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Abstract: In this paper we propose an approach for rapid learning an important type
of fuzzy controllers. To specify linguistic terms, the B-spline basis functions are used for
input variables and fuzzy singletons for output variables. “Product” is chosen as the fuzzy-
conjunction, and “centroid” as the defuzzification method. By appropriately designing
the rule base, a fuzzy logic controller can be interpreted as a B-spline interpolator. Such
a fuzzy controller can learn to approximate any known data sequences and to minimise
a certain cost functions. By choosing a suitable cost function, the learning process can
converge rapidly. We present some applications of this approach in supervised learning,
especially for function approximation. The approach can also be extended to the problem
of unsupervised learning.

Keywords: fuzzy control, learning, B-splines.

1 Introduction

Classical Mamdani-type fuzzy controllers have been applied to diverse control problems,
[3, 5]. Studying these applications, one will easily notice that the automatic design of an
optimal controller becomes a very important topic, as pointed out in [1]. Recently, Sugeno
type fuzzy controller has been used for function approximation and supervised learning,
[4], [2]. However, a general Sugeno model cannot show the advantage of linguistic control
since the higher order of polynomial combination of input variables cannot be easily
extracted from the expert intuitive knowledge.

In principle, the evaluation of a fuzzy rule base is an interpolation process. Therefore, if
we are considering an automatic method for designing a fuzzy controller, it is meaningful
to check the interpolation methods using analytical functions. Langrage polynomials
supply a set of functions which can be used for blending a given number of data points.
Newton polynomials can realise the same task but they can be recursively computed so
that a new polynomial does not need to be totally re-calculated for a new data. Bernstein
functions are based on a parameterised data set and can also interpolate data quite well.



However, only B-spline basis functions are independent of the number of interpolation
data. By choosing suitable B-spline model, the basis functions can be used as a powerful
and convenient tool to specify linguistic terms.

In our previous work [6], we compared splines and a fuzzy controller with SISO (single-
input-single-output) and MISO (multi-input-single-output) structures; periodical non-uniform
B-spline basis functions (NUBS) are interpreted as membership functions. In this paper,
we discuss the learning aspects of such a fuzzy controller and present some implemented
examples.

2 Constructing Fuzzy Controllers with B-Splines

2.1 B-Spline Basis Functions

Assume x is a general input variable of a control system which is defined on the universe
of discourse [xg, ©,,]. Given a sequence of ordered parameters (knots): (o, 1, T2,...,Tn),
the i—th normalised B-spline basis function (B-function) N;j of order k is defined as:

1 fora; <z <49
N;y(z) =< |0 otherwise

7xi+iifi_xi Nig—1(z) + —'"—gcikf;il Niyijg—1(z) if k>1

if k=1

with1 =0, 1, ..., m-k. Fig. 1 shows B-functions from order one to order 4 which can
be easily associated with the fuzzy membership functions (MFs).
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Figure 1: Fuzzy sets defined by B-spline basis functions of different orders.



2.2 The General MISO Controllers

Since a MIMO rule base is normally divided into several MISO rule bases, we consider
only the MISO case. Under the following conditions (see [6]): a). periodical B-spline
basis functions as membership functions for inputs, b). fuzzy singletons as membership
functions for outputs, ¢). “product” as fuzzy conjunctions, d). “centroid” as defuzzifica-
tion method, e). addition of “virtual linguistic terms” at both ends of each input variable
and f). extension of the rule base for the “virtual linguistic terms” by copying the output
values of the “nearest” neighbourhood, the computation of the output of such a fuzzy
controller is equivalent to that of a general B-spline hypersurface. Generally, we consider
a MISO system with n inputs xy,z,,...,x,, rules with the n conjunctive terms in the
premise are given in the following form:

{Rule(ir, iy, ..., 1,): TF (21 0s N} ) and (g is N}

12,ko

) and ... and (z, is NZ?:ukn)
THEN y is Yi i..in }s

where x; is the j-th input (j = 1,...,n), k; is the order of the B-spline basis functions
used for x;, wakj is the s-th linguistic term of x; defined by B-spline basis functions,
i; = 0,...,m; represents how fine the j-th input is fuzzy partitioned, Y; is the
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control vertex (deBoor points) of Rule(iy, ia,...,1,).

