted
between the last (sixth) joint and a pneumatic two-finger
gripper.

Figure 1: The two Robots holding a rigid object with two
parallel jaw-grippers.

2.1 Motion in Closed Kinematic Chain

The basic idea of moving the rigid object itself instead
of each robot arm is to put both manipulators in a single
kinematic chain which meets the demand of force control.
When moving the object through the space without com-
pensation, both manipulators make different position errors
which are caused by the joint controllers and the piecewise
trajectory generation. Therefore, undesirable forces and
torques can be measured as shown in Fig. 3. These forces
and torques are to be minimised.

2.2 Compliant Motion

We adopt the principle of compliant motion which
makes the manipulators behave similarly to an ideal spring.
Whens is a displacement andC is a spring constant, the
force that is exerted on a body is given by Hook’s law:F = �C � s:(2.1)

The minus sign shows that the force tends to move the body
back towards the equilibrium position ats = 0. For more
dimensions (forces and torques) the following compliance
function can be defined:�d~x(t)d~�(t)� = C � ~f(t)~m(t)�(2.2)

WhereC takes the part of the spring constant. It is a6� 6
matrix expressing the programmed compliances in a spe-
cial coordinate frame.
Let the robot position with respect to the base frameB be~x(t). It can be modified byd~x as follows:~x(t+ 1) = ~x(t) + d~x(t):(2.3)

The orientation expressed in the base frameB isR(t) and
has to be modified:R(t+ 1) = Rd~�(t)R(t);(2.4)

with Rd~�(t) = Rot(ẑB; �z(t))Rot(ŷB ; �y(t))Rot(x̂B ; �x(t))
andd~�(t) = (�x(t); �y(t); �z(t))T . More details can be
found in [8].

3 Fuzzy Control Based on B-Spline Model

The components of theC - matrix are unknown and can
vary with the robots position and orientation as well as
with the environment. Therefore, it is desirable that the
nonlinear stiffness parameters can be automatically deter-
mined by the controller itself. In the following we briefly
show that a B-spline fuzzy controller provides an appropri-
ate model.

In a B-spline fuzzy controller, the membership func-
tions are B-spline basis functions. Details can be found in
[9]. B-splines of low orders can be represented explicitly
instead of recursively, which allows a much faster calcula-
tion. In this work, we employ B-spline basis functions of
third order since a). they allow a good balance between cal-
culation speed and smoothness; and b). sufficient locality
enables the convergence of learning.

3.1 Convergence of Learning

There are some properties such as “partition of unity”,
“local support” of the B-spline model that bring the rapid
convergence for supervised learning. A general multiple-
input B-spline fuzzy controller can be explicitly repre-
sented as:y(*x ) = m1Xi1=0 � � � mqXiq=0 di1:::iq qYj=1Nnjij (xj)(3.1)

wherexj is the j-th component of
*x .

In a B-spline fuzzy controller, there is one control vertex
for each rule, which fires to a grade

Qqj=1Nnjij (xj).
For an input vector~x, if the desired outputyd is known,

the learning function by using gradient descent based on
the quadratic error functionE = 12 (yr � yd)2 (yr is the



real output value of the current trained controller) can be
derived:di1;i2;:::;iq (t+ 1) = di1 ;i2;:::;iq (t) + �di1 ;i2;:::;iq (t)(3.2)

where �di1;i2;:::;iq (t) = �� @E@di1;i2;:::;iq (t)(3.3) = � (yr � yd) qYj=1Nnjij (xj);
with the learning rate0 < � � 1:

In [9] we showed that the error functionE is a convex
function for a certain partition of input space. Therefore,
the learning of control vertices converges rapidly.

3.2 Rapid Reinforcement Learning

A general unsupervised learning method for multiple-
input–single-output system was presented in [10]. Assume
that theZ-component of the translational part of one of the
manipulators is to be controlled. To design this controller,
the desired output for a given input vector is unknown.
However, it can be assumed from Eqn. (2.1) that the differ-
ence(yr � yd) is somehow proportional to(Fz;r � Fz;d),
the difference between the real and desired force. If such
a physical model is embedded in the learning process, the
adaptation of control vertices, which is normally a rein-
forcement learning problem, becomes much simpler.

