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Abstract

In this paper we present an approach to designing a novel type of fuzzy controller. B-spline
basis functions are used for input variables and fuzzy singletons for output variables to specify
linguistic terms. “Product” is chosen as the fuzzy conjunction, and “centroid” as the defuzzifica-
tion method. By appropriately designing the rule base, a fuzzy controller can be interpreted as a
B-spline interpolator. Such a fuzzy controller may learn to approximate any known data sequences
and to minimise a certain cost function. By choosing such a function appropriately, the learning
process can be made to converge rapidly. We applied this approach to the problems of function
approximation and both supervised and unsupervised learning of mobile robots. Experiments
validate the advantages of this approach.

Introduction

Recently, fuzzy logic control (FLC) has been successfully applied to a wide range of control problems
and has demonstrated some advantages, e.g., in efficiency of developing control software, appropriate
processing of imprecise sensor data, and real-time requirements [10, 13]. However, as pointed out in [3],
one obstacle to wide acceptance in industrial applications is that “it is still not clear how membership
functions, defuzzification procedures, domain discretization, and normalization coefficients contribute,
either in combination or as stand-alone factors, to the performance of the FLC.” Two important related
issues are:

Quality of fuzzy controllers. In practical applications, the smoothness of the controller output is

one of the most important design requirements. Generally, the smoothness can be measured by
how many times an output variable can be differentiated with respect to the input variables. The
smoothness criterion is applied to the control of very complex systems, such as the speed control
of automated trains, as well as to simple actuators like electrical motors, whose life expectancy
depends directly on the smoothness of the controller output. Unfortunately, in general cases, a
high degree of smoothness cannot be guaranteed and is frequently hard to determine for a given
controller.

Guidelines for choosing membership functions. Up to now, there exist no convincing guidelines

for the successful design of fuzzy controllers. This pertains in particular to the choice of a
concrete membership function. In various fuzzy control applications, membership functions of
triangular or trapezoidal shape are utilised because of the simplicity of specification and the
satisfying results. But the question still remains: Can the control performance be improved by
choosing a certain set of membership functions?



These two issues can be addressed by comparing B-spline models with a standard fuzzy logic con-
troller. In our previous work [14], we compared splines and a fuzzy controller with single-input—
single-output (SISO) structures. In this paper, the multi-input-single-output (MISO)! controller is
considered. Periodical nonuniform B-spline basis functions are interpreted as membership functions
(MFs). Furthermore, aspects of function approximation and learning control of mobile robots are
discussed.

2 Some Previous Work

2.1 Advances in Fuzzy Control

Several authors have shown that fuzzy controllers are universal approximators. Wang [11] presents
a universal approximator by using Gaussian membership functions, product fuzzy conjunction and
“centroid”? defuzzification. Buckley [2] has shown that input-output fuzzy controllers are universal
approximators. Kosko and Dickerson [6] proved that an additive fuzzy system uniformly approximates
f: X =Y if X is compact and f is continuous.

Two successful applications in commercial controller and process control are given in [13], one is the
OMRON temperature controller, the other is a gas-fired water heater. The membership functions are
selected as triangles and each pair overlaps. Can these be generalised as design rules? The work in [7]
shows that triangular membership functions with a 1/2 overlap level produce a reconstruction error
of zero. Further questions are: Are there other forms of suitable membership functions? Should the
overlap of the fuzzy sets for linguistic terms meet certain constraints?

2.2 Popularity of B-Splines

To solve the problem of numerical approximation for smoothing statistical data, “basis splines” (B-
Splines) were introduced by Schoenberg [9]. B-splines were used later by Riesenfeld [8] and Gordon [4]
in Computer Aided Geometric Design (CAGD) for curve and surface representation. Because of their
versatility based on only low-order polynomials and their straightforward computation, B-splines have
become more and more popular. Nowadays, B-spline techniques represent one of the most important
trends in CAD/CAM; they have been extensively applied in modelling free shape curves and surfaces.
Recently, splines have also been proposed for neural network modelling and control [1, 12].