Then, the output y of a MISO fuzzy controlleris: y = 377"L, ... 57" o (Vi i, [Tj=1 N£7kj (z;)).
This is a general NUBS hypersurface.

3 Learning of B-spline Fuzzy Controllers

3.1 Optimisation of the Control Vertices

A fuzzy system constructed with the approach above can be optimised with a gradi-
ent descent approach Assume that {X', 3} is a set of training data, where X' =
(2%, 2%, ...,2%) is the i-th input vector, and v} is the desired output for X, ' is the
output value computed by the fuzzy system. If we define the following error function:
E =1 (y' —yj)?, the derivation of each control vertex Y, is:

yeenrln

or

AYi i = ey = — Yiou) H Nij s

1 4eeestn

where 0 < ¢ < 1. Since the second partial differentiation to Y;, ,, . is always positive,
the error function F is convex. Therefore, the gradient descent approach guarantees the

fast finding of the global minimum of K.

3.2 Acceleration of Rule Evaluation

The index coding of the B-functions makes the evaluation of fuzzy rules highly efficient.
For an input = € [x;, x,41], it is known that exact k linguistic terms will be activated, i.e.
the values of £ B-functions N;x, N;i_1k, ..., Ni_gy1,, are greater than zero. All the other
linguistic terms are unactivated. In the whole rule base, exact k x n rules are firing for



any input vector in the universe of discourse. This property makes it possible that a rule
base, in which the number of rules is exponential to n, can be evaluated in a linear time
with n.

3.3 Steps for Developing a B-Spline Fuzzy Controller

The steps for developing a fuzzy controller with B-spline models can be summarised as
follows (M: manually, A: automatically):

1. ) Select inputs.

) Select the order of the B-functions for each input variable.
) Determine the knots for partitioning each input variable.
Compute the virtual and real linguistic terms for all inputs.
Initialise the control vertices for the output.

Learn the control vertices.
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If the results are satisfied, terminate.

Modify the knots for input, go to 4;

or Refine the granularity and use more training data, go to 3;
or Increase the order of B-functions, go to 3;

or Delete certain inputs and/or add new ones, go to 2.
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In the step 3, it is very important to know how the knots should be placed in the input
space. An intuitive answer is to fix the knots where the output has its extrema. If such
information is available, e.g. by approximating an analytically representable function,
we can apply this principle to select the knots. If the outputs of a control system are
unknown, the knots can be computed with an approach similar with the optimisation of
a self-organising neural network.

The control vertices can be initialised with the approximate a priori values, e.g. the
experience data from experts if available. Otherwise they can be just set to zero.

4 Implementations

Examples in [2] were first implemented to demonstrate the learning ability for function
approximation and system identification. In the following figures, the modelling of the
linguistic terms using B-functions are not extra shown. Instead we use ay X ay X ag x ...
to describe how many linguistic terms (real + virtual) are applied for the input variable
X1, T2, T3,... of the used fuzzy controller. The main focus of our observation lies on the
learning process of the input-output relation, i.e. the control surface, the approximation
error, and the test error.

4.1 Approximation of a Function with Two Variables z = %ﬂ * %ﬂ

The training data were uniformly selected from the area [-10,10]x[-10,10], altogether 121
training vectors ((x,y),z)) were obtained. Since the this function is symmetric, the two
input variables are covered with the same number of linguistic terms of order 3. Fig.
2(a)-(d) illustrate the training results. It can be found that relative more linguistic terms
are needed for this approximation task (a 5 x 5 fuzzy controller even fails, Fig. 2(b)).



(b) Output of a 5 x 5 con-
troller after 1000 steps

(a) Training data

(c) Output of a 7 x 7 con-
troller after 100 steps

(d) Output of a 11 x 11 con-
troller after 20 steps

Figure 2: Approximation of the function z = sin(x)/x * sin(y)/y.

4.2 A Function with Three Variables f(z,y,z) = (1 +2°° +y~' 4+ 2715)?

216 training data and 125 test data are uniformly selected from the input space [1,6] x
[1,6] x [1,6] and [1.5,5.5] x [1.5,5.5] x [1.5,5.5], respectively. Fuzzy controllers with B-
functions of order 3 are trained for this example, and all the control vertices of them
are initialised as zero. The percentage training and test errors are computed with the
definition in [2]. In Fig. 3, the upper curve (o) depicts the test error, the lower curve
(+) the training error. In case of Fig. 3(b), the test error can be reduced by suing more
training data.
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Figure 3: The error curves of two fuzzy controllers with different partition granularity.
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4.3 Prediction of a Chaotic System

A Chaos time system is generated with the following discrete Mackey-Glass equation:

0.22(t —r)

S T

+0.92(¢t)

1000 training data are selected using the method in [2]. We also use 500 data as training
data, other 500 as test data. The fuzzy controller has four inputs. The RMSE (Root
Mean Square Error) measures the approximation error. The results are shown in Fig. 4.
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Figure 4: Emulation of chaotic system with a 5x5x5x5 fuzzy controller.

For this problem, the ANFIS approach [2] needs 1.5 hours on a HP Apollo 700, while
our algorithm only needs 40 minutes on a SUN Sparc-4 workstation. In [2], two linguistic
terms are used for each input. The training error after 500 epochs is 0.0016, the test error

is 0.0015.

4.4 Identification of a Non-Linear System

The task is to identify a nonlinear component in a dynamic system: y(t 4+ 1) = 0.3y(?) +
0.6y(t — 1) + f(u(t)), where y(t) is the output of moment ¢ and w(t) is the input.

In this simulation f(.) has the the form: f(u) = 0.6sin(mu) + 0.3sin(37u) 4 0.1sin(57uw).
The input signal is:
sin(27t/250), for t < 500,
u(t) =
0.5sin(27t/250) 4 0.5 sin(27¢/25), for t > 500.



B-spline fuzzy controllers with order 3 are trained with 250 data from ¢ = 1 to ¢ = 250.
The data from ¢t = 251 to ¢t = 750 are used for test. Fig. 5 shows the results with 30
B-functions after one and ten times training steps. In Fig. 5(a), (¢), (e), the lighter curves
represent the desired data, while in Fig. 5(b), (d), (f), these curves are well approximated.

(a) The non-linear component f(u) af- (b) f(u) after 10 learning step
ter 1 learning step
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Figure 5: Results of the fuzzy controller with 30 B-function after learning.

5 Discussions

5.1 Supervised and Unsupervised Learning

The proposed approach is suitable for on-line learning thanks to its learning speed. We
successfully applied it to the supervised learning to the “truck backer-upper” (see also



[4]) and “inverse kinematics” problem in the area of robotics. The learning approach can
also be generalised for unsupervised learning by designing a suitable evaluation function
and using such information to modify the control vertices. We have applied this approach
in the mobile robot control and the sensor-based assembly operations. For further details
see [8], [7]. Our current work is on extending this approach to the learning problem of
large systems with multiple outputs.

5.2 Summary

We proposed a novel approach for constructing fuzzy controllers with B-spline basis func-
tions and learning the control vertices for the THEN-parts. If the rule table is complete,
then by adding certain more marginal rules, the smoothness of the controller output can
be achieved by selecting the proper order of basis functions. B-spline fuzzy controllers are
exact, that means no information is lost after the defuzzification. Although the number
of control vertices to be optimised can be quite large in our approach, the learning process
of such a fuzzy controller converges rapidly, especially for the supervised learning thanks
to the one-minimum property of the error function and the efficient evaluation of the rule
base. Therefore, the computation time is clearly reduced in comparison with the other
approaches.
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