To initialise the control vertices, the expert’s estimation
values can be set if they are available. Otherwise, all con-
trol vertices are initialised with zero. In every control cy-
cle2, the output is added to theZ-component of the trans-
lational part of the corresponding transformation. By us-
ing the feedback information from the measured resulting
forces, the control vertices can be improved to get a bet-
ter result in the next control cycle. The modification of a
control vertex is a slight variance from Eqn. (3.3):�di1 ;i2;:::;in(t� 1) = � (Fz;r(t) � Fz;d) �(3.4) qYj=1Nnjij (xj(t� 1)); with 0 < � � 1:
BecauseFz;r(t) is a result of the controller’s behaviour in
the last control cycle (if there is no delay), the vertices of
the last instead of the current cycle are modified. There-
fore, the input values of the last control cycle are used.

2The control cycle for both robots is 20 ms in our experiment.

4 Implementation Issues

4.1 Inputs/Outputs for Compliant Control

Assume that the two robots should carry a rigid object
together along a specified trajectory. For such a task we
adopt the strategy that both robots are controlled. We de-
sign four controllers for each robot: tool-X , Y andZ di-
rection and the rotation around theapproach vector of the
tool coordinate. Since the rotations around toolX- andY -
axes play a secondary role in tasks we investigated, they are
neglected to reduce computation burden in a time-critical
control cycle.

After experimental factor analysis, the first three inputs
of each controller are selected as the related force, torque
and the distance between robot shoulder and wrist. The
third input can be viewed as an estimation of the moment
of inertia which results in different compliant parameters.
These inputs are modelled with B-spline basis functions of
the third order (Fig. 2) which enables the continuity of the
second differentiation of each controller output and can be
evaluated within a relatively short computation time. The
knots near the zero areas are selected with a rather small
distances so that the slight forces can be considered in a
finer resolution.
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Figure 2: Partitioning the force input with B-spline basis
functions of order three for the translationalZ controller.

4.2 Anti-Drift Solution for Two Robots

For contact motions, both of the robots should be con-
trolled because not only the internal forces between the ma-
nipulators are to be minimised but also the contact forces
must be maintained.

Such a controller will have an unpleasing drift effect
which is a result of the slightly different calibration. While
sensorA detects no force, sensorB might measure a small
value. The corresponding robotB will make a little po-
sition correction to reach the desired force, which exerts
a small force on sensorA. If such an effect continues to
exist, both robots may drift from the desired trajectory.

One solution is to limit the value of the integrated con-
troller output. This means that the robots are allowed to



leave the desired trajectory, but only in a certain small
range that is just as much as needed for the internal force
minimisation. For this purpose, we introduce another feed-
back to the cost function for learning, i.e. the drift from the
desired trajectory. We suggest the following learning func-
tion: �di1;i2;:::;in(t� 1) =� �Fz;r(t) � Fz;d + �
 � z(t)3�� �(4.1) qYj=1Nnjij (xj(t� 1))

with 0 < � � 1:
If the manipulator is near the desired trajectory,z(t) is

very small and the linear part (Fz;r(t)�Fz;d) plays the major
role in modifying the control vertices. If the manipulator
drifts away from the desired trajectory,z(t) increases and
the exponential part (
 � z(t)3) becomes more and more
significant. 
 can be used to adjust the effect of the ex-
ponential part for different drift allowances. The variablesz(t) as well asx(t); y(t) are used as the fourth input of
each controller respectively.

4.3 Repeatedly Practising

Generally, the learning process is performed in the fol-
lowing sequence:

1. Read the input values for the B-spline fuzzy con-
trollers.

2. Calculate the controllers output and updating theSENSOR transformation.

3. Store the input valuesxj(t) of the current step in a
ring buffer.

4. Modify the control vertices as described in (4.1).

This sequence is repeated in every control cycle until
a task is finished. The modified control vertices are used
immediately in the next control cycle. The learning proce-
dure for one complete task is called apractice step, which
should be repeated several times so that for the same task
the control vertices are adjusted optimally. Our experi-
ments show that the learning rate� directly influences the
convergence speed. If� is selected too small, the learning
process needs a large amount of time. If� is too large, the
learning procedure can cause oscillation. Our experience
of selecting� is that starting with an initial value, e.g. 0.01,� is divided by two or more after a fewpractice steps. A
minimum value of� has to be set, e.g. 0.001 in our experi-
ment.

5 Experimental Results

In our early work we tested the on-line learning ap-
proach on a one-arm screwing problem, [11]. In the fol-
lowing, we briefly present the results of several typical ex-
periments: a) Two-arm transport of a rigid object; b) Two-
arm grinding; c) Two-arm peg-in-hole.

5.1 Two-Arm Motion in Closed Kinematic Chain

The first task is the transport of a wooden ledge with
the two robots (Fig. 1). Fig. 3 shows a clear comparison of
controlled and uncontrolled motion.
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Figure 3: A comparison of the resulting force (a) inY -
direction (approach vector) and (b) inZ-direction.

