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Abstract

This paper proposes an approach for solving multivari-
ate control problems with a fuzzy controller. Instead of us-
ing selected input variables, statistical indices are extracted
to feed the fuzzy controller. The original input space is
transformed into an eigenspace. If a sequence of train-
ing data are sampled in a local context, a small number
of eigenvectors which possess larger eigenvalues provide
a good summary of all the original variables. Fuzzy con-
trollers can be trained for mapping the input projection in
the eigenspace to the outputs. Implementations with the pre-
diction of time series and vision-based robot control vali-
date the concept.

1. Multivariate Problems in Modelling and
Control

It is well-known that general fuzzy rule descriptions of
systems with a large number of input variables suffer from
the problem of the “curse of dimensionality”. In many real
applications, it is difficult to identify the correct influential
factors and reduce their number to the minimum. A general
solution to build fuzzy models is not only interesting from a
theoretical point of view, but also practical meaningful since
the application of fuzzy control could then be extended to a
wider range of complex intelligent control problems.

In the recent literature on neuro-fuzzy modelling and
machine learning, some standard benchmark problems with
“middle”-dimensional input spaces, like “Box-Jenkins Gas
Furnace Problem”, “Mile-Per-Gallon” etc, are frequently
discussed and simulation results are presented. In our in-
dustry consulting and research work on sensor-based robot
control, we are faced with some high-dimensional problems
concerning a large number of input variables whose impor-
tance and inter-dependence are not clearly known. These
typical problems are briefly described as follows:

System Identification. As training data set for nonlinear
system identification, the Box-Jenkins gas furnace data

[1] is often studied and compared. The furnace input is
the gas flow rate x�t�, the output y�t� is the CO� con-
centration. At least 10 candidate inputs are considered:
x�t���� x�t���� � � � � x�t���� y�t���� � � � � y�t���. If
all of them are used, building a fuzzy controller means
to solve a 10-input-1-output problem. If each input
is defined by 5 linguistic terms, this would result in a
fuzzy rule system of about 10 million rules.

The modelling and prediction of financial markets are
also complex problems. Experts estimate more than
hundred influential factors, which are hard to differen-
tiate since they are inter-related.

Complex Machine Adjustment. One of our joint R/D
projects aims at automatic adjustment of a thresher ma-
chine. To achieve the minimum grain loss and maxi-
mum harvest speed, a set of parameters of the thresher
system, such as opening width, rotating and blowing
speed, should be optimally set. Until now no mod-
els for the optimal machine settings are known. Even
an expert cannot always achieve the best setting of
the thresher parameters. The main assumed influence
factors are: grain type, thousand-grain-weight, grain
moisture, straw composition, straw moisture, air hu-
midity, temperature, general weather condition, sea-
son, wind velocity, vehicle speed and so on. Clearly,
fuzzy sets can find ideal applications in modelling
many of vague, only approximately measurable vari-
ables. Since a fuzzy model can normally contain only
a very limited number of inputs, the problem remains:
which influence factors should be taken into account
so that most information can be utilised?

Vision-guided robot motion. The classical approaches of
robot vision face two big problems: a). The image
processing procedures, such as segmentation, feature
extraction and classification are not robust in real en-
vironments; b). These processing algorithms are com-
putationally expensive, thus the real-time requirement



cannot be fulfilled in most cases. It is a long-term re-
search goal to find a general model which transforms
raw image data directly to action values. For instance,
an image has ���� ��� pixels, each pixel is measured
by brightness level. If no extra image processing is
performed, then a control system with about 26,000
input variables needs to be modelled. The outputs of
the system are the motion values for a robot (mobile
robot as well as robot arm). Is it possible to build a
fuzzy model to map the inputs to the outputs?

2. Existing Solutions
Two main methods examining the multivariate problem

are “input selection” and “hierarchy”.