Although fuzzy techniques lend themselves to on-line control and B-splines have been used mainly in
off-line modelling, some interesting common points can still be found. In our previous paper [14] we
pointed out that B-spline basis functions and parametric membership functions of a linguistic variable
are both convex, overlapping set functions. Splines and fuzzy controllers possess good interpolation
features. The synthesis of a smooth curve with spline functions can easily be associated with the
defuzzification process. These points are the main motivation for our work on utilising B-splines to
design fuzzy controllers.

3 Construction Principles

We consider the membership functions that are used in the context of specifying linguistic terms
(“values” or “labels”) of input variables of a fuzzy controller. In the following, basis functions of
periodical Nonuniform B-Splines (NUBS) are summarised and compared with a fuzzy controller. We
also use B-functions for the NUBS basis functions.

LA multi-input-multi-output (MIMO) rule base is normally divided into several MISO rule bases.
2Synonyms: Takagi-Sugeno IDM (inference and defuzzification method), Tsukamoto-method, “weighted-mean.”



3.1 B-Spline Basis Functions Defined on a Single Variable

Assume z is a general input variable of a control system that is defined on the universe of discourse
[0, zm].- Given a sequence of ordered parameters (knots): (xg,z1,22,...,Zm), the ith normalised
B-spline basis function (B-function) N; j of order k is defined as

1 forz; <z <zip1 k=1
N i (z) 0 otherwise B

T—z; Ni7k—1(w) + ﬁ#Ni—i—l,k—l(:ﬂ) if k>1

Tith—1—T; itk —Tit1

withi =0,1,...,m — k.

The important properties of B-functions are

Partition of unity: Sty Nik(z) =

Positivity: N,, (z) > 0.

Local support: ik(z) =0 for x & [z, iy

C*=2 continuity: If the knots {z;} are pairwise different from each other, then N;(x) €

C*=2 ie., Nix(z) is (k — 2) times continuously differentiable.

3.2 Membership Functions of B-Function Type

The B-functions are employed to specify the linguistic terms, and knots are chosen to be different from
each other (periodical model). Visually, the selection of k (the order of the B-functions) determines
the following factors of the fuzzy sets for modelling the linguistic terms (Table 1). In this table, the
width of a fuzzy set is measured by the number of knot intervals and the overlap degree by how many
fuzzy sets are defined on each knot interval.

Order k 1 2 3 4
Degree 0 1 2 3

Shape Rectangular | Triangular | Quadratic Cubic
Fig. 1(a) Fig. 1(b) Fig. 1(c) | Fig. 1(d)

Width 1 2 3 4
Overlap 1 2 3 4

Table 1: The visual effect of fuzzy sets depends mainly on the order of the B-functions.

3.3 Real and Virtual Linguistic Terms

It is assumed that linguistic terms are to be defined over [zg, zy,], the universe of an input variable
z of a fuzzy controller. They are referred to as real linguistic terms. To maintain the “partition of
unity” for all € [zg, z;,], more B-functions should be added at both ends of [zg,x,,]. They are
called marginal B-functions, defining wvirtual linguistic terms. Real and virtual linguistic terms are
illustrated in Figure 2:

e In the case of order 2, no marginal B-function is needed (Fig. 2(a)).
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Figure 1: Fuzzy sets defined by B-spline basis functions of different orders.

e In the case of order 3 or 4, two marginal B-functions are needed, one for the left end and another
for the right end (Fig. 2(b), (c)).

e Generally, ((k+ 1) div 2) marginal B-functions are needed.

3.4 Core and Marginal Rules

We define the core rules as linguistic rules that use real linguistic terms. If virtual linguistic terms
appear in the premise, to maintain the output continuity at both ends of the universe of z, additional
rules are needed to describe the control action for these cases. Since these rules use the virtual
linguistic terms that are defined by membership functions neighbouring the ends of the universe of
each variable, they are called marginal rules. The output value of each marginal rule is selected just
as the output value of the nearest core rule, i.e., the rule using the directly adjacent linguistic terms

in its premise (Fig. 3).

3.5 A B-Spline Interpolator

Since a MIMO rule base is normally divided into several MISO rule bases, we consider only the MISO

case. Under the following conditions:

e Periodical B-spline basis functions as membership functions for inputs.
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Figure 2: Non-uniform B-functions of different orders defined for real and virtual linguistic terms by
the same knot vector (virtual linguistic terms: shaded).

e Fuzzy singletons as membership functions for outputs.

e “Product” as fuzzy conjunctions.

e “Centroid” as defuzzification method.

e Addition of virtual linguistic terms at both ends of each input variable.

e Extension of the rule base for the virtual linguistic terms by copying the output values of the

nearest neighbourhood.

the computation of the output of such a fuzzy controller is equivalent to that of a general B-spline
hypersurface. Generally, we consider a MISO system with n inputs x1,s,...,x,, rules with the n
conjunctive terms in the premise are given in the following form:

{Rule(ir,ia, .. .,in): IF (z1is N}, , ) and (z2is N7, ;) and ... and (z, is N , ) THEN yis Y4, 4, },

i i2,k2
where
e z;: the jth input (j =1,...,n).
o k;: the order of the B-spline basis functions used for z;.
) Nl] i,: the ith linguistic term of x; defined by B-spline basis functions.
RAAN]

e i; =0,...,mj, representing how fine the jth input is fuzzy partitioned.
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Figure 3: The outputs of the marginal rules are copied from that of the neighbouring core rules.

e Y i, i, the control vertex (deBoor points) of Rule(ii,ia,...,in)-

Then the output y of a MISO fuzzy controller is
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This is called a general NUBS hypersurface, which possesses the following properties:

e If the B-functions of order ki,ks,...,k, are employed to specify the linguistic terms of the
input variables z1, 2, ..., Ty, it can be guaranteed that the output variable y is (k; — 2) times
continuously differentiable with respect to the input variables z;,j =1,...,n.

e If the input space is partitioned fine enough and at the correct positions, the interpolation with

the B-spline hypersurface can reach a given precision.

If the order of the B-functions and the number of linguistic terms used in the premise are chosen, the
output of the fuzzy controller can be flexibly adapted to anticipated values by adjusting the positions
of the fuzzy singletons (control vertices) of the core rules.

3.6 Example of a SISO System

Assume that the input variable is z and y is the output variable. The input z is covered by the
B-functions N; . For specifying linguistic terms of y, the simple fuzzy singletons Y; are used.

The Core Rule Set (CRS) can be described as

CRS ={Rule(i): IF zis A, THEN yis Y; | i=0,...,m}



If virtual linguistic terms appear in the premise, to maintain the output continuity at both ends of
the real universe of discourse z, the Marginal Rule Set (MRS), which contains the left (right) virtual
linguistic terms may use the repeated output values Yy and Y,,. The whole rule set RS is then

RS =CRSUMRS.

We consider a core rule set of five rules: CRS = {IF z is A; THEN y is Y;,i = 1,...,5}, where the
universe of discourse of z is defined on [0,1] and Y7 to Y5 are fuzzy singletons with the following
values: 0.5, 1.0, 0.3, 0.55, 0.2.

(a) order 2 (b) order 3 (c) order 4

Figure 4: Membership functions used for the input variable z.

The linguistic terms used for input z are shown in Figure 4(a)-(c). For B-functions of order 3 and 4, one
virtual linguistic term is added at the left and one at the right end. If the two virtual linguistic terms
for the case of order 3 or 4 are denoted Ag and Ag, two marginal rules can be constructed by copying
the output values Y7 and Y5: MRS = {IF =z is Ag THEN yis Y;;IF zis A¢ THEN yis Y5}.

The trajectories of the output with respect to input are depicted in Figure 5(a)—(c). They are (a)
CP-continuous; (b) C*'-continuous; (¢) C2-continuous.

1 T T T T 09 T T T T 09
09 08 08
0.7 0.7
06 06
0.5 05
0.4 04
03 03
02 02 02

o1 0.2 0.4 0.6 08 01 0.2 0.4 06 08 o1 0.2 0.4 0.6 0.8

(a) order 2 (b) order 3 (c) order 4

Figure 5: Trajectory of the output y with respect to the input z.

3.7 Example of a MISO System

Two input variables z; and x» are covered by three real linguistic terms, represented by {4, A2, A3}
and {By, Bs, B3}, which denote “low,” “middle,” and “high,” respectively. A core rule set consisting of



nine rules is shown in Figure 6(a). For the output variable y, fuzzy singletons are defined to represent
“VL” (very low), “L” (low), “M” (middle), and “H” (high).

Ay, As, A3 and By, Bs, B; are defined with adjacent uniform B-functions of order 2, 3, and 4, similar
to Figure 4 (a)-(c). If B-functions of order 3 or 4 are used, one virtual linguistic term Ag (Bp) is
added left-adjacent to A; (B;), another A4 (By) is added right-adjacent to Az (Bs). Marginal rules

that have one of the terms Ag, A4, By and By in the premise are assigned the output singletons of the
nearest core rule (Fig. 6 (b)).
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(a) Core rule set for B-functions of order 2 As M M L vL | vL

(b) Core and marginal rule set for order 3 or 4

Figure 6: Rule bases for MF's of different orders.

The control surfaces describing the relation of y with z; and 2z, are shown in Figure 7(a), (b), (c).

The differentiability of the three cases is (a) y is continuous; (b) dy/0x; and Jy/Oz- are continuous;
(c) 8%y/0x? and &%y /Oz3 are continuous.
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Figure 7: The control surfaces of an example with 2 inputs (z1,22) / 1 output (y).

4 Application A: Supervised Learning

Supervised learning assumes that a “teacher” provides the complete desired system output for each
input datum. Based on the complete set of these input/output vectors, B-spline type fuzzy controllers
can be trained very rapidly. Computing parameters of such a B-spline fuzzy system is divided into
two steps: for the IF-part and for the THEN-part. Considering the granularity of the input space
and the maximum point distribution of the control space if known, the fuzzy sets can be generated by



using the recursive computation of B-spline basis functions. We developed an algorithm for adapting
the knots of the IF-part, which is a modified algorithm for self-organising neural networks. However,
if sufficient B-functions are used for the inputs, the local modification of the knots has only negligible
influence on the control surface. Therefore, in the following, we concentrate on the control vertices of
the THEN-part, which can be automatically achieved through a learning procedure.

4.1 Learning Algorithm
Assume that {(X, yq)} is a set of training data, where

e X = (x1,22,...,%p) : the input data vector.

e y4: the desired output for X.
The squared error is computed as

E = (yr - yd)2 (3)

DN | =

where y, is the current real output value during training.

The parameters to be found are Y;, ;. . which make the error in (3) as small as possible, i.e.,

Hin

1
E=(yr —ya)* = MIN @)

Each control vertex Y;, . ;. can be modified by using the gradient descent method:

n

OF
AYil,...,in = _GW (5)

reyin

—e(wr =) [[ N7, 1, (@) (6)

where € is the learning rate, 0 < e < 1.

The gradient descent method guarantees that the learning algorithm converges to the global minimum
of the error function because the second partial differentiation with respect to Y;, ;,....;, is constant:

n

O°E o
2y - ([T N/ 4, (@) >0 (7)

j=1

This means that the error function (3) is convex in the space Y;, i,
one (global) minimum.

and therefore possesses only

n
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4.2 Function Approximation
4.2.1 A One-Input—One-Output Controller

A function y = sin(2nz) is to be approximated with a fuzzy controller. Figure 8 depicts the mapping
of the input z to the output y, where x is covered with B-functions of order 3 and fuzzy singletons are
defined on y. The initial positions of the fuzzy singletons are arbitrarily chosen (e.g., as zero, see Fig.
8(a)). The output curve and the fuzzy singletons after the self-optimisation process are illustrated in
Figure 8(b).

Figure 9 show several intermediate steps during the optimisation. The RMSE (root squared mean
error) curves for the approximation are shown in Figure 10.

y=sin(2:xpi)
y=sin(2x*pi)
o

y=sin(2+xpi)
y=sin(2*x*pi)

(c) step 200 (d) step 500
Figure 9: Optimisation of positions of the fuzzy singletons defined on the output (e = 1).

4.2.2 An Example with Two Input Variables

A 2D example is implemented to approximate the function z = sin(27z) - cos(ry), where -1 <z <1
and 0 < y < 1. Figure 11(a) and (b) shows the membership functions defining the real and virtual
linguistic terms of z and y. The control surfaces in several intermediate steps of the optimisation can

be seen in Figure 12. Figure 13 illustrates the automatically generated control vertices. Figure 14
depicts the RSME curve.

4.2.3 Examples of ANFIS

The following examples were implemented (for details of these functions see [5]):

11
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Figure 11: B-functions as MF's for the input variables.

o fl@,y,2) = (142" +y=" +2719)%

o z(t+1) = sl +0.9x(t).

o Identifying a nonlinear component in a dynamic system: y(t+1) = 0.3y(t)+0.6y(t— 1) + f (u(t)),
where y(t) is the output of moment ¢ and u(t) is the input.

The implementations show that the B-spline fuzzy controllers can approximate all these functions to
a certain precision if the order of B-functions is suitably chosen and the partition of the input space
is fine enough. Generally, our approach needs less computation time than ANFIS.

4.3 Supervised Learning in Robotics

We successfully applied this approach to supervised learning to the “truck backer-upper” (see [11]) and
“inverse kinematics” problem in robotics. Figure 15 to Figure 17 show an example of the automatically
learned control space by achieving a “truck backer-upper” solution.

12



(c) step 200 (d) step 1000

Figure 12: The control surfaces during the optimisation.

The truck starts at an arbitrary position ((z,y) and ¢) and should be steered backward so as to reach
the goal position (z = 10,y) and ¢ = 90° (Fig. 15). Therefore, the fuzzy controller has two inputs,
0 <z <20 and —90° < ¢ < 270°, and one output, —40° < 6 < 40°.

The kinematics of the truck are known:

z(t+1) = z(t) + cos[p(t) + 0(t)] + sin [p(t)] sin [¢(t)]
y(t+1) = y(t) +sin[d(t) + 6(t)] — sin [p(t)] cos [p(¢)]
pt+1) = ¢(t) —sin™" {%mf(t»]

where b is the length of the truck.

In the following implementation, each input is covered with five B-functions of order three. Based
on the above kinematics description, we can prepare 14 “training trajectories.” Each trajectory
is a sequence of data vector (z'(t), y'(t), ¢*(t), 0*(t)), where t = 0,...,t%, .., which supplies one

control process to steer the truck from the start position (z*(0),3°(0),¢"(0)) to the goal position
(@ (tmaz) = 10,4 (bnge)s @' (tnas) = 90)-

We train the control vertices as follows:

13



kpo.dat — 'kp2000.dat’ —
kpo.dat o kp2000.dat’ o

Z=sin(pi*x/2)*cos(pi*y) 2Z=sin(pi*x/2)*cos(pi*y)

(a) The intial values (b) After 2000 learning steps

Figure 13: The control vertices Z;;

RMS error

0.001 L L L
1 10 100 1000
optimisation steps

Figure 14: The RMSE curve for approximation of z = sin(2rz) - cos(my).

For each trajectory i:
For each position at t = 1 to t=ti .-
Calculate (t) based on (z'(t), ¢'(t));
Modify the control vertices with the known value of 0% (t).

Figure 16 shows the control surface of this control problem. Figure 17 depicts two backward trajec-
tories from two different start posistions after learning.

5 Application B: Unsupervised Learning Control of a Mobile
Robot

The proposed learning approach was also applied to a real mobile robot system Khepera. Our earlier
work with Khepera was to use fuzzy control to integrate planning and control [15]. In the following, we
show how the control vertices of a fuzzy controller can be generated automatically through learning.

14
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Goal : x=10, ¢=90

Figure 15: The start and goal position of the truck.

5.1 Sensors and Control Variables

The robot perceives its environment with six infrared sensors, which can be grouped into three vari-
ables, SensL, SensF, and SensR. The original sensor values are from 0 to 1023. To reduce the uncer-
tainties, the range of the sensor values is scaled down to the interval [0, 100], using 5 as the increment,
i.e., the sensor values (controller inputs) are 0, 5, 10, ..., 90, 95, 100. All of these inputs are covered
with seven B-functions as linguistic terms. Since the robot is equipped with only limited on-board
computation capability, the order 2 of the basis functions was chosen so as to make real-time learning
possible.

The two wheels of the robot are controlled independently by two motors. The output of the controller
is the steering angle w. A positive value of w steers the robot to the right, and a negative value to
steer it to the left. The velocities of the two wheels can then be computed as

e For the left wheel: v + w

e For the right wheel: v — w

where v is the current front velocity of the robot (Fig. 18).

5.2 Modifying Control Vertices

In unsupervised learning, it is usually possible to define an “evaluation function” if the desired data
of the output are unknown. Such an evaluation function should describe how “good” the current
system state ((x1,%2,.-.,%n),y) is. For each input vector, an output is generated. With this output,
the system transits to another state. The new state is compared with the old one; an adaptation is
performed if necessary.

Assume that the evaluation function, denoted by F(+), is monotonic, i.e., if state A is better than B,
then F(A) > F(B). The adaptation of the control vertices can be performed with a representation
similar to that in supervised learning. Assume that the desired state is A4. Analogous to formula (6)
in Section 4.1, the change of control vertices can be written as

AYiy iy =S - € [F(B) = F(Ag)| - T] Nija, () (8)

15



270

Figure 16: Solution of the “truck backer-upper” problem: output # after learning (6§ was initialised as
zero for all inputs).

where

S = sign(F(A) = F(B)) - sign(F(B) = F(Aq)) - sign(y) 9)

represents the direction to modify the control vertex.

5.3 Learning to Avoid Obstacles

A test environment for collision avoidance is shown in Figure 19. Before trying to develop the eval-
uation function, we first discuss the situations that the robot should deal with and the evaluation
function:

e F(SensL,SensF,SensR) = —(SensL + SensF + SensR), if SensF is large (the robot should
then try to minimise the sum of all three sensor readings).

e F(SensL,SensF,SensR) = —|SensL — SensR)|, if SensF is small, SensL or SensR is not zero
(the robot should try to keep the difference of SensL. and SensR as small as possible).

e F(SensL,SensF,SensR) =0 (no obstacles present).
e Otherwise (no reasonable evaluation function can be found): simply turn left.
This evaluation function supplies a large negative value if the robot has reacted the wrong way; it is

positive if the robot steers correctly but with too small a steering angle. Figure 20 shows the learning
results after 1000 learning steps.

To demonstrate that the robot has learned correctly with the above approach, we perform the following
experiment. We change the roles of the wheels, i.e., we let the wheels be controlled by

e For the left wheel: v — w,

e For the right wheel: v + w.

The results we get are the inverted ones of Figure 20 — exactly what we expected.

16
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Figure 17: Two motion trajectories produced by the trained fuzzy controller.

5.4 Learning to Track Contours

In this mode of operation, the robot does not move away from an obstacle, but tries to “keep the
obstacle in the right eye.” The robot reacts only if it sees something in its “right eye” or in its “front
eye.” The evaluation function depends on the last and new sensor values as well:

e F(SensF,SensR) = (SensF + |SensR — 80|), if the robot sees something in the front or on
the right.

e Zero, otherwise.

SensL
left motor
front
\
I SensF
; /
-

right motor SensR

Figure 18: Sensors and motors of the Khepera robot.
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Figure 19: The robot and the obstacles in the environment.

After learning, the robot can track any contour of objects. The learning results of the control surface
are shown in Figgure 21.

6 Discussion and Conclusions
Some issues related to the construction procedures of a fuzzy controller are:

Computation of membership functions.
The B-functions are piecewise polynomials. Coefficients of nonuniform B-functions of any order
can be computed recursively. The solutions for lower order B-functions can be derived explicitly.
Therefore, they could easily be included in fuzzy development tools to facilitate the modelling
of membership functions of such types of controllers.

Choosing control vertices.

Note that the control vertices are only identical with the output values for interpolation if the
order k = 2 (this agrees with the conclusion in [7]). For k > 2, control vertices are points
near the interpolation point; they “control” the output curve to form a certain shape inside the
convex hull of them. The larger k is, the greater the difference between control vertices and
interpolation points. Normally, when rules are formulated using the “IF-THEN” convention,
the singleton values of the output are initialised qualitatively in a manner enabling the controller
to reach these values approximately; they can be optimised locally by fine-tuning.

Critera for selecting order k.
Obviously, if C*~2-continuity is necessary, the order of B-functions should be at least k. However,
too large a value of k leads to more marginal linguistic terms and thus more rules, as well as a
larger disparity of control vertices and data points. In most applications, C'- or C2-continuity
is sufficient. Then, B-functions of order 3 and 4 besides those of order 2 with triangular shape
could well be suitable for modelling membership functions.

Optimal Partitioning of the Input Space.
To convert a fuzzy system to a B-spline interpolator, it should first be answered how the knots
should be placed in the input space. An intuitive answer is to fix the knots where the output has
its extrema. If such information is available (e.g., by approximating an analytically representable
function), we can apply this principle to select the knots. If the output of a control system cannot
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Figure 20: The control surfaces after 1000 learning steps.

be analytically represented or be even unknown, we can adaptively compute the knots with an
approach similar to the optimisation of a self-organising neural network. In this way, the optimal
partitioning of the input space can be automatically achieved.

The transformation shown in Section 3 is conceptually important because it gprovides a construction
method for data approximation using fuzzy controllers. The advantage of the fuzzy control idea over
the pure B-spline interpolation lies mainly in its linguistic modelling ability: interpolation data can be
prepared by using natural language with the help of expert knowledge. Furthermore, the interpolation
procedure becomes transparent because it can also be interpreted in fuzzy logic “IF-THEN” form.

Experiments show the feasibility of such type of fuzzy controller, with B-functions as membership
functions of input variables, singletons as membership functions of output variables, “product” as
fuzzy conjunction, and centroid as defuzzification method. If the rule table is complete, then by
adding certain more marginal rules, smoothness of the controller output can be achieved by selecting
the proper order of B-functions. B-spline fuzzy controllers are exact in that no information is lost
after the defuzzification. Although the number of control vertices to be optimised can be quite large
in our approach, learning of such a fuzzy controller converges rapidly, especially for the supervised
learning due to the properties of local support and one-minimum of the error function. Therefore, the
computation time of the learning can be significantly reduced.
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Figure 21: The control surfaces for contour tracking.
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