Fig. 4(a) shows that the mean-squared (MS) force error
converges. Fig. 4(b) visualises the control surface, the rela-
tion between the correction motion inX-direction and two
inputs while keeping the other two inputs constant.
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Figure 4: Visualisation of the learning results. (a) Average
MS force error of one robot with respect to thepractice
step; (b) The control surface of the compliant controller inX-direction.

5.2 Grinding Motion

The robots are also applied to some contact motions in
which the ledge is moved along a metal bar while main-



taining a certain contact force (Fig. 5(a) and (b)). Fig. 5(c)
presents the results after severalpractice steps. The force
profiles depicted in this figure can be interpreted as four
phases. The first one takes about 6 seconds and was logged
while the ledge is approaching the bar. The peak of about
-23 N indicates that the ledge establishes contact with the
bar. It is caused by the control cycle rate of 20 ms and
another 20 ms delay. It is noticeable that there is no over-
shooting reaction after the peak. During the next 7 to 8
seconds, the ledge is moved along the bar with a given
contact force of -5 N. When the ledge is pulled off the bar
and moved back to the starting position, the force inZ-
direction resumes the value of zero. The small but constant
force under contact inX-direction originates from the fric-
tion caused by the motion.
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Figure 5: Moving a wooden ledge along a metal bar. Dur-
ing the contact situation the desired force inZ-direction
is �5 N. (a) The global view; (b) The local view; (c) The
resulting forces.

5.3 Searching a Hole

The ledge of the last experiments has a hole. Our next
experiment is an operation of putting the hole of the ledge
onto a bolt (Fig. 6(a)). The operation was splitted into
three phases that are characterised by the force profiles in
Fig. 6(b). The first phase[0; 7s] is the approach motion that
finished with the contact between ledge and bolt, which can

be recognised by the peak. It is followed by a spiral search
phase[7s; 14s] to find the bolt. When the desired contact
force (�3:5 N in our experiment) shrinks to zero, it is as-
sumed that the hole has been found and the ledge can be
sticked on the bolt (the third phase up 17 sec.). Here the
termination condition is very critical since the contact be-
tween ledge and bolt should not be lost.
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Figure 6: Searching for a hole with two arms. (a) A local
top view of the experiment system; (b) The resulting forces
in Z-direction.

Fig. 7 demonstrates another successful experiment: the
two arms carry the ledge with a fastened block, insert it
onto a tight slot, then push it along the slot.

(a) (b)

(c) (d)

Figure 7: Insertion and push with tight tolerance. (a) Es-
tablishing contact; (b) Insert into a tight slot; (c) and (d)
Push along the slot.



6 Discussion

[Learning Speed.] In the compliant motion, the error
function is approximately proportional to the change of the
controller output. Thanks to the local properties of the B-
spline model, the learning process converges very rapidly.
If such a condition is not fulfilled, test motions must be in-
troduced. Generally speaking, the number of the test mo-
tions is3s, wheres is the number of outputs, since for each
output, three states(+; 0;�) should be tested. In fact, we
applied such an approach to the same learning problem,
but the learning time is significantly increased. As a con-
clusion, it can be summarised that if parts of the physical
models are available, embedding it in the evaluation (fit-
ness) function can accelerate the learning.

[Generalisation.] The local support property of the B-
spline model brings rapid convergence of the learning, but
also the disadvantage of weak generalisation ability. That
demands a sufficient training data set in case of supervised
learning. Fortunately in our on-line learning, the training
data are generated in every control cycle. After repeated
practices, almost all the typical “situations” constructed by
the input forces/torques are experienced by the controller,
and the appropriate control action can be learned. In princi-
ple, the robots learn lifelong. Obviously, the generalisation
of one control skill to another task may be possible if sym-
bolic rules are extracted from the B-spline fuzzy model.
That will be one of our major future work.

[Direct Mapping.] This training task can also be re-
alised by an adaptive PID controller to deal with the non-
linearity of the stiffness parameters. However, our ap-
proach provides a model which maps the inputs (forces
and torques) directly onto the outputs (the compensation
motions). Such a model can be interpreted with linguistic
rules which better reflects human intuitive knowledge.

[Adaptive Model.] Another advantage of this approach
it that with the help of the robot’s self-practise in the real-
environment where it will experience, a good controller
can always be found for a specified task. Uncertainties in
the robots and the manipulated object can be taken into ac-
count in the input–output B-spline model.
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