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Abstract

In this paper we present an approach to designing a novel type of fuzzy controller� B�spline
basis functions are used for input variables and fuzzy singletons for output variables to specify
linguistic terms� �Product� is chosen as the fuzzy conjunction� and �centroid� as the defuzzi�ca�
tion method� By appropriately designing the rule base� a fuzzy controller can be interpreted as a
B�spline interpolator� Such a fuzzy controller may learn to approximate any known data sequences
and to minimise a certain cost function� By choosing such a function appropriately� the learning
process can be made to converge rapidly� We applied this approach to the problems of function
approximation and both supervised and unsupervised learning of mobile robots� Experiments
validate the advantages of this approach�

� Introduction

Recently� fuzzy logic control �FLC� has been successfully applied to a wide range of control problems
and has demonstrated some advantages� e�g�� in e�ciency of developing control software� appropriate
processing of imprecise sensor data� and real�time requirements �	
� 	��� However� as pointed out in ����
one obstacle to wide acceptance in industrial applications is that 
it is still not clear how membership
functions� defuzzi�cation procedures� domain discretization� and normalization coe�cients contribute�
either in combination or as stand�alone factors� to the performance of the FLC�� Two important related
issues are�

Quality of fuzzy controllers� In practical applications� the smoothness of the controller output is
one of the most important design requirements� Generally� the smoothness can be measured by
how many times an output variable can be di�erentiated with respect to the input variables� The
smoothness criterion is applied to the control of very complex systems� such as the speed control
of automated trains� as well as to simple actuators like electrical motors� whose life expectancy
depends directly on the smoothness of the controller output� Unfortunately� in general cases� a
high degree of smoothness cannot be guaranteed and is frequently hard to determine for a given
controller�

Guidelines for choosing membership functions� Up to now� there exist no convincing guidelines
for the successful design of fuzzy controllers� This pertains in particular to the choice of a
concrete membership function� In various fuzzy control applications� membership functions of
triangular or trapezoidal shape are utilised because of the simplicity of speci�cation and the
satisfying results� But the question still remains� Can the control performance be improved by
choosing a certain set of membership functions�

	



These two issues can be addressed by comparing B�spline models with a standard fuzzy logic con�
troller� In our previous work �	��� we compared splines and a fuzzy controller with single�input�

single�output �SISO� structures� In this paper� the multi�input�single�output �MISO�� controller is
considered� Periodical nonuniform B�spline basis functions are interpreted as membership functions
�MFs�� Furthermore� aspects of function approximation and learning control of mobile robots are
discussed�

� Some Previous Work

��� Advances in Fuzzy Control

Several authors have shown that fuzzy controllers are universal approximators� Wang �		� presents
a universal approximator by using Gaussian membership functions� product fuzzy conjunction and

centroid�� defuzzi�cation� Buckley ��� has shown that input�output fuzzy controllers are universal
approximators� Kosko and Dickerson ��� proved that an additive fuzzy system uniformly approximates
f � X � Y if X is compact and f is continuous�

Two successful applications in commercial controller and process control are given in �	��� one is the
OMRON temperature controller� the other is a gas��red water heater� The membership functions are
selected as triangles and each pair overlaps� Can these be generalised as design rules� The work in ���
shows that triangular membership functions with a 	�� overlap level produce a reconstruction error
of zero� Further questions are� Are there other forms of suitable membership functions� Should the
overlap of the fuzzy sets for linguistic terms meet certain constraints�

��� Popularity of B�Splines

To solve the problem of numerical approximation for smoothing statistical data� 
basis splines� �B�
Splines� were introduced by Schoenberg ���� B�splines were used later by Riesenfeld ��� and Gordon ���
in Computer Aided Geometric Design �CAGD� for curve and surface representation� Because of their
versatility based on only low�order polynomials and their straightforward computation� B�splines have
become more and more popular� Nowadays� B�spline techniques represent one of the most important
trends in CAD�CAM� they have been extensively applied in modelling free shape curves and surfaces�
Recently� splines have also been proposed for neural network modelling and control �	� 	���

Although fuzzy techniques lend themselves to on�line control and B�splines have been used mainly in
o��line modelling� some interesting common points can still be found� In our previous paper �	�� we
pointed out that B�spline basis functions and parametric membership functions of a linguistic variable
are both convex� overlapping set functions� Splines and fuzzy controllers possess good interpolation
features� The synthesis of a smooth curve with spline functions can easily be associated with the
defuzzi�cation process� These points are the main motivation for our work on utilising B�splines to
design fuzzy controllers�

� Construction Principles

We consider the membership functions that are used in the context of specifying linguistic terms
�
values� or 
labels�� of input variables of a fuzzy controller� In the following� basis functions of
periodical Nonuniform B�Splines �NUBS� are summarised and compared with a fuzzy controller� We
also use B�functions for the NUBS basis functions�

�A multi�input�multi�output �MIMO� rule base is normally divided into several MISO rule bases�
�Synonyms� Takagi�Sugeno IDM �inference and defuzzi�cation method�	 Tsukamoto�method	 
weighted�mean��

�



��� B�Spline Basis Functions De�ned on a Single Variable

Assume x is a general input variable of a control system that is de�ned on the universe of discourse
�x�� xm�� Given a sequence of ordered parameters �knots�� �x�� x�� x�� � � � � xm�� the ith normalised
B�spline basis function �B�function� Ni�k of order k is de�ned as

Ni�k�x� �

���
��
�
	 for xi � x � xi��


 otherwise
if k � 	

x�xi
xi�k���xi

Ni�k���x� �
xi�k�x

xi�k�xi��
Ni���k���x� if k � 	

with i � 
� 	� � � � �m� k�

The important properties of B�functions are

Partition of unity�
Pm

i��Ni�k�x� � 	�
Positivity� Ni�k�x� � 
�
Local support� Ni�k�x� � 
 for x �� �xi� xi�k ��
Ck�� continuity� If the knots fxig are pairwise di�erent from each other� then Ni�k�x� �

Ck��� i�e�� Ni�k�x� is �k � �� times continuously di�erentiable�

��� Membership Functions of B�Function Type

The B�functions are employed to specify the linguistic terms� and knots are chosen to be di�erent from
each other �periodical model�� Visually� the selection of k �the order of the B�functions� determines
the following factors of the fuzzy sets for modelling the linguistic terms �Table 	�� In this table� the
width of a fuzzy set is measured by the number of knot intervals and the overlap degree by how many
fuzzy sets are de�ned on each knot interval�

Order k 	 � � � � � �
Degree 
 	 � � � � �
Shape Rectangular Triangular Quadratic Cubic � � �

Fig� 	�a� Fig� 	�b� Fig� 	�c� Fig� 	�d� � � �

Width 	 � � � � � �
Overlap 	 � � � � � �

Table 	� The visual e�ect of fuzzy sets depends mainly on the order of the B�functions�

��� Real and Virtual Linguistic Terms

It is assumed that linguistic terms are to be de�ned over �x�� xm�� the universe of an input variable
x of a fuzzy controller� They are referred to as real linguistic terms� To maintain the 
partition of
unity� for all x � �x�� xm�� more B�functions should be added at both ends of �x�� xm�� They are
called marginal B�functions� de�ning virtual linguistic terms� Real and virtual linguistic terms are
illustrated in Figure ��

� In the case of order �� no marginal B�function is needed �Fig� ��a���
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Figure 	� Fuzzy sets de�ned by B�spline basis functions of di�erent orders�

� In the case of order � or �� two marginal B�functions are needed� one for the left end and another
for the right end �Fig� ��b�� �c���

� Generally� ��k � 	� div �� marginal B�functions are needed�

��� Core and Marginal Rules

We de�ne the core rules as linguistic rules that use real linguistic terms� If virtual linguistic terms
appear in the premise� to maintain the output continuity at both ends of the universe of x� additional
rules are needed to describe the control action for these cases� Since these rules use the virtual
linguistic terms that are de�ned by membership functions neighbouring the ends of the universe of
each variable� they are called marginal rules� The output value of each marginal rule is selected just
as the output value of the nearest core rule� i�e�� the rule using the directly adjacent linguistic terms
in its premise �Fig� ���

��� A B�Spline Interpolator

Since a MIMO rule base is normally divided into several MISO rule bases� we consider only the MISO
case� Under the following conditions�

� Periodical B�spline basis functions as membership functions for inputs�
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�a� Order �

�b� Order �

�c� Order �

Figure �� Non�uniform B�functions of di�erent orders de�ned for real and virtual linguistic terms by
the same knot vector �virtual linguistic terms� shaded��

� Fuzzy singletons as membership functions for outputs�

� 
Product� as fuzzy conjunctions�

� 
Centroid� as defuzzi�cation method�

� Addition of virtual linguistic terms at both ends of each input variable�

� Extension of the rule base for the virtual linguistic terms by copying the output values of the
nearest neighbourhood�

the computation of the output of such a fuzzy controller is equivalent to that of a general B�spline
hypersurface� Generally� we consider a MISO system with n inputs x�� x�� � � � � xn� rules with the n
conjunctive terms in the premise are given in the following form�

fRule�i�� i�� � � � � in�� IF �x� isN
�
i��k�

� and �x� isN
�
i��k�

� and � � � and �xn isN
n
in�kn

� THEN y is Yi�i����ing�

where

� xj � the jth input �j � 	� � � � � n��

� kj � the order of the B�spline basis functions used for xj �

� N j

ij �kj
� the ith linguistic term of xj de�ned by B�spline basis functions�

� ij � 
� � � � �mj � representing how �ne the jth input is fuzzy partitioned�
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Figure �� The outputs of the marginal rules are copied from that of the neighbouring core rules�

� Yi�i����in � the control vertex �deBoor points� of Rule�i�� i�� � � � � in��

Then the output y of a MISO fuzzy controller is

y �

Pm�

i��� � � �
Pmn

in���Yi������in
Qn

j��N
j

ij �kj
�xj��Pm�

i��� � � �
Pmn

in��

Qn

j��N
j
ij �kj

�xj�
�	�

�

m�X
i���

� � �

mnX
in��

�Yi������in

nY
j��

N j
ij �kj

�xj�� ���

This is called a general NUBS hypersurface� which possesses the following properties�

� If the B�functions of order k�� k�� � � � � kn are employed to specify the linguistic terms of the
input variables x�� x�� � � � � xn� it can be guaranteed that the output variable y is �kj � �� times
continuously di�erentiable with respect to the input variables xj � j � 	� � � � � n�

� If the input space is partitioned �ne enough and at the correct positions� the interpolation with
the B�spline hypersurface can reach a given precision�

If the order of the B�functions and the number of linguistic terms used in the premise are chosen� the
output of the fuzzy controller can be �exibly adapted to anticipated values by adjusting the positions
of the fuzzy singletons �control vertices� of the core rules�

��	 Example of a SISO System

Assume that the input variable is x and y is the output variable� The input x is covered by the
B�functions Ni�k� For specifying linguistic terms of y� the simple fuzzy singletons Yi are used�

The Core Rule Set �CRS� can be described as

CRS � fRule�i� � IF x is Ai THEN y is Yi j i � 
� � � � �mg
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If virtual linguistic terms appear in the premise� to maintain the output continuity at both ends of
the real universe of discourse x� the Marginal Rule Set �MRS�� which contains the left �right� virtual
linguistic terms may use the repeated output values Y� and Ym� The whole rule set RS is then
RS � CRS �MRS�

We consider a core rule set of �ve rules� CRS � fIF x is Ai THEN y is Yi� i � 	� � � � � �g� where the
universe of discourse of x is de�ned on �
� 	� and Y� to Y� are fuzzy singletons with the following
values� 
��� 	�
� 
��� 
���� 
���
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Figure �� Membership functions used for the input variable x�

The linguistic terms used for input x are shown in Figure ��a���c�� For B�functions of order � and �� one
virtual linguistic term is added at the left and one at the right end� If the two virtual linguistic terms
for the case of order � or � are denoted A� and A�� two marginal rules can be constructed by copying
the output values Y� and Y�� MRS � fIF x is A� THEN y is Y�� IF x is A� THEN y is Y�g�

The trajectories of the output with respect to input are depicted in Figure ��a���c�� They are �a�
C��continuous� �b� C��continuous� �c� C��continuous�
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Figure �� Trajectory of the output y with respect to the input x�

��
 Example of a MISO System

Two input variables x� and x� are covered by three real linguistic terms� represented by fA�� A�� A�g
and fB�� B�� B�g� which denote 
low�� 
middle�� and 
high�� respectively� A core rule set consisting of

�



nine rules is shown in Figure ��a�� For the output variable y� fuzzy singletons are de�ned to represent

VL� �very low�� 
L� �low�� 
M� �middle�� and 
H� �high��

A�� A�� A� and B�� B�� B� are de�ned with adjacent uniform B�functions of order �� �� and �� similar
to Figure � �a���c�� If B�functions of order � or � are used� one virtual linguistic term A� �B�� is
added left�adjacent to A� �B��� another A	 �B	� is added right�adjacent to A� �B��� Marginal rules
that have one of the terms A�� A	� B� and B	 in the premise are assigned the output singletons of the
nearest core rule �Fig� � �b���
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Figure �� Rule bases for MFs of di�erent orders�

The control surfaces describing the relation of y with x� and x� are shown in Figure ��a�� �b�� �c��
The di�erentiability of the three cases is �a� y is continuous� �b� �y��x� and �y��x� are continuous�
�c� ��y��x�� and �

�y��x�� are continuous�
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Figure �� The control surfaces of an example with � inputs �x�� x�� � 	 output �y��

� Application A� Supervised Learning

Supervised learning assumes that a 
teacher� provides the complete desired system output for each
input datum� Based on the complete set of these input�output vectors� B�spline type fuzzy controllers
can be trained very rapidly� Computing parameters of such a B�spline fuzzy system is divided into
two steps� for the IF�part and for the THEN�part� Considering the granularity of the input space
and the maximum point distribution of the control space if known� the fuzzy sets can be generated by
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using the recursive computation of B�spline basis functions� We developed an algorithm for adapting
the knots of the IF�part� which is a modi�ed algorithm for self�organising neural networks� However�
if su�cient B�functions are used for the inputs� the local modi�cation of the knots has only negligible
in�uence on the control surface� Therefore� in the following� we concentrate on the control vertices of
the THEN�part� which can be automatically achieved through a learning procedure�

��� Learning Algorithm

Assume that f�X� yd�g is a set of training data� where

� X � �x�� x�� � � � � xn� � the input data vector�

� yd� the desired output for X�

The squared error is computed as

E �
	

�
�yr � yd�

� ���

where yr is the current real output value during training�

The parameters to be found are Yi��i������in � which make the error in ��� as small as possible� i�e��

E �
	

�
�yr � yd�

� � MIN ���

Each control vertex Yi������in can be modi�ed by using the gradient descent method�

 Yi������in � ��
�E

�Yi������in
���

� ���yr � yd�

nY
j��

N j
ij �kj

�xj� ���

where � is the learning rate� 
 � � � 	�

The gradient descent method guarantees that the learning algorithm converges to the global minimum
of the error function because the second partial di�erentiation with respect to Yi��i������in is constant�

��E

��Yi������in
� ��

nY
j��

N j
ij �kj

�xj��
� � 
 ���

This means that the error function ��� is convex in the space Yi��i������in and therefore possesses only
one �global� minimum�

�



-3

-2

-1

0

1

2

-1 -0.5 0 0.5 1 1.5 2

x

y

  X  [    -1      0     1     2    3    4     5     6     7    8     9 ]

Y[-1..9]

�a� Before optimisation

-3

-2

-1

0

1

2

-1 -0.5 0 0.5 1 1.5 2

x

y

  X  [    -1      0     1     2    3    4     5     6     7    8    9 ]

Y[-1,0]

Y[1]
Y[2]

Y[3]

Y[4]

Y[5]

Y[6]
Y[7]

Y[8,9]

�b� After optimisation

Figure �� Mapping the input x to the output y with B�functions as MFs�

	




��� Function Approximation

����� A One�Input�One�Output Controller

A function y � sin��	x� is to be approximated with a fuzzy controller� Figure � depicts the mapping
of the input x to the output y� where x is covered with B�functions of order � and fuzzy singletons are
de�ned on y� The initial positions of the fuzzy singletons are arbitrarily chosen �e�g�� as zero� see Fig�
��a��� The output curve and the fuzzy singletons after the self�optimisation process are illustrated in
Figure ��b��

Figure � show several intermediate steps during the optimisation� The RMSE �root squared mean

error� curves for the approximation are shown in Figure 	
�
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Figure �� Optimisation of positions of the fuzzy singletons de�ned on the output �� � 	��

����� An Example with Two Input Variables

A �D example is implemented to approximate the function z � sin��	x� 	 cos�	y�� where �	 � x � 	
and 
 � y � 	� Figure 		�a� and �b� shows the membership functions de�ning the real and virtual
linguistic terms of x and y� The control surfaces in several intermediate steps of the optimisation can
be seen in Figure 	�� Figure 	� illustrates the automatically generated control vertices� Figure 	�
depicts the RSME curve�

����� Examples of ANFIS

The following examples were implemented �for details of these functions see �����
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Figure 		� B�functions as MFs for the input variables�

� z � sin
x�
x


 sin
y�
y
�

� f�x� y� z� � �	 � x��� � y�� � z�������

� x�t � 	� � ���x
t�r�
��x��
t�r� � 
��x�t��

� Identifying a nonlinear component in a dynamic system� y�t�	� � 
��y�t��
��y�t�	��f�u�t���
where y�t� is the output of moment t and u�t� is the input�

The implementations show that the B�spline fuzzy controllers can approximate all these functions to
a certain precision if the order of B�functions is suitably chosen and the partition of the input space
is �ne enough� Generally� our approach needs less computation time than ANFIS�

��� Supervised Learning in Robotics

We successfully applied this approach to supervised learning to the 
truck backer�upper� �see �		�� and

inverse kinematics� problem in robotics� Figure 	� to Figure 	� show an example of the automatically
learned control space by achieving a 
truck backer�upper� solution�
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Figure 	�� The control surfaces during the optimisation�

The truck starts at an arbitrary position ��x� y� and 
� and should be steered backward so as to reach
the goal position �x � 	
� y� and 
 � �
� �Fig� 	��� Therefore� the fuzzy controller has two inputs�

 � x � �
 and ��
� � 
 � ��
�� and one output� ��
� � � � �
��

The kinematics of the truck are known�

x�t � 	� � x�t� � cos �
�t� � ��t�� � sin �
�t�� sin �
�t��

y�t� 	� � y�t� � sin �
�t� � ��t��� sin �
�t�� cos �
�t��


�t � 	� � 
�t�� sin��
�
� sin���t��

b

�

where b is the length of the truck�

In the following implementation� each input is covered with �ve B�functions of order three� Based
on the above kinematics description� we can prepare 	� 
training trajectories�� Each trajectory
is a sequence of data vector �xi�t�� yi�t�� 
i�t�� �i�t��� where t � 
� � � ��timax� which supplies one
control process to steer the truck from the start position �xi�
�� yi�
�� 
i�
�� to the goal position
�xi�timax� � 	
� y

i�timax�� 

i�timax� � �
��

We train the control vertices as follows�
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Figure 	�� The control vertices Zij
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For each trajectory i�
For each position at t � 	 to t�timax�

Calculate ��t� based on �xi�t�� 
i�t���
Modify the control vertices with the known value of �i�t��

Figure 	� shows the control surface of this control problem� Figure 	� depicts two backward trajec�
tories from two di�erent start posistions after learning�

� Application B� Unsupervised Learning Control of a Mobile

Robot

The proposed learning approach was also applied to a real mobile robot system Khepera� Our earlier
work with Khepera was to use fuzzy control to integrate planning and control �	��� In the following� we
show how the control vertices of a fuzzy controller can be generated automatically through learning�
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Figure 	�� The start and goal position of the truck�

��� Sensors and Control Variables

The robot perceives its environment with six infrared sensors� which can be grouped into three vari�
ables� SensL� SensF� and SensR� The original sensor values are from 
 to 	
��� To reduce the uncer�
tainties� the range of the sensor values is scaled down to the interval �
� 	

�� using � as the increment�
i�e�� the sensor values �controller inputs� are 
� �� 	
� � � � � �
� ��� 	

� All of these inputs are covered
with seven B�functions as linguistic terms� Since the robot is equipped with only limited on�board
computation capability� the order � of the basis functions was chosen so as to make real�time learning
possible�

The two wheels of the robot are controlled independently by two motors� The output of the controller
is the steering angle w� A positive value of w steers the robot to the right� and a negative value to
steer it to the left� The velocities of the two wheels can then be computed as

� For the left wheel� v � w

� For the right wheel� v � w

where v is the current front velocity of the robot �Fig� 	���

��� Modifying Control Vertices

In unsupervised learning� it is usually possible to de�ne an 
evaluation function� if the desired data
of the output are unknown� Such an evaluation function should describe how 
good� the current
system state ��x�� x�� � � � � xn�� y� is� For each input vector� an output is generated� With this output�
the system transits to another state� The new state is compared with the old one� an adaptation is
performed if necessary�

Assume that the evaluation function� denoted by F �	�� is monotonic� i�e�� if state A is better than B�
then F �A� � F �B�� The adaptation of the control vertices can be performed with a representation
similar to that in supervised learning� Assume that the desired state is Ad� Analogous to formula ���
in Section ��	� the change of control vertices can be written as

 Yi������in � S 	 � 	 jF �B�� F �Ad�j 	

nY
j��

Nij �kj �xj� ���
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Figure 	�� Solution of the 
truck backer�upper� problem� output � after learning �� was initialised as
zero for all inputs��

where

S � sign�F �A�� F �B�� 	 sign�F �B�� F �Ad�� 	 sign�y� ���

represents the direction to modify the control vertex�

��� Learning to Avoid Obstacles

A test environment for collision avoidance is shown in Figure 	�� Before trying to develop the eval�
uation function� we �rst discuss the situations that the robot should deal with and the evaluation
function�

� F �SensL� SensF� SensR� � ��SensL� SensF � SensR�� if SensF is large �the robot should
then try to minimise the sum of all three sensor readings��

� F �SensL� SensF� SensR� � �jSensL�SensRj� if SensF is small� SensL or SensR is not zero
�the robot should try to keep the di�erence of SensL and SensR as small as possible��

� F �SensL� SensF� SensR� � 
 �no obstacles present��

� Otherwise �no reasonable evaluation function can be found�� simply turn left�

This evaluation function supplies a large negative value if the robot has reacted the wrong way� it is
positive if the robot steers correctly but with too small a steering angle� Figure �
 shows the learning
results after 	


 learning steps�

To demonstrate that the robot has learned correctly with the above approach� we perform the following
experiment� We change the roles of the wheels� i�e�� we let the wheels be controlled by

� For the left wheel� v � w�

� For the right wheel� v � w�

The results we get are the inverted ones of Figure �
 � exactly what we expected�
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Figure 	�� Two motion trajectories produced by the trained fuzzy controller�

��� Learning to Track Contours

In this mode of operation� the robot does not move away from an obstacle� but tries to 
keep the
obstacle in the right eye�� The robot reacts only if it sees something in its 
right eye� or in its 
front
eye�� The evaluation function depends on the last and new sensor values as well�

� F �SensF� SensR� � �SensF � jSensR� �
j�� if the robot sees something in the front or on
the right�

� Zero� otherwise�

SensR

SensF

right motor

front

SensL

left motor

Figure 	�� Sensors and motors of the Khepera robot�

	�



Figure 	�� The robot and the obstacles in the environment�

After learning� the robot can track any contour of objects� The learning results of the control surface
are shown in Figgure �	�

� Discussion and Conclusions

Some issues related to the construction procedures of a fuzzy controller are�

Computation of membership functions�

The B�functions are piecewise polynomials� Coe�cients of nonuniform B�functions of any order
can be computed recursively� The solutions for lower order B�functions can be derived explicitly�
Therefore� they could easily be included in fuzzy development tools to facilitate the modelling
of membership functions of such types of controllers�

Choosing control vertices�

Note that the control vertices are only identical with the output values for interpolation if the
order k � � �this agrees with the conclusion in ����� For k � �� control vertices are points
near the interpolation point� they 
control� the output curve to form a certain shape inside the
convex hull of them� The larger k is� the greater the di�erence between control vertices and
interpolation points� Normally� when rules are formulated using the 
IF�THEN� convention�
the singleton values of the output are initialised qualitatively in a manner enabling the controller
to reach these values approximately� they can be optimised locally by �ne�tuning�

Critera for selecting order k�
Obviously� if Ck���continuity is necessary� the order of B�functions should be at least k� However�
too large a value of k leads to more marginal linguistic terms and thus more rules� as well as a
larger disparity of control vertices and data points� In most applications� C�� or C��continuity
is su�cient� Then� B�functions of order � and � besides those of order � with triangular shape
could well be suitable for modelling membership functions�

Optimal Partitioning of the Input Space�

To convert a fuzzy system to a B�spline interpolator� it should �rst be answered how the knots
should be placed in the input space� An intuitive answer is to �x the knots where the output has
its extrema� If such information is available �e�g�� by approximating an analytically representable
function�� we can apply this principle to select the knots� If the output of a control system cannot
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Figure �
� The control surfaces after 	


 learning steps�

be analytically represented or be even unknown� we can adaptively compute the knots with an
approach similar to the optimisation of a self�organising neural network� In this way� the optimal
partitioning of the input space can be automatically achieved�

The transformation shown in Section � is conceptually important because it gprovides a construction
method for data approximation using fuzzy controllers� The advantage of the fuzzy control idea over
the pure B�spline interpolation lies mainly in its linguistic modelling ability� interpolation data can be
prepared by using natural language with the help of expert knowledge� Furthermore� the interpolation
procedure becomes transparent because it can also be interpreted in fuzzy logic 
IF�THEN� form�

Experiments show the feasibility of such type of fuzzy controller� with B�functions as membership
functions of input variables� singletons as membership functions of output variables� 
product� as
fuzzy conjunction� and centroid as defuzzi�cation method� If the rule table is complete� then by
adding certain more marginal rules� smoothness of the controller output can be achieved by selecting
the proper order of B�functions� B�spline fuzzy controllers are exact in that no information is lost
after the defuzzi�cation� Although the number of control vertices to be optimised can be quite large
in our approach� learning of such a fuzzy controller converges rapidly� especially for the supervised
learning due to the properties of local support and one�minimum of the error function� Therefore� the
computation time of the learning can be signi�cantly reduced�
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Figure �	� The control surfaces for contour tracking�
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