Input Selection One implemented approach is “input se-
lection”, [4] and [2], which is in principle an experi-
mental method to find the most important input vari-
ables among a large number of them. With this ap-
proach, all the combinatorial possibilities of the low-
dimensional fuzzy model are considered and approx-
imately tested. The selected inputs which enable the
best result are viewed as the most influential ones to
build an exact neuro-fuzzy model. There are two obvi-
ous problems with such a procedure of projection from
a high dimension into a low one. First, all the other less
influential inputs are discarded, which means an infor-
mation loss for the controller. Secondly, the combina-
tional number of lower-dimensional fuzzy controllers
for a system with thousands or even millions of inputs
is still too large to enumerate and to evaluate.

Hierarchy The solution with hierarchical structure as-
sumes that the input information can be classified into
groups, see [5] for an example. Within each group the
inputs determine an intermediate variable, they can be
decoupled from inputs of other groups. To realise such
a grouping, there exists no general automatic approach
but heuristics based on fusion of physical sensors.

If a fuzzy controller is only observed at each moment
in time, the only input information to the controller comes
from the whole set or a selected subset of the input vari-
ables. In this paper, this kind of information is called hori-
zontal index. Both “input selection” and hierarchical struc-
ture consider only the horizontal indices. They presume that
inputs are independent and give no priority or importance of
the selected input variables.

3. Concept of Using Statistical Indices
3.1. Sensor Pattern and Situation

If the dimension of the input space is small, the input
variables can be directly covered by fuzzy sets, thus fuzzy

rules are formed in a tabular form. Each item of the rule
table can be interpreted as a general situation. Such a “situ-
ation” is still intuitively understandable for a small number
of inputs. This is certainly no longer the case if the number
of the input variables is no more 2, 3, 4, but 10, 10.000, or
even millions.

If all inputs are normalised and the value of each one is
viewed as the brightness level of an image pixel, an input
vector can be regarded as a general sensor pattern, like a
CCD camera image. In this point of view, a multivariate
modelling problem is in principle equivalent to a supervised
vision-based control problem.

There will be no doubt that the complete “situations”
of the high-dimensional sensor patterns cannot be repre-
sented as a number of computer internal memorable and
computable tabular items. However, if we observe the sen-
sor patterns in a certain local context, it can often be found
that they distribute within certain parts of the whole input
space.

3.2. Vertical versus Horizontal Indices

If the input vectors are considered as a pile of training
data originating from a continuously varying process, in-
stead of being viewed only as a separate input vector, verti-
cal indices can be extracted by statistical analysis. These
vertical indices describe data distribution, variances, and
the most interesting features for control - projections on the
eigenvectors (Fig. 1).
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Figure 1. Vertical information about the dis-
tribution of the data in the input space can be
extracted by statistics on a sequence of the
training data set.

For an input space X� �X� � � � � �Xm, if all the vari-
ables x� to xm could vary in all their universes in the ob-
served sampling procedure, the input data would scatter in
the whole input space. Nevertheless, in a high-dimensional



input space, if the observed process runs continuously, the
input vector varies gradually. Under an appropriately sepa-
rated observation, e.g. within a local scenario of the robot
environment, the input vectors possess a large grade of sim-
ilarity in most cases. That means in the high-dimensional
input space, the observed input data are correlated to a large
degree.

If certain correctly selected original input variables hap-
pen to be the axes, along which the sampling data aggregate,
they can be directly used as fuzzy controller inputs. Other-
wise, the information from the unselected variables will be
lost.

3.3. Projection in Eigenspace

A well-known technique for dealing with multivariate
problems in statistics is the principal component analysis.
Until now, it is mainly applied in data compression and pat-
tern recognition, [7]. In our opinion, this technique is also
suitable for reducing the dimension of the input space of a
general control problem.

An eigenvector, noted as EVi, is computed as
	a��i� a��i� � � � � am�i


T . The eigenvectors form an orthog-
onal basis for representing the original individual sensor
patterns. Assume that the eigenvectors EV�� EV�� � � � are
sorted according to their eigenvalues in a descending order.
An eigenspace with a reduced dimension n can be formed
with the first n eigenvectors. EVi accounts for the ith di-
mension in the eigenspace. The projection of an input vec-
tor 	x�� x�� � � � � xm
 on eigenvectorEVi, called the ith prin-
cipal component, is a��ix� � a��ix� � � � � � am�ixm. All
projections of the sample data sequence form a manifold in
the eigenspace.

Depending how “local” the measuring data are and there-
fore how similar the observed sensor patterns look like,
a small number of eigenvectors can provide a good sum-
mary of all input variables. It can be possible that two or
three eigenvectors supply the most information indices of
the original input space. In a very high-dimensional case,
an efficient dimension reduction can be achieved by pro-
jecting the original input space into the eigenspace.

The eigenvectors of a covariance matrix can be effi-
ciently computed by the perceptron approach [8]. This ap-
proach has three advantages over Jacobian method [3] if the
number of the eigenvectors are pre-selected. First, the Jaco-
bian method calculates all eigenvectors of the covariance or
explicit covariance matrix of the input data; the perceptron
method only calculates the first n eigenvectors, thus saves
computation time. Second, Jacobian requires the construc-
tion of the covariance matrix of the input data. With large
input data sets this is often critical regarding the amount of
memory needed. Thirdly, the found eigenvectors with the
perceptron method are already in descending order.

3.4. Fuzzy Partition into Eigenspace

Partition of eigenvectors can be done with a descending
resolution: if the EV�, ���, EVn is ordered in a descending
order, we just partition the EV� with the finest resolution,
since the data projection on this eigenvector contains the
largest variance. The second eigenvector EV� is covered
with some less linguistic terms, so on and so forth. The last
selected eigenvectorEVn is described with the least number
of linguistic terms, see the middle part of Fig. 2.
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Figure 2. The structure of a fuzzy controller
based on eigenspace projection.

In the online application, the input data are first projected
into the eigenspace, then mapped to output based on the
fuzzy control model (Fig. 2).

4. The Approach
By summarising the above ideas and formulating them

in the chronological order, it turns out that constructing a
fuzzy controller for a multivariate problem consists of two
phases. The first phase is extra with this approach and
should be done before the real construction procedure of the
fuzzy controller. The second phase is in principle a normal
supervised learning algorithm for a fuzzy controller, if the
desired output data as well as the input data are available.
After a fuzzy controller is constructed, given an online mea-
sured input �x�� x�� � � � � xm�, the outputs can be calculated
through the eigenspace projection and fuzzy rule synthesis
afterwards.

4.1. Phase 1: Sampling Training Data and Analysis

This special step aims at evaluating the statistical indices
and performing the dimension reduction for the preparation
of the direct controller inputs. Hereby it is desirable that all
representative input data are generated.

1. Sample input data, record the desired output values if
available.

2. Pre-process the input data: normalise and subtract the
average value.

3. Transform the input variables into vectors.

4. Calculate the eigenvectors and eigenvalues.



4.2. Phase 2: Training a Fuzzy Controller

By using the supervised learning algorithm presented in
our early paper [9], the training procedure looks as follows:

1. Select the n eigenvectors with the largest n eigenval-
ues, noted as EV�� � � � � EVn.

2. Select the order of the B-spline basis functions for each
eigenvector.

3. Determine the knots for partitioning each eigenvector.

4. Initialise the control vertices for the output.

5. Learn the control vertices using gradient descent
method.

6. If the results are satisfied, terminate.

7. Modify the knots for eigenvectors, go to 4.

4.3. Online Application

In the case of supervised learning, each learning datum
corresponds to a supporting point in the control space (Fig.
3). If a sensor pattern is taken online and its eigenvalues
are calculated, the determination of the controller outputs is
then the blending of all the firing rules.
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Figure 3. The application phase is an inter-
polation process if the control vertices have
been learned.

The following steps are necessary:

1. Update the input data �x�� x�� � � � � xm�;

2. Pre-process the data - normalise and substrate average;

3. Project the input into the eigenspace �EV�� � � � � EVn�;

4. Compute the output by feeding the projection vector
into the fuzzy controller trained in section 4.2.

5. Implementations
The above approach can be applied to all type of fuzzy

controllers, like Mamdani type and TSK type. In the fol-
lowing implementations, fuzzy controllers constructed by
B-spline model are used (see our early work in [9]). We
pointed out that definition of linguistic terms with B-spline
basis functions requires less parameters than the other set
functions such as trapezoid, Gaussian function, etc. The

output computation becomes very simple and the interpo-
lation process is transparent. In our later work, we demon-
strated the good approximation capability and the rapid con-
vergence of B-spline fuzzy controllers as well as the suit-
ability for unsupervised learning [10].

In the following implementations, linguistic terms of the
eigenvectors are defined by B-spline basis function of or-
der three. The output value of each rule is represented as
a fuzzy singleton which is called control vertex in the B-
spline fuzzy controller. The control vertices are adaptively
determined by minimising the “Root Mean Squared Error”
(as in [4]) for the supervised learning.
5.1. Box-Jenkins Data

296 data in form of �x�t�� y�t�� are first transformed into
the form ��x�t� ��� x�t� ��� � � � � x�t�� y�t� ��� � � � � y�t�
���� y�t��. The computed eigenvectors are shown in Table
4(a), the eigenvalues of each eigenvectors are depicted in
Fig. 4(b). The projection of the data into the eigenspaces
constructed by the first two and first three eigenvectors can
be found in Fig. 5(a) and (b).
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(a) Eigenvalues

EV 1 EV 2 EV 3 EV 4 EV 5
x�t� �� -0.158 0.074 0.239 0.354 0.602
x�t� �� -0.149 0.204 0.233 -0.015 0.291
x�t� �� -0.134 0.310 0.081 -0.382 0.115
x�t� �� -0.117 0.372 -0.164 -0.419 0.288
x�t� �� -0.099 0.386 -0.413 -0.044 0.228
x�t� �� -0.084 0.361 -0.582 0.531 -0.222
y�t� �� 0.477 -0.334 -0.295 0.136 0.523
y�t� �� 0.487 -0.015 -0.236 -0.263 0.141
y�t� �� 0.480 0.278 0.053 -0.225 -0.248
y�t� �� 0.457 0.501 0.448 0.362 -0.017

(b) Eigenvectors

Figure 4. The important eigenvectors and
eigenvalues of the Box-Jenkins data.

The first, second, third and fourth eigenvector are de-
fined by 10, 7, 7 and 5 linguistic terms respectively. The
RMS (also MS) training errors achieved with the first three
eigenvectors are listed in Tab. 1.
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Figure 5. Distribution of the data in the 2D
and 3D eigenspaces.

In [6], Table 2 was summarised as the comparison results
for solving the Box-Jenkins gas furnace data. By comparing
Tab. 1 and Tab. 2, it can be seen that as expected, the train-
ing error achieved with the first two eigenvectors is less than
that achieved with all the above models, and with the first
three or four eigenvectors, the error can be still reduced sig-
nificantly. The RMS error is also less than that achieved by
the ANFIS model with input selection in [4]. Fig. 6 shows
the result achieved by using four eigenvectors.

5.2. Vision-Guided Grasping
This approach is applied to find exact grasp positions by

a robot parallel gripper equipped with hand-camera system,
Fig. 7. The novelty of this approach is that no prior hand-
eye calibration is necessary.

RMS (MS) Error
epochs 1 2 3

100 0.73 (0.533) 0.22 (0.048) 0.25 (0.063)
1000 0.71 (0.504) 0.19 (0.036) 0.20 (0.04)

10000 0.71 (0.504) 0.19 (0.036) 0.17 (0.029)

Table 1. RMS (MS) training error by using 1,
2, and 3 first eigenvectors if all 296 data are
used for training.
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Figure 6. RMS errors of modelling the Box-
Jenkins data with four eigenvectors. 148 data
are used for training and 148 data for check-
ing.

A off-line learning approach begins with positioning the
robot gripper over the desired position. The robot hand is
then incrementally perturbed, e.g. in the freedom of dis-
placement x� y and/or the orientation �. At each new loca-
tion, an image is produced while the motion parameters are
recorded. After all consequences of the possibly imprecise
positioning of the robot hand were considered, a sequence
of images is obtained. Each pair of two adjacent images is
similar to a large degree, see Fig. 8.

The large amount of brightness data of the image pixels
can be significantly reduced by finding the eigenvectors of
their covariance matrix. If the eigenvectors are ordered ac-
cording to the magnitude of their eigenvalues, it can be eas-
ily found that only a limited number of eigenvectors need to
be considered while the others can be ignored.

In this way, the dimension of the local perceptual space
is reduced to a manipulable size of a subspace. If the
eigenvalue of each selected eigenvector, noted as EV j

(j � �� � � � � n), is covered with B-spline basis functions,
noted as X

j
ij �kj

, the rule for determining the relative
location of the robot gripper to the object can be written in
the form:

Model Input Rule No. MS Error
Tong’s x�t� ��� y�t� �� 19 0.469
Pedrycz’s x�t� ��� y�t� �� 81 0.320
Xu/Lu’s x�t� ��� y�t� �� 25 0.328
Chiu’s TSK 2 x�t� ��� y�t� �� 3 0.146
Chiu’s TSK 3 x�t� ��� x�t� ���

y�t� �� 3 0.072
[6] GA-fuzzy x�t� ��� y�t� �� 25 0.257

Table 2. Comparison of different models de-
rived using the Box and Jenkins gas furnace
data, excerpted from [6].



(a) “Self-viewing” hand-
camera

(b) The start position

(c) Improved position (d) The optimal position
for grasping

Figure 7. Fine-Positioning using a “self-
viewing” hand-camera.

IF (EV� IS X�

i��k�
) and ... and (EVn IS Xn

in�kn
)

THEN (x is Xi�i����in ) and (y is Yi�i����in )
and (� is 	i�i����in )

Each rule corresponds to a supporting point for the in-
terpolation in the eigenspace. Our experiment showed that
with a few eigenvectors, a correction of the robot hand can
be attained.

6. Discussion
The main advantage of the proposed approach to “input

selection” is that less information is lost after the dimension
reduction for problems with correlated input training data.

Figure 8. Six training images (��� � ��� pix-
els, with orientation variation 
�, �
�, �
�, �
�,
��
�, ��
�) for automatic grasping, taken from
about 300 training images.

Even if the training data are not correlated at all, the pro-
jection in the eigenspace provides also information which
input variables have larger variance. These variables can be
good candidates for the inputs to be selected. Therefore, no
“trial-comparison-select” procedure is necessary.

To generally deal with the high-dimensional input space,
the solution based on the low-dimensional fuzzy controllers
would need the partition of the complete high-dimensional
input data set into clusters, within which the data are corre-
lated to a large degree. Such a partition would be intrinsi-
cally fuzzy, since there are no crisp boundary between two
continuous “situations”. A “behaviour arbiter” coordinates
multiple simultaneously active local controllers to achieve a
high-level task and can be realised with a set of meta-rules
like: “IF Situation Evaluation IS for Ci THEN Apply
Controller Ci.”

This idea was realised with mobile robots in blending the
behaviours “approach a subgoal” and “collision-avoidance”
[11]. Our future work is on further test of this approach
in more global situations on vision-guided robot control
as well as the fully automatic parameter adjustment of the
complex thresher machine system.
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