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Abstract

Based on our earlier work on construction of fuzzy con-
trollers with B-spline models, we propose an automatical
learning approach for generating control vertices of such
a type of fuzzy controller. For supervised learning, we
point out that rapid convergence of this learning procedure
can be guaranteed, which is confirmed by diverse exam-
ples of approximating non-linear functions and interpolat-
ing training data. For unsupervised learning, we employ a
type of state evaluation functions which can be found for a
large amount of control problems. Using such an evalua-
tion function, a learning algorithm is devised which mod-
ifies the local control action efficiently to guide the system
to the desired state. Implementations with the cart-pole
balancing and a sensor-based mobile robot validate this
learning approach.

1. Introduction

Fuzzy logic systems are now widely accepted as a gen-
eral mechanism for modelling non-linear processes or sys-
tems without mathematic model. However, the flexibility
of a fuzzy controller model brings also the difficulty to for-
mulate a systematic design methodology. In a lot of appli-
cations “trial-and-error” is still used to tune the controller
parameters whose number can be quite large. Therefore the
following aspects are crucial for achieving a wider range
of applications of fuzzy controllers in industry: a). the
guidelines of selecting membership function types, infer-
ence/defuzzification methods; and b). an automatic proce-
dure to determine controller parameters for achieving the
optimal control effect.

Recently, learning of fuzzy controllers has become an
important research topic. Among them, neuro-fuzzy meth-
ods provide some important results, especially in super-
vised learning, [4], [2]. Supervised learning can be applied
in modelling like function approximation, forecasting us-
ing data interpolation and/or extrapolation, etc. Unfortu-
nately, in most control problems, only rough, incomplete
training data can be prepared or the input/output data are
even not available at all. To apply fuzzy control in a mo-

bile robot, for example, [3] uses a supervised learning ap-
proach to train a fuzzy controller for collision-avoidance.
The training data are generated by the Braitenberg method.
Obviously, the “teacher” should do well enough for the
“student” to learn and the “student” cannot behave better
than the “teacher” after being trained.

Unsupervised learning is more interesting and more
challenging for both neural networks and fuzzy logic sys-
tems. Some advances have been made in reinforcement
learning. Q-learning proposed in [6] is a representative
method. In [1] the reinforcement learning is introduced to
fuzzy controllers. Efficient and on-line learning methods
for general unsupervised learning of fuzzy controllers still
need further investigation.

We propose an approach which can systematically build
the fuzzy sets for linguistic terms of the IF-part while the
fuzzy sets of the THEN-part can be adapted through learn-
ing. The model of linguistic terms in our approach is
based on B-spline basis functions, a special set of piece-
wise polynomial curves. Since modification of control ver-
tices mainly changes of the control surface, learning of the
controller is transformed to learning of positions of fuzzy-
singletons of output variables.

In our earlier work [7], we presented the basic idea of
employing B-spline basis functions of different orders to
model linguistic terms, which is briefly summarised in sec-
tion 2. The learning model of this type of controller de-
vised for supervised learning is reviewed in section 3.1.
Inspired by the learning function of the supervised case, an
approach for unsupervised learning using a type of evalu-
ation functions is described in section 3.2-3.4. The imple-
mentations of two control examples are demonstrated in
section 4 and 5. Section 6 draws some conclusions.

2. B-Spline Fuzzy Controllers

In [5], the conventional eight types of continuous para-
metric membership functions (MFs) are summarised and
compared in the examples of function approximation (su-
pervised learning). However, the B-spline basis functions
provide another kind of fuzzy set representation which pos-
sess some special properties.



2.1. B-spline basis function as MF's

Several main types of B-spline basis functions are illus-
trated in [7]. The basis function of order 1 can be inter-
preted as for modelling crisp sets, while the type of order
2 as for defining the commonly used triangular fuzzy sets.
If the order of the B-spline basis functions is larger than
2, each fuzzy set defined is no longer normalised, but the
“partition of unity” is valid for all the values within the
universe of discourse of a linguistic variable. The over-
lapping of more than two fuzzy sets can be too complex
for manual specification, but we argue that these fuzzy sets
are naturally defined, i.e. given the partition points (knots)
of an input variable, they can be automatically computed
with the recursive representation; and better performance
in smoothness and modelling ability can be achieved.

2.2. Fuzzy controller as interpolator

Under the following conditions: a). periodical B-spline
basis functions as MFs for inputs, b). fuzzy-singletons
(called control vertices) as MFs for outputs, ¢). “product”
as fuzzy-conjunctions, d). ‘“centroid” as defuzzification
method, e). adding “virtual linguistic terms” at both ends
of each input variables, and f). extending the rule base
for the “virtual linguistic terms” by copying the output val-
ues of the “nearest” neighbourhood, the computation of the
output of such a fuzzy controller is equivalent to that of a
general B-spline hyper-surface. Generally, if we consider
a MISO system with n inputs x1, zs, ..., Z,, rules with
the n conjunctive terms in the premise are given in the fol-
lowing form: {Rule(iy, 12, ..., in): IF (z1 is X, ;) and (22
is X7 4, and ... and (vy is X[ ; ) THEN yis Yiiy i, s
where z; is the j-thinput (j = 1,...,n), k; is the order
of the B-spline basis functions used for z;, X;?.j,k“j is the
i;-th linguistic term of x; defined by B-spline basis func-
tions, ¢; = 1,...,m; represents the index of the linguis-
tic term of x; and Y; ;,. ;, denotes the control vertex of
Rule(il, iz, ey Zn)

Then the output y of a MISO fuzzy controller is:
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C*3=2-continuity of all the outputs with respect to each
input variable x; can be achieved if B-spline basis func-
tions of order k; are used for fuzzy partitioning ;.

2.3. Characteristics

Computing parameters of such a B-spline fuzzy system
is divided into two steps: for the IF-part and for the THEN-
part.

Characteristics of modelling the IF-part are:

e Based on the partitioning points of the input space and
the maximal point distribution of the control surface if
known, the fuzzy sets can be automatically computed.

e These fuzzy sets can be further adapted during the
generation of the whole system. We developed an al-
gorithm for adapting the knots of the IF-part, which is
a modified algorithm for self-organising neural net-
works. Nevertheless, if sufficient B-functions are
used for the inputs, the local modification of the knots
has only negligible influence on the control surface.
Therefore, in the following, we concentrate on the
control vertices of the THEN-part which can be au-
tomatically achieved through a learning procedure.

Characteristics for generating the THEN-part are:

e For supervised learning, the differentials of the
squared error with respect to control vertices are con-
vex functions. Therefore, rapid convergence for su-
pervised learning is guaranteed.

e The control surface changes locally while control
vertices are modified. Based on this feature, the
control vertices can be optimised gradually, area-
by-area. This feature is especially important for a
multi-dimensional control hyper-surface with a large
amount parameters.

3. Learning Approach

3.1. Supervised learning

Supervised learning assumes that a “teacher” provides
all the desired system output for each input data. Based
on the complete set of these input/output vectors, B-spline
type fuzzy controllers can be trained very rapidly.

Assume {(X, yq)} is a set of training data, where X =
(w1, xa,...,xy) is the input vector and y, is the desired
output for X. The squared error is considered:

1
E= E(y—yd)"’, (1)

where y is the current output value during training.
The parameters to be found are Y;, ;, ... ;,, which make
the error in (1) as small as possible, i.e.

E= %(y —ya)’ = MIN, @)

Each control vertex Y;,
the gradient descent method:

i, can be modified by using
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where 0 < € < 1.

The gradient descent method can guarantee that the
learning algorithm converges to the global minimum of the
error function since the second partial differentiation with
respect to Y, ;. ;. is always positive:
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This means the error function (1) is convex in the space
Y3, is,...i, and possesses therefore only one (global) mini-
mum.

We compared the test functions used in [4]. The re-
sults show that B-spline fuzzy systems can achieve the
same modelling effect as done by the ANFIS (Adaptive-
Network-Based Fuzzy Inference System) method, but B-
spline fuzzy systems converge faster in most cases.

3.2. Inspiration by supervised learning

In the above examples, a fuzzy system can learn under
supervision. Such a learning process needs a teacher, i.e.
for each input vector, the desired output should be known.
Then the fuzzy controller attempts to interpolate these in-
put/output vectors to provide a continuous (hyper-)surface
for the whole control space. Unfortunately, in reality, it is
not always simple to find the goal function of the output
for a complex system. An unsupervised learning approach
should therefore be developed.

We first discuss a control system with (1, s, ..., 2y,)
as input and y as output. Let us rewrite the modification of
the control vertices for supervised learning:

oF
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We interpret (6) as the following: si gn(yd —y) indicates
the direction of the modification of ¥;,  ; in each learn-
ing step, while the product € - |yq — y| - H?:l Xi; k()
determines the magnitude of the modification.

3.3. Evaluation function for unsupervised learning

In unsupervised learning, it is usually possible to define
an “‘evaluation function” if the desired data of the output
are unknown. Such an evaluation function should describe
how “good” the current system state ((z1, 2, ...,2n),Y)
is. For each input vector, an output is generated, with
which the system transits to another state. The new state
is compared with the old one; an adaptation of the control
vertices is performed if necessary.

Assume the evaluation function, denoted by F(-), is
monotonic, i.e. if state A is better than state B, then

F'(A) > F(B). The adaptation of the control vertices can
be performed with a similar representation as in supervised
learning.

Let us reconsider the modification of the control ver-
tices through the equation (6). State A transits to B by the
output y. The desired state is A;. We consider those sys-
tems, for which a function #'(-) can be found which fulfills
the following condition:

Assume A is the current state and y, an arbitrary out-
put. With yy the system transits to the state B;. If another
output yo fulfills' yo -yy < 0, and with y the system tran-
sits to Bs, the following relation of the evaluation functions
isvalid: ( F(B1) — F(A))-(F(By) — F(4)) < 0.

Intuitively interpreted, given two system outputs with
different signs, the system states measured by such an eval-
uation function change from the current state (A) away in
two directions (“better” or “worse”).

3.4. Modifying control vertices for a single output

At the moment ¢ the system has the state A. The ideal
state of the moment ¢ + 1 would be A,. Assume that this
state is achieved through the controller output y4 which is
unfortunately unknown. What really happens is that with
the controller output y generated at the moment ¢, the sys-
tem transits to the state B.

The important hints for finding the correct output y can
be acquired if the state B is compared with A 4. Inspired by
the modification of control vertices for supervised learning
in (6), we divide the learning into two parts: changing di-
rection and changing rate.

Firstly, the system should find out by itself in which di-
rection the control vertices will be changed since there are
normally no explicit representation between the evaluation
function and the controller output. Considering the state
transition from A to B, the constellation of A, B and Ay
results in the following three cases, Fig. 1. The fourth tran-
sition type (F/(B) = F(Ay)) is not shown here since in
this case the system does not need to take any action.

(a). The system state becomes worse, i.e. the system acts
incorrectly. According to the condition in section 3.3
the change direction is —sign(y).

(b). The system acts in the correct direction. The value of
the output should be enlarged. The change direction
is then sign(y).

(c). This case is the inverse case of (b). The change direc-
tion should be —sign(y).

'Under the assumption that y possesses symmetric values in negative
and positive areas (with the zero in the middle). In other cases, y can be
normalised to fulfill this condition.
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Figure 1. The possible system state transi-
tions (a). the system state becomes worse;
(b). the system state becomes better, but
the change is too slow; (c). the system
state becomes better, but the change is
too fast.

These three cases can be synthesised by
S = sign(F(A) — F(B)) - sign(F(B) — F(Aa)) - sign(y).

Now we replace y with F'(B) in (6), and y4 with F'(Ag).
The change of control vertices can finally be written as:

AYi iy =5« e |[F(B) = F(Aa)| - [T X (@)
5=1 @

The control vertices are modified using (7) in a goal-
oriented way instead of randomly as in Q-learning. The-
oretically, the optimum can be achieved rapidly. The fol-
lowing experiments validate this feature.

4. Learning of Cart-Pole Balancing

The balance of a cart-pole system is often used as
a common reference example for control algorithms and
learning approaches. Therefore, we firstly apply the learn-
ing approach in this control task.

4.1. Input/output .

The pendulum possesses an initial state (¢, #). The con-
trol variable is the force f to be exerted, which is able to
bring the cart-pole system to the balanced final state ¢ = 0
and § = 0.

The motion of the pendulum was computed using the
Runge-Kutta approach with the sample time of 0.01. The
inputs of the system are: a). angle: 6(°) € [—15,4+15] and
b). angle velocity: 6(°/s) € [—20, 4+20]. Each of the two
input variables are covered with 7 B-spline basis functions
of order 3. The output of the system is the force f to be
exerted on the cart.

4.2. Learning the control surface

For learning we choose the evaluation function as:

F(A) = F(H,é) def —12-6+ 0|, and the relation of

the evaluation functions of the desired state A; and A:

F(Ag) 2 05 F(A).

Fig. 2(a), 2(b) and 2(c) depict the force f at the begin-
ning, after 100 learning steps and after 3000 learning steps,
respectively. Fig. 2(d) demonstrates the correctness of the

learning approach, the evaluation function in this case is
not positive and provides zero for the states (¢, 6) which
fulfill the following conditions: a). z; - 2 < 0 and b).
2 [ = |aal.
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Figure 2. Applied force f to the cart-pole

system.

In other words, these states on the segment (0, 0) =
—|2- 6 + 6| are the best states, which is shown in Fig. 2(d)
by the intersection line of the zero-plane and the force f
plane.

4.3. Validation

After learning, the cart-pole system can be successfully
balanced from any initial states. One of the simulation re-
sults can be found in Fig. 3, which depicts the motion pro-
files of the pendulum from the starting state (6=-10, §=10).
After 2 seconds the pendulum has reached the goal state
(0=0, 6=0).

5. Sensor-Based Control of a Mobile Robot

The proposed learning approach was also applied to a
real mobile robot system Khepera. Our earlier work with
Khepera was using fuzzy control to integrate planning and
control, [8]. In the following, we show how the control ver-
tices of a fuzzy controller can be generated automatically
through learning.

5.1. Sensors and control variables

The robot perceives its environment with six infra-red
distance sensors, which can be grouped into three vari-
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Figure 3. Input and output profiles of the
pendulum starting from the state (-10,10).

ables, Fig. 4. The original sensor values are from O to 1023.
To reduce the uncertainties, the range of the sensor values
is scaled down to the interval [0, 100], using 5 as the in-
crement, i.e. the sensor values as controller inputs are 0,
5,10, ..., 90, 95, 100. All these inputs are covered with
7 B-spline basis functions as linguistic terms. Since the
robot is equipped with only limited on-board computation
capability, the order 2 of the basis functions was chosen to
make the real-time learning possible.

The two wheels of the robot are controlled indepen-
dently by two motors. The output of the controller is the
steering angle w. A positive value of w steers the robot to
the right, and negative value to the left. The velocities of
the two wheels can then be computed as: a). for the left
wheel: v + w and b). for the right wheel: v — w, where v
is the current front velocity of the robot.

5.2. Learning to avoid obstacles

Before trying to develop the evaluation function, we
first discuss the situations which the robot can possibly
face, Fig. 5. In the situations of Fig. 5(b), 5(e), 5(f), the
robot should try to keep the difference of SensL and SensR
as small as possible. For the cases shown in Fig. 5(c), 5(d),
the robot should try to minimise the sum of all three sen-
sors SensL, SensV and SensR. Fig. 5(g) and 5(h) illustrate

left motor TR
/,r ("T)
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/

\ /

e 7
e
right motor 1 SensR

Figure 4. Sensors and motors of the Khep-
era robot.

two cases, for which no reasonable evaluation function can
be found, the robot can simply turn left.
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Figure 5. Possible situations and actions
(a): free space, straight forward; (b): in a
corridor, straight forward; (c): turn right;
(d): turn left; (e): turn right; (f): turn
left; (g): turn left; (h): turn left.

The evaluation function F' can be summarised as fol-
lows:

o ['(SensL,SensF, SensR) = —(SensL+ SensF +
SensR), if SensF is big (Fig. 5(c) and 5(d)).

e F(SensL,SensF, SensR) = —|SensL — SensR)|,
if SensF is small, Sensl or SensR is not zero (Fig.
5(b), 5(e) and 5(f)).

e F(SensL,SensF,SensR) = 0, if no obstacles
present (Fig. 5(a)).

o Otherwise for Fig. 5(g) and 5(h): simply turn left.

As for the cart-pole control, the evaluation function of

the desired state is defined by F'(A4) “os. F(A). Dur-

ing the learning process, the change of the evaluation func-
tion from one state to the next has a big negative value if
the robot has falsely reacted; it is slightly positive if the
robot steers correctly but not strong enough. Fig. 6 shows
the learning results after 1000 learning steps.
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Figure 6. Output w after 1000 learning
steps.

To demonstrate that the robot has learned correctly with
the above approach, we perform the following experiment.
We change the roles of the wheels, i.e. let the wheels con-
trolled by: a). for the left wheel: v — w and b). for the
right wheel: v 4+ w. The results shown is now inverted in
comparison with Fig. 6 - exactly what we expected.

5.3. Learning to track contours

In this behaviour, the robot does not move way from an
obstacle, but tries to “keep the obstacle in the right eye”.
The robot reacts only if it sees something in its “right eye”
or in its “front eye”. The evaluation function depends on
the last and new sensor values, too.

o [(SensF,SensR) = (SensF + |SensR —80]),
if the robot sees something in the front or on the right,

e zero, otherwise.

After learning, the robot can track the contour of an ar-
bitrary object. The learning results are shown in Fig. 7.
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Figure 7. The output w.

6. Conclusions

The B-spline fuzzy controller is a bridge between a nu-
merical interpolation model and a symbolic rule system.
If the rule table is complete, then by adding certain more
marginal rules, the smoothness of the controller output can
be achieved by selecting the proper order of basis func-
tions. B-spline fuzzy controllers are exact, i.e. no infor-
mation is lost after the defuzzification. If a user specifies
the granularity for partitioning the input space, the control

vertices of the output variables which mainly determine the
shape of the control surface can be learned.

Although the number of control vertices to be optimised
can be quite large in a multi-dimensional problem, learn-
ing of such a fuzzy controller is efficient due to the local
influence of control vertices on the global control surface.
Supervised learning process converges rapidly thanks to
the one-minimum property of the learning function. If a
suitable evaluation function as shown in section 3.3 for a
system for unsupervised learning is designed, the learning
algorithm also shows a good convergence property for sys-
tems with a single output. Learning, e.g. for mobile robots
and manipulator control, can be performed on-line. In the
future, we will investigate problems with a large number
of inputs and/or multiple outputs based on the learning B-
spline fuzzy controllers